| 1                    |                                                                                                                                                                                                                                                         |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                    |                                                                                                                                                                                                                                                         |
| 3                    |                                                                                                                                                                                                                                                         |
| 4                    |                                                                                                                                                                                                                                                         |
| 5                    |                                                                                                                                                                                                                                                         |
| 6                    |                                                                                                                                                                                                                                                         |
| 7                    | Rif1 inhibits replication fork progression and controls DNA copy number in Drosophila.                                                                                                                                                                  |
| 8                    |                                                                                                                                                                                                                                                         |
| 9                    | Alexander Munden <sup>1</sup> , Zhan Rong <sup>1</sup> , Rama Gangula <sup>2</sup> , Simon Mallal <sup>2,3</sup> and Jared T. Nordman <sup>1,4</sup>                                                                                                    |
| 10<br>11<br>12<br>13 | <sup>1</sup> Dept. of Biological Sciences, Vanderbilt University, Nashville, TN 37232<br><sup>2</sup> Dept. of Medicine, <sup>3</sup> Dept. of Pathology, Microbiology and Immunology,<br>Vanderbilt University School of Medicine, Nashville, TN 37232 |
| 14                   | Running title: Rif1 controls replication fork progression                                                                                                                                                                                               |
| 15                   |                                                                                                                                                                                                                                                         |
| 16                   | Keywords: DNA replication, Common Fragile Sites, Replication Timing, Drosophila, genome                                                                                                                                                                 |
| 17                   | stability                                                                                                                                                                                                                                               |
| 18                   |                                                                                                                                                                                                                                                         |
| 19                   | <sup>4</sup> Corresponding author: jared.nordman@vanderbilt.edu                                                                                                                                                                                         |
| 20                   |                                                                                                                                                                                                                                                         |
| 21                   |                                                                                                                                                                                                                                                         |
| 22                   |                                                                                                                                                                                                                                                         |
| 23                   |                                                                                                                                                                                                                                                         |
| 24                   |                                                                                                                                                                                                                                                         |
|                      |                                                                                                                                                                                                                                                         |

## 25 ABSTRACT:

| 26 | Control of DNA copy number is essential to maintain genome stability and ensure proper cell     |
|----|-------------------------------------------------------------------------------------------------|
| 27 | and tissue function. In Drosophila polyploid cells, the SNF2-domain-containing SUUR protein     |
| 28 | inhibits replication fork progression within specific regions of the genome to promote DNA      |
| 29 | underreplication. While dissecting the function of SUUR's SNF2 domain, we identified a physical |
| 30 | interaction between SUUR and Rif1. Rif1 has many roles in DNA metabolism and regulates the      |
| 31 | replication timing program. We demonstrate that repression of DNA replication is dependent      |
| 32 | on Rif1. Rif1 localizes to active replication forks in an SUUR-dependent manner and directly    |
| 33 | regulates replication fork progression. Importantly, SUUR associates with replication forks in  |
| 34 | the absence of Rif1, indicating that Rif1 acts downstream of SUUR to inhibit fork progression.  |
| 35 | Our findings uncover an unrecognized function of the Rif1 protein as a regulator of replication |
| 36 | fork progression.                                                                               |
| 37 |                                                                                                 |
| 38 |                                                                                                 |
| 39 |                                                                                                 |
| 40 |                                                                                                 |
| 41 |                                                                                                 |
| 42 |                                                                                                 |
| 43 |                                                                                                 |
| 44 |                                                                                                 |
| 45 |                                                                                                 |
| 46 |                                                                                                 |

## **INTRODUCTION:**

| 48 | Accurate duplication of a cell's genetic information is essential to maintain genome stability.   |
|----|---------------------------------------------------------------------------------------------------|
| 49 | Proper regulation of DNA replication is necessary to prevent mutations and other chromosome       |
| 50 | aberrations that are associated with cancer and developmental abnormalities (Jackson et al.,      |
| 51 | 2014). DNA replication begins at thousands of cis-acting sites termed origins of replication. The |
| 52 | Origin Recognition Complex (ORC) binds to replication origins where, together with Cdt1 and       |
| 53 | Cdc6, it loads an inactive form of the MCM2-7 replicative helicase (Bell and Labib, 2016).        |
| 54 | Inactive helicases are phosphorylated by two key kinases, S-CDK and Dbf4-dependent kinase         |
| 55 | (DDK), which results in the activation of the helicase and recruitment of additional factors to   |
| 56 | form a pair of bi-directional replication forks emanating outward from the origin of replication  |
| 57 | (Siddiqui et al., 2013). Although many layers of regulation control the initiation of DNA         |
| 58 | replication, much less in known about how replication fork progression is regulated.              |
| 59 |                                                                                                   |
| 60 | In metazoans, replication origins are not sequence specific and are likely specified by a         |
| 61 | combination of epigenetic and structural features (Aggarwal and Calvi, 2004; Cayrou et al.,       |
| 62 | 2011; Eaton et al., 2011; Mesner et al., 2011; Miotto et al., 2016; Remus et al., 2004).          |
| 63 | Furthermore, replication origins are not uniformly distributed throughout the genome. The         |
| 64 | result of non-uniform origin distribution is that, in origin-poor regions of the genome, a single |
| 65 | replication fork must travel great distances to complete replication. If a replication fork       |
| 66 | encounters an impediment within a large origin-less region of the genome, then replication will   |
| 67 | be incomplete, resulting in genome instability (Newman et al., 2013). In fact, origin poor        |
| 68 | regions of the genome are known to be associated with chromosome fragility and genome             |

| 69 | instability (Debatisse et al., 2012; Durkin and Glover, 2007; Letessier et al., 2011; Norio et al., |
|----|-----------------------------------------------------------------------------------------------------|
| 70 | 2005). This highlights the need to regulate both the initiation and elongation phases of DNA        |
| 71 | replication to maintain genome stability.                                                           |
| 72 |                                                                                                     |
| 73 | DNA replication is also regulated in a temporal manner where specific DNA sequences replicate       |
| 74 | at precise times during S phase, a process known as the DNA replication timing program. While       |
| 75 | euchromatin replicates in the early part of S phase, heterochromatin and other repressive           |
| 76 | chromatin types replicate in the later portion of S phase (Gilbert, 2002; Rhind and Gilbert,        |
| 77 | 2013). Although the process of replication timing has been appreciated for many years, the          |
| 78 | underlying molecular mechanisms controlling timing have remained elusive. The discovery of          |
| 79 | factors that regulate the DNA replication timing program, however, demonstrate that                 |
| 80 | replication timing is an actively regulated process.                                                |
| 81 |                                                                                                     |
| 82 | Once factor that regulates replication timing from yeast to humans is Rif1 (Rap1-interacting        |
| 83 | factor 1). Rif1 was initially identified as a regulator of telomere length in budding yeast (Hardy  |
| 84 | et al., 1992), but this function of Rif1 appears to be specific to yeast (Xu, 2004). Subsequently,  |
| 85 | Rif1 has been shown to regulate multiple aspects of DNA replication and repair. In mammalian        |
| 86 | cells, Rif1 has been shown to regulate DNA repair pathway choice by preventing resection of         |
| 87 | double-strand breaks and favoring non-homologous end joining (NHEJ) over homologous                 |

- recombination (Chapman et al., 2013; Di Virgilio et al., 2013; Zimmermann et al., 2013). Rif1
- 89 from multiple organisms contains a Protein Phosphatase 1 (PP1) interaction motif and Rif1 is

| 90 | able to recruit PP1 to DDK-activated helicases to inactive them and prevent initiation of |
|----|-------------------------------------------------------------------------------------------|
|    |                                                                                           |

91 replication (Davé et al., 2014; Hiraga et al., 2014; 2017).

92

| 93  | In yeasts, flies and mammalian cells, Rif1 has been shown to regulate the replication timing            |
|-----|---------------------------------------------------------------------------------------------------------|
| 94  | program (Cornacchia et al., 2012; Hayano et al., 2012; Peace et al., 2014; Sreesankar et al.,           |
| 95  | 2015; Yamazaki et al., 2012). The precise mechanism(s) through which Rif1 functions to control          |
| 96  | replication timing are not fully understood. For example, Rif1 has been show to interact with           |
| 97  | Lamin and is thought to tether specific regions of the genome to the nuclear periphery (Foti et         |
| 98  | al., 2015). How this activity is related to Rif1's ability to inactivate helicases together with PP1 in |
| 99  | controlling the timing program remains obscure.                                                         |
| 100 |                                                                                                         |
| 101 | Studying DNA replication in the context of development provides a powerful method to                    |
| 102 | understand how DNA replication is regulated both spatially and temporally. Although DNA                 |
| 103 | replication is a highly ordered process, it must be flexible enough to accommodate the changes          |
| 104 | in S phase length and cell cycle parameters that occur as cells differentiate (Matson et al.,           |
| 105 | 2017). For example, during Drosophila development the length of S phase can vary from $^{\sim}8$        |
| 106 | hours in a differentiated mitotic cell to 3-4 minutes during early embryonic cell cycles                |
| 107 | (Blumenthal et al., 1974; Spradling and Orr-Weaver, 1987). Additionally, many tissues and cell          |
| 108 | types in Drosophila are polyploid, having multiple copies of the genome in a single cell (Edgar         |
| 109 | and Orr-Weaver, 2001; Lilly and Duronio, 2005; Zielke et al., 2013).                                    |

111 In polyploid cells, copy number is not always uniform throughout the genome (Rudkin, 1969; 112 Hua and Orr-Weaver, 2017; Spradling and Orr-Weaver, 1987). Both heterochromatin and 113 several euchromatic regions of the genome have reduced DNA copy number relative to overall 114 ploidy (Nordman et al., 2011). Underreplicated euchromatic regions of the genome share key 115 features with common fragile sites in that they are devoid of replication origins, late replicating, 116 display DNA damage and are tissue-specific (Andreyeva et al., 2008; Nordman et al., 2014; Sher 117 et al., 2012; Yarosh and Spradling, 2014). The presence of underreplication is conserved in 118 mammalian cells, but the mechanism(s) mammalian cells use to promote underreplication is 119 unknown (Hannibal et al., 2014). In Drosophila, underreplication is an active process that is 120 largely dependent on the Suppressor of Underreplication protein, SUUR (Makunin et al., 2002; 121 Nordman and Orr-Weaver, 2015).

122

123 Understanding how the SUUR protein functions will significantly increase our understanding of 124 the developmental control of DNA replication. The SUUR protein has a recognizable SNF2-like 125 chromatin remodeling domain at its N-terminus, but based on sequence analysis, this domain is 126 predicted to be defective for ATP binding and hydrolysis (Makunin et al., 2002; Nordman and 127 Orr-Weaver, 2015). Outside of the SNF2 domain, SUUR has no recognizable motifs or domains, 128 which has hampered a mechanistic understanding of how SUUR promotes underreplication. 129 Recently, however, SUUR was shown to control copy number by directly reducing replication 130 fork progression (Nordman et al., 2014). SUUR associates with active replication replication 131 forks and while loss of SUUR function results in increased replication fork progression, 132 overexpression of SUUR drastically inhibits replication fork progression without affecting origin

| 133 | firing (Nordman et al., 2014; Sher et al., 2012). These findings, together with previous work             |
|-----|-----------------------------------------------------------------------------------------------------------|
| 134 | showing that loss of SUUR function has no influence on ORC binding (Sher et al., 2012) and that           |
| 135 | SUUR associates with euchromatin in an S phase-dependent manner (Kolesnikova et al., 2013),               |
| 136 | further supports SUUR as a direct inhibitor of replication fork progression within specific               |
| 137 | regions of the genome. The mechanism through which SUUR is recruited to replication forks                 |
| 138 | and how it inhibits their progression remains poorly understood.                                          |
| 139 |                                                                                                           |
| 140 | Here we investigate how SUUR is recruited to replication forks and how it inhibits fork                   |
| 141 | progression. We show that localization of SUUR to replication forks, but not heterochromatin, is          |
| 142 | dependent on its SNF2 domain. We identify a physical interaction between SUUR and the                     |
| 143 | conserved replication factor Rif1. Importantly, we demonstrate that underreplication is                   |
| 144 | dependent on <i>Rif1</i> . Critically, we have shown that Rif1 localizes to replication forks in an SUUR- |
| 145 | dependent manner, where it acts downstream of SUUR to control replication fork progression.               |
| 146 | Our findings provide mechanistic insight into the process of underreplication and define a new            |
| 147 | function for Rif1 in replication control.                                                                 |
| 148 |                                                                                                           |
| 149 |                                                                                                           |
| 150 |                                                                                                           |
| 151 |                                                                                                           |
| 152 |                                                                                                           |
| 153 |                                                                                                           |
| 154 |                                                                                                           |

## 155 **RESULTS:**

#### 156 The SNF2 domain is essential for SUUR function and replication fork localization

157 As a first step in understanding the mechanism of SUUR function, we wanted to define how it is 158 localized to replication forks. SUUR has only one conserved domain: a SNF2-like domain in its Nterminal region that is predicted to be defective for ATP binding and hydrolysis (Makunin et al., 159 160 2002; Nordman and Orr-Weaver, 2015). To study the function of SUUR's SNF2 domain, we 161 generated a mutant in which the SNF2 domain was deleted and the resulting mutant protein was expressed under the control of the endogenous SuUR promoter. This mutant, SuUR<sup> $\Delta SNF$ </sup>, 162 was then crossed to an SuUR null mutant so that it was the only form of the the SUUR protein 163 present. We tested the function of the SuUR<sup> $\Delta$ SNF</sup> mutant protein by assessing its ability to 164 165 promote underreplication in the larval salivary gland. We purified genomic DNA from larval salivary glands isolated from wandering 3<sup>rd</sup> instar larvae and generated genome-wide copy 166 167 number profiles using Illumina-based sequencing. We compared the results we obtained from the SuUR<sup> $\Delta$ SNF</sup> mutant to copy number profiles from wild-type (WT) and SuUR null mutant 168 salivary glands. To identify underreplicated domains, we used CNVnator, which identifies copy 169 170 number variants (CNVs) based on a statistical analysis of read depth (Abyzov et al., 2011). To be called as underreplicated, regions must not be called as underreplicated in 0-2 hour embryo 171 172 samples that have uniform copy number and must be larger than 10kb.

173

The effect of deleting the SNF2 domain was qualitatively and quantitatively similar to the *SuUR* null mutant. Qualitatively, underreplication was suppressed in the *SuUR*<sup> $\Delta SNF</sup>$  mutant and the copy number profile was similar to the *SuUR* null mutant (Figure 1B and Supplemental Figure</sup>

| 177 | 1). Quantitatively, out of the 90 underreplicated sites identified in WT salivary glands, 59 were                            |
|-----|------------------------------------------------------------------------------------------------------------------------------|
| 178 | not detected in the $\mathit{SuUR}^{{\scriptscriptstyle {	riangle SNF}}}$ mutant (Supplementary Table 1) and copy number was |
| 179 | significantly increased in the euchromatic underreplicated domains similar to the SuUR null                                  |
| 180 | mutant (Figure 1C). We validated our deep-sequencing findings using quantitative droplet                                     |
| 181 | digital PCR (ddPCR) at four underreplicated domains (Figure 1D). Our findings show that the                                  |
| 182 | SNF2-like domain of SUUR is necessary to promote underreplication.                                                           |
|     |                                                                                                                              |

To determine if the SUUR<sup>ASNF</sup> protein was still able to associate with chromatin, we localized 184 SUUR and the SUUR<sup> $\Delta$ SNF</sup> mutant proteins in ovarian follicle cells. During follicle cell 185 186 development, these cells undergo programmed changes in their cell cycle and DNA replication 187 programs (Claycomb and Orr-Weaver, 2005; Hua and Orr-Weaver, 2017). At a precise time in 188 their differentiation program, follicle cells cease genomic replication and amplify six defined 189 sites of their genome through a re-replication based mechanism. Early in this gene amplification 190 process, both initiation and elongation phases of replication are coupled. Later in the process, 191 however, initiation no longer occurs and active replication forks can be visualized by pulsing 192 amplifying follicle cells with 5-ethynyl-2'deoxyuridine (EdU) (Claycomb et al., 2002). Active 193 replication forks resolve into a double-bar structure, where each bar represents a series of 194 active replication forks travelling away from the origin of replication (Claycomb and Orr-195 Weaver, 2005). By monitoring SUUR localization in amplifying follicle cells, we can 196 unambiguously determine if SUUR associates with active replication forks.

197

| 198 | SUUR has two distinct modes of chromatin association during the endo cycle. It constitutively              |
|-----|------------------------------------------------------------------------------------------------------------|
| 199 | localizes to heterochromatin and dynamically associates with replication forks (Kolesnikova et             |
| 200 | al., 2013; Nordman et al., 2014; Swenson et al., 2016). In agreement with previous studies,                |
| 201 | SUUR localized to both replication forks and heterochromatin in amplifying follicle cells (Figure          |
| 202 | 1E) (Nordman et al., 2014). In contrast, the SUUR $^{\Delta SNF}$ mutant localized to heterochromatin, but |
| 203 | its recruitment to active replication forks was severely reduced (Figure 1E). Together, these              |
| 204 | results demonstrate that the SNF2 domain is important for SUUR recruitment to replication                  |
| 205 | forks and is essential for SUUR-mediated underreplication.                                                 |
| 206 |                                                                                                            |
| 207 | SUUR associates with Rif1                                                                                  |
| 208 | Interestingly, overexpression of the SNF2 domain and C-terminal portion of SUUR have                       |
| 209 | different underreplication phenotypes. Whereas overexpression of the C-terminal two-thirds of              |
| 210 | SUUR promotes underreplication (Kolesnikova et al., 2005), overexpression of the SNF2 domain               |
| 211 | suppresses underreplication in the presence of endogenous SUUR (Kolesnikova et al., 2005).                 |
| 212 | The C-terminal region of SUUR, however, has no detectable homology or conserved domains                    |
| 213 | (Makunin et al., 2002). These observations, together with our own results demonstrating that               |
| 214 | the SNF2 domain of SUUR is responsible its localization to replication forks, led us to                    |
| 215 | hypothesize that SUUR is recruited to replication forks through its SNF2 domain where it could             |
| 216 | recruit an additional factor(s) through its C-terminus to inhibit replication fork progression.            |
| 217 |                                                                                                            |
| 218 | To test the hypothesis that a critical factor interacts with the C-terminal region of SUUR to              |
| 219 |                                                                                                            |

| 220 | SUUR-interacting proteins. We generated flies that expressed FLAG-tagged full length SUUR or       |
|-----|----------------------------------------------------------------------------------------------------|
| 221 | the SNF2 domain of SUUR, immunoprecipitated these constructs and identified associated             |
| 222 | proteins through mass spectrometry. If SUUR recruits a factor to replication forks outside of its  |
| 223 | SNF2 domain, then we would expect this factor to be present only in full length purifications      |
| 224 | and not in the SNF2 domain purification. A single protein fulfilled this criteria: Rif1 (Table 1). |
| 225 | This result raises the possibility Rif1 works together with SUUR to inhibit replication fork       |
| 226 | progression.                                                                                       |
|     |                                                                                                    |

## 228 Underreplication is dependent on Rif1

229 If SUUR recruits Rif1 to replication forks to promote underreplication, then underreplication 230 should be dependent on *Rif1*. To test this hypothesis, we used CRISPR-based mutagenesis to 231 generate Rif1 null mutants in Drosophila (Bassett et al., 2013; Gratz et al., 2013) (Figure 2A). Western blot analysis of ovary extracts from two deletion mutants, *Rif1<sup>1</sup>* and *Rif1<sup>2</sup>*, show no 232 detectable Rif1 protein (Supplemental Figure 2A). Also, no signal was detected in the  $Rif1^{1}/Rif1^{2}$ 233 mutant by immunofluorescence (Supplemental Figure 2B). The  $Rif1^{1}/Rif1^{2}$  null mutant was 234 235 viable and fertile showing only a modest defect in embryonic hatch rate relative to wild-type flies with a 92% hatch rate for wild type embryos vs. 88% for the  $Rif1^{1}/Rif^{2}$  mutant embryos 236 237 (Supplemental Figure 2C). This is in contrast to a previous a study reporting *Rif1* is essential in 238 Drosophila (Sreesankar et al., 2015). Rif1's essentiality, however, was based on RNAi and not a 239 mutation of the *Rif1* gene (Sreesankar et al., 2015). The most likely explanation for this 240 discrepancy is that the lethality in the RNAi experiments was due to an off-target effect.

241

| 242 | To determine if <i>Rif1</i> is necessary for underreplication, we dissected salivary glands from                                             |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|
| 243 | <i>Rif1<sup>1</sup>/Rif1<sup>2</sup></i> (herein referred to as <i>Rif1</i> <sup>-</sup> ) heterozygous larvae and extracted genomic DNA for |
| 244 | Illumina-based sequencing to measure changes in DNA copy number. Strikingly,                                                                 |
| 245 | underreplication is abolished upon loss of Rif1 function (Figure 2B and C; Supplemental Figure                                               |
| 246 | 3). We validated our sequence-based copy number assays with quantitative PCR at a subset of                                                  |
| 247 | underreplicated regions using ddPCR (Figure 2D). Furthermore, we determined the read density                                                 |
| 248 | at all euchromatic sites of underreplication called in our wild-type samples, which quantitatively                                           |
| 249 | demonstrates that Rif1 is essential for underreplication (Figure 2C). These results demonstrate                                              |
| 250 | that underreplication is dependent on <i>Rif1</i> .                                                                                          |
| 251 |                                                                                                                                              |
| 252 | It is possible that the <i>Rif1</i> mutant indirectly influences underreplication through changes in                                         |
| 253 | replication timing. Underreplicated domains, both euchromatic and heterochromatic, tend to                                                   |
| 254 | be late replicating regions of the genome (Belyaeva et al., 2012; Makunin et al., 2002).                                                     |
| 255 | Therefore, if these regions replicated earlier in S phase in a <i>Rif1</i> mutant, then this change could                                    |
| 256 | prevent their underreplication. In fact, SUUR associates with late replicating regions of the                                                |
| 257 | genome (Filion et al., 2010; Pindyurin et al., 2007). Due to their large polyploid nature, salivary                                          |
| 258 | glands cells cannot be sorted to perform genome-wide replication timing experiments. Because                                                 |
| 259 | heterochromatin replicates exclusively in late S phase, however, late replication can be                                                     |
| 260 | visualized when EdU is incorporated exclusively in regions of heterochromatin. To assess if <i>Rif1</i>                                      |
| 261 | mutants have a clear pattern of late replication in larval salivary glands, we isolated salivary                                             |
| 262 | glands from early 3 <sup>rd</sup> instar larvae, which are actively undergoing endo cycles. We pulsed these                                  |
| 263 | salivary glands with EdU to visualize sites of replication and co-stained with an anti-HP1                                                   |

| 264                                           | antibody to mark heterochromatin. In wild-type salivary glands, only rarely (1 of 238 EdU $^{\scriptscriptstyle +}$ cells;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 265                                           | 0.4%) did we detect EdU incorporation in regions of heterochromatin (Supplemental Figure 4).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 266                                           | This is consistent with the lack of heterochromatin replication due to underreplication. In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 267                                           | contrast, in both SuUR and Rif1 mutants, we could readily detect cells that were solely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 268                                           | incorporating EdU within regions of heterochromatin (32 of 327 EdU $^{+}$ cells; 9.8% for <i>SuUR</i> and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 269                                           | 70 of 385 EdU <sup>+</sup> cells; 18.2% for <i>Rif1</i> ) (Supplemental Figure 4). Therefore, we conclude that <i>Rif1</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 270                                           | mutants still have a clear pattern of late replication. Given that heterochromatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 271                                           | underreplication is suppressed in a <i>Rif1</i> mutant, although it is still late replicating, indicates that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 272                                           | replication timing cannot solely explain the lack of underreplication associated with loss of Rif1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 273                                           | function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 274                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 275                                           | While characterizing Rif1's role in underreplication and patterns of DNA replication in endo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 275<br>276                                    | While characterizing Rif1's role in underreplication and patterns of DNA replication in endo cycling cells, we did observe differences in the heterochromatic regions of <i>SuUR</i> and <i>Rif1</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 276                                           | cycling cells, we did observe differences in the heterochromatic regions of SuUR and Rif1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 276<br>277                                    | cycling cells, we did observe differences in the heterochromatic regions of <i>SuUR</i> and <i>Rif1</i> mutants. First, although underreplication is suppressed in both mutants (Figure 2 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 276<br>277<br>278                             | cycling cells, we did observe differences in the heterochromatic regions of <i>SuUR</i> and <i>Rif1</i> mutants. First, although underreplication is suppressed in both mutants (Figure 2 and Supplemental Figure 3), the chromocenters were abnormally large in <i>Rif1</i> mutant relative to an                                                                                                                                                                                                                                                                                                                                                                                               |
| 276<br>277<br>278<br>279                      | cycling cells, we did observe differences in the heterochromatic regions of <i>SuUR</i> and <i>Rif1</i> mutants. First, although underreplication is suppressed in both mutants (Figure 2 and Supplemental Figure 3), the chromocenters were abnormally large in <i>Rif1</i> mutant relative to an <i>SuUR</i> mutant as observed by DAPI staining consistent with the 'fluffy' enlarged chromocenters                                                                                                                                                                                                                                                                                           |
| 276<br>277<br>278<br>279<br>280               | cycling cells, we did observe differences in the heterochromatic regions of <i>SuUR</i> and <i>Rif1</i> mutants. First, although underreplication is suppressed in both mutants (Figure 2 and Supplemental Figure 3), the chromocenters were abnormally large in <i>Rif1</i> mutant relative to an <i>SuUR</i> mutant as observed by DAPI staining consistent with the 'fluffy' enlarged chromocenters seen in Rif1 mutant mouse cells (Supplemental Figure 4) (Cornacchia et al., 2012). Although,                                                                                                                                                                                              |
| 276<br>277<br>278<br>279<br>280<br>281        | cycling cells, we did observe differences in the heterochromatic regions of <i>SuUR</i> and <i>Rif1</i> mutants. First, although underreplication is suppressed in both mutants (Figure 2 and Supplemental Figure 3), the chromocenters were abnormally large in <i>Rif1</i> mutant relative to an <i>SuUR</i> mutant as observed by DAPI staining consistent with the 'fluffy' enlarged chromocenters seen in Rif1 mutant mouse cells (Supplemental Figure 4) (Cornacchia et al., 2012). Although, this phenotype was present in all endo cycling cells, it was especially dramatic in the ovarian                                                                                              |
| 276<br>277<br>278<br>279<br>280<br>281<br>282 | cycling cells, we did observe differences in the heterochromatic regions of <i>SuUR</i> and <i>Rif1</i> mutants. First, although underreplication is suppressed in both mutants (Figure 2 and Supplemental Figure 3), the chromocenters were abnormally large in <i>Rif1</i> mutant relative to an <i>SuUR</i> mutant as observed by DAPI staining consistent with the 'fluffy' enlarged chromocenters seen in Rif1 mutant mouse cells (Supplemental Figure 4) (Cornacchia et al., 2012). Although, this phenotype was present in all endo cycling cells, it was especially dramatic in the ovarian nurse cells (Supplemental Figure 5). Second, Illumina-based copy number profiles revealed an |

| 286 | consistent with previous cytological analysis (Demakova et al., 2007). In contrast, loss of Rif1   |
|-----|----------------------------------------------------------------------------------------------------|
| 287 | function appears to completely restore heterochromatic replication in endo cycling cells.          |
| 288 |                                                                                                    |
| 289 | Rif1 affects replication fork progression.                                                         |
| 290 | SUUR-mediated underreplication occurs through inhibition of replication fork progression           |
| 291 | (Nordman et al., 2014; Sher et al., 2012). If SUUR acts together with Rif1 to promote              |
| 292 | underreplication, then Rif1 is expected to control replication fork progression. DNA combing       |
| 293 | assays in human and mouse cells from multiple groups have come to different conclusions as to      |
| 294 | whether Rif1 affects replication fork progression (Alver et al., 2017; Cornacchia et al., 2012;    |
| 295 | Hiraga et al., 2017; Yamazaki et al., 2012). Rif1, however, has been shown to be associated with   |
| 296 | replication forks through nascent chromatin capture, an iPOND-like technique used to isolate       |
| 297 | proteins associated with active replication forks (Alabert et al., 2014). To determine directly if |
| 298 | Rif1 controls replication fork progression, we performed copy number assays on amplifying          |
| 299 | follicle cells.                                                                                    |

Gene amplification in ovarian follicle cells occurs at six discrete sites in the genome through a re-replication based mechanism. Copy number profiling of these amplified domains provides a quantitative assessment of the number of rounds of origin firing and the distance replication forks have travelled during the amplification process, allowing us to disentangle the initiation and elongation phases of DNA replication. To determine if Rif1 affects origin firing and/or replication fork progression, we isolated wild-type and *Rif1* mutant stage 13 egg chambers, which represent the end point of the amplification process, and made quantitative DNA copy

| 308 | number measurements. Loss of Rif1 function resulted in an increase in replication fork                 |
|-----|--------------------------------------------------------------------------------------------------------|
| 309 | progression without significantly affecting copy number at the origin of replication at all sites of   |
| 310 | amplification (Figure 3A).                                                                             |
| 311 |                                                                                                        |
| 312 | To quantify the changes in fork progression we observed at sites of amplification, we                  |
| 313 | computationally determined the peak of amplification and the region on each arm of the                 |
| 314 | amplified domain that represents one half of the copy number at the highest point of the               |
| 315 | amplicon (Nordman et al., 2014). This quantitative analysis of origin firing and replication fork      |
| 316 | progression revealed that origin firing was not affected in the <i>Rif1</i> mutant, as no major change |
| 317 | in copy number was detected at the origin of replication when comparing wild type and <i>Rif1</i>      |
| 318 | mutant stage 13 follicle cells (Supplemental Table 2). In contrast, the width of each replication      |
| 319 | gradient, which represents the rate of fork progression, was significantly increased at all sites of   |
| 320 | amplification (Figure 3A; Supplemental Table 2). Based on the observation that the <i>Rif1</i> mutant  |
| 321 | does not affect origin firing, but specifically affects the distance replication forks travel during   |
| 322 | the gene amplification process, we conclude that Rif1 regulates replication fork progression.          |
| 323 |                                                                                                        |
| 324 | Given that the <i>Rif1</i> mutant phenocopies an <i>SuUR</i> mutant with respect to replication fork   |
| 325 | progression, we next wanted to determine the cause of increased replication fork progression           |

at amplified loci upon loss of Rif1 function. Previously, it was shown that a prolonged period of gene amplification in the *SuUR* mutant gives rise to the extended replication gradient at sites of amplification (Nordman et al., 2014). Gene amplification starts synchronously in all follicle cells at stage 10B of egg chamber development (Calvi et al., 1998). By the end of gene amplification,

| 330 | however, only a subset of follicle cells display visual amplification foci as judged by EdU               |
|-----|-----------------------------------------------------------------------------------------------------------|
| 331 | incorporation (Nordman et al., 2014). To determine if Rif1 controls replication fork progression          |
| 332 | by increasing the period of gene amplification comparable to an SuUR mutant , we quantified               |
| 333 | the fraction of stage 13 follicle cells that were EdU positive. Similar to an SuUR mutant, loss of        |
| 334 | Rif1 function also resulted in a prolonged period of EdU incorporation with 34% of follicle cells         |
| 335 | visibly incorporating EdU in wild type follicle cells, 100% in an SuUR mutant and 98.5% in the            |
| 336 | <i>Rif1</i> mutant (Figure 3B). This results suggests that Rif1 has a destabilizing effect on replication |
| 337 | forks, resulting in a premature cessation of replication fork progression.                                |
| 338 |                                                                                                           |
| 339 | Rif1 acts downstream of SUUR                                                                              |
| 340 | Rif1 could control SUUR activity and underreplication by at least two different mechanisms. Rif1          |
| 341 | could act upstream of SUUR and directly or indirectly regulate SUUR's ability to associate with           |
| 342 | chromatin. For example, Histone H1 and HP1 affect underreplication by influencing SUUR's                  |
| 343 | ability to associate with chromatin (Andreyeva et al., 2017; Pindyurin et al., 2008). Alternatively,      |
| 344 | Rif1 could act downstream of SUUR to control replication fork progression. We sought to                   |
| 345 | distinguish between these possibilities by determining whether SUUR could still associate with            |
| 346 | replication forks in the absence of Rif1 function.                                                        |
| 347 |                                                                                                           |
| 348 | To monitor SUUR's association with heterochromatin and replication forks in the same cell                 |
| 349 | type, we localized SUUR in amplifying follicle cells where replication forks (double bars) and            |
| 350 | heterochromatin (chromocenter) can be visualized unambiguously, in the presence and                       |
|     |                                                                                                           |

absence of Rif1. SUUR localized to both replication forks and heterochromatin in the absence of

Rif1 function (Figure 4). Therefore, we conclude that Rif1 acts downstream of SUUR to inhibit fork progression and that SUUR lacks the ability to inhibit replication fork progression in the absence of Rif1.

355

## 356 Rif1 localizes to active replication forks.

357 Although our genetic data indicate that Rif1 affects replication fork progression, we wanted to

358 determine if Rif1 controls replication fork progression through a direct or indirect mechanism. If

- 359 Rif1 directly influences replication fork progression and/or stability, then it should localize to
- active replication forks. To assess this possibility, we visualized Rif1 localization during gene

amplification in follicle cells using a Rif1-specific antibody (Supplemental Figure 2).

- 362 Rif1 localization pattern was strikingly similar to that of SUUR. First, Rif1 is localized to
- 363 heterochromatin in all amplification stages amplifying follicle cells (Figure 5). Second, Rif1
- 364 localized to sites of amplification even prior to the formation of double bar structures, with

365 weak staining in early stage follicle cells and more intense staining as amplification progressed.

366 Third, in the later stages of gene amplification Rif1 was localized to active replication forks.

367 Taken together, these results demonstrate that Rif1 dynamically associates with the replication

- 368 forks to regulate their progression.
- 369

## 370 SUUR is required to retain Rif1 at replication forks.

Based on our observations that SUUR physically associates with Rif1 and that a *Rif1* mutant

372 phenocopies an SuUR mutant, we hypothesized that SUUR recruits a Rif1/PP1 complex to

373 replication forks. If true, then Rif1 association with replication forks should be at least partially

| 374                                           | dependent on SUUR. To test this hypothesis, we monitored the localization of Rif1 in SuUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 375                                           | mutant amplifying follicle cells. We found that Rif1's association with replication forks was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 376                                           | largely dependent on SUUR, as the Rif1 signal was lost in late stage amplifying follicle cells in an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 377                                           | SuUR mutant (Figure 5). Rif1's recruitment to replication foci, however, was not completely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 378                                           | dependent on SUUR. In a subset of stage 10B and 11 egg chambers, when both initiation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 379                                           | replication and fork progression are still coupled, we observed Rif1 localization to amplification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 380                                           | foci in a subset of follicle cells (data not shown). Rif1 staining was lost, however, in stage 12 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 381                                           | 13 egg chambers. We conclude that while the initial recruitment of Rif1 to sites of amplification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 382                                           | is not completely dependent on SUUR, SUUR is necessary to retain Rif1 at replication forks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 383                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 384                                           | The PP1-interacting motif of Rif1 is necessary for underreplication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 385                                           | Because Rif1 is known to recruit PP1 to replication origins to regulate initiation, this led us to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 385<br>386                                    | Because Rif1 is known to recruit PP1 to replication origins to regulate initiation, this led us to ask if the same interaction between Rif1 and PP1 is important for Rif1's regulation of replication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 386                                           | ask if the same interaction between Rif1 and PP1 is important for Rif1's regulation of replication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 386<br>387                                    | ask if the same interaction between Rif1 and PP1 is important for Rif1's regulation of replication fork progression. Rif1 associates with Protein Phosphatase 1 (PP1) through a conserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 386<br>387<br>388                             | ask if the same interaction between Rif1 and PP1 is important for Rif1's regulation of replication<br>fork progression. Rif1 associates with Protein Phosphatase 1 (PP1) through a conserved<br>interaction motif, thereby recruiting PP1 to MCM complexes and inactivating them (Davé et al.,                                                                                                                                                                                                                                                                                                                                                                                             |
| 386<br>387<br>388<br>389                      | ask if the same interaction between Rif1 and PP1 is important for Rif1's regulation of replication<br>fork progression. Rif1 associates with Protein Phosphatase 1 (PP1) through a conserved<br>interaction motif, thereby recruiting PP1 to MCM complexes and inactivating them (Davé et al.,<br>2014; Hiraga et al., 2017; 2014). Based on this model of Rif1 function, we wanted to determine                                                                                                                                                                                                                                                                                           |
| 386<br>387<br>388<br>389<br>390               | ask if the same interaction between Rif1 and PP1 is important for Rif1's regulation of replication<br>fork progression. Rif1 associates with Protein Phosphatase 1 (PP1) through a conserved<br>interaction motif, thereby recruiting PP1 to MCM complexes and inactivating them (Davé et al.,<br>2014; Hiraga et al., 2017; 2014). Based on this model of Rif1 function, we wanted to determine<br>if Rif1's ability to interact with PP1 was necessary for Rif1-mediated underreplication. We used                                                                                                                                                                                       |
| 386<br>387<br>388<br>389<br>390<br>391        | ask if the same interaction between Rif1 and PP1 is important for Rif1's regulation of replication<br>fork progression. Rif1 associates with Protein Phosphatase 1 (PP1) through a conserved<br>interaction motif, thereby recruiting PP1 to MCM complexes and inactivating them (Davé et al.,<br>2014; Hiraga et al., 2017; 2014). Based on this model of Rif1 function, we wanted to determine<br>if Rif1's ability to interact with PP1 was necessary for Rif1-mediated underreplication. We used<br>CRISPR-based mutagenesis to mutate the conserved SILK/RSVF PP1 interaction motif to                                                                                                |
| 386<br>387<br>388<br>389<br>390<br>391<br>392 | ask if the same interaction between Rif1 and PP1 is important for Rif1's regulation of replication<br>fork progression. Rif1 associates with Protein Phosphatase 1 (PP1) through a conserved<br>interaction motif, thereby recruiting PP1 to MCM complexes and inactivating them (Davé et al.,<br>2014; Hiraga et al., 2017; 2014). Based on this model of Rif1 function, we wanted to determine<br>if Rif1's ability to interact with PP1 was necessary for Rif1-mediated underreplication. We used<br>CRISPR-based mutagenesis to mutate the conserved SILK/RSVF PP1 interaction motif to<br>SAAK/RASA. Western blot analysis showed that mutation of the SILK/RSVF motif did not affect |

2017). We isolated salivary glands from *Rif1<sup>PP1</sup>* mutant wandering 3<sup>rd</sup> instar larvae, extracted
 DNA and measured the copy number of multiple underreplicated domains. Similar to the *Rif1* mutant, underreplication was completely abolished in the *Rif1<sup>PP1</sup>* mutant (Figure 6A). Thus, a
 Rif1/PP1 complex is necessary to promote underreplication.

400

401

402 **DISCUSSION:** 

The SUUR protein is responsible for promoting underreplication of heterochromatin and many 403 euchromatin regions of the genome. Although SUUR was recently shown to promote 404 405 underreplication through inhibition of replication fork progression, the underlying molecular 406 mechanism has remained unclear. Through biochemical, genetic, genomic and cytological 407 approaches, we have found that SUUR recruits Rif1 to replication forks and that Rif1 is responsible for underreplication. This model is supported by several independent lines of 408 409 evidence. First, SUUR physically associates with Rif1, and SUUR and Rif1 co-localize at sites of 410 replication. Second, underreplication is dependent on Rif1, although Rif1 mutants have a clear 411 pattern of late replication in endo cycling cells. Third, SUUR localizes to replication forks and 412 heterochromatin in a *Rif1* mutant, however, it is unable to inhibit replication fork progression in 413 the absence of Rif1. Fourth, Rif1 directly controls replication fork progression and phenocopies 414 the effect loss of SUUR function has on replication fork progression. Fifth, SUUR is required for 415 Rif1 localization to replication forks. Critically, using the gene amplification model to separate 416 initiation and and elongation of replication, we have shown that Rif1 can affect fork progression

- 417 without altering the extent of initiation. Based on these observations, we have defined a new
- 418 function of Rif1 as a direct regulator of replication fork progression.
- 419

#### 420 SNF2 domain and fork localization

421 Our work suggests that the SNF2 domain of SUUR is critical for its ability to localize to

422 replication forks. This is based on the observation that deletion of this domain results in a

423 protein that is unable to localize to replication forks, but still localizes to heterochromatin.

424 SUUR has previously been shown to dynamically localize to replication forks during S phase, but

425 constitutively binds to heterochromatin (Kolesnikova et al., 2013; Nordman et al., 2014). SUUR

426 associates with HP1 and this interaction occurs between the central region of SUUR and HP1.

427 (Pindyurin et al., 2008). Therefore, we speculate that the interaction between SUUR and HP1 is

428 responsible for constitutive SUUR localization to heterochromatin, while a different interaction

429 between the SNF2 domain and a yet to be defined component of the replisome, or replication

430 fork structure itself, recruits SUUR to active replication forks during S phase.

431

Uncoupling of SUUR's ability to associate with replication forks and heterochromatin also
provides a new level of mechanistic understanding of underreplication. Overexpression of the
C-terminal two-thirds of SUUR is capable of inducing ectopic sites of underreplication. In
contrast, overexpression of the SUUR's SNF2 domain, in the presence of endogenous SUUR,
suppresses SUUR-mediated underreplication (Kolesnikova et al., 2005). Together with the data
presented here, we suggest that overexpression of the SNF2 domain interferes with
recruitment of full-length SUUR to replication forks, by saturating potential SUUR binding sites

| 439                                    | at the replication fork. Although the C-terminal region of SUUR is necessary to induce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 440                                    | underreplication (Kolesnikova et al., 2005), the C-terminal portion of SUUR remains associated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 441                                    | with heterochromatin in the SuUR $^{\Delta SNF}$ construct , but this protein is not sufficient to induce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 442                                    | underreplication. We suggest that at physiological levels, the affinity of SUUR with replication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 443                                    | forks is substantially diminished in the absence of the SNF2 domain. Our work raises questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 444                                    | about the biological significance of SUUR binding to heterochromatin, since without the SNF2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 445                                    | domain SUUR is still constitutively bound to heterochromatin, yet unable to induce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 446                                    | underreplication. Additionally, SUUR dynamically associates with heterochromatin in mitotic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 447                                    | cells although heterochromatin is fully replicated (Swenson et al., 2016).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 448                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 449                                    | Rif1 controls underreplication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 450                                    | While trying to uncover the molecular mechanism through which SUUR is able to inhibit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 451                                    | replication fork progression, we have uncovered a physical interaction between SUUR and Rif1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 451<br>452                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                        | replication fork progression, we have uncovered a physical interaction between SUUR and Rif1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 452                                    | replication fork progression, we have uncovered a physical interaction between SUUR and Rif1.<br>Through subsequent analysis, we demonstrated that Rif1 has a direct role in copy number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 452<br>453                             | replication fork progression, we have uncovered a physical interaction between SUUR and Rif1.<br>Through subsequent analysis, we demonstrated that Rif1 has a direct role in copy number<br>control and that Rif1 acts downstream of SUUR in the underreplication process. Although                                                                                                                                                                                                                                                                                                                                                                                                              |
| 452<br>453<br>454                      | replication fork progression, we have uncovered a physical interaction between SUUR and Rif1.<br>Through subsequent analysis, we demonstrated that Rif1 has a direct role in copy number<br>control and that Rif1 acts downstream of SUUR in the underreplication process. Although<br>underreplication is largely dependent on SUUR, there are several sites that display a modest                                                                                                                                                                                                                                                                                                              |
| 452<br>453<br>454<br>455               | replication fork progression, we have uncovered a physical interaction between SUUR and Rif1.<br>Through subsequent analysis, we demonstrated that Rif1 has a direct role in copy number<br>control and that Rif1 acts downstream of SUUR in the underreplication process. Although<br>underreplication is largely dependent on SUUR, there are several sites that display a modest<br>degree of underreplication in the absence of SUUR (Demakova et al., 2007; Sher et al., 2012). In                                                                                                                                                                                                          |
| 452<br>453<br>454<br>455<br>456        | replication fork progression, we have uncovered a physical interaction between SUUR and Rif1.<br>Through subsequent analysis, we demonstrated that Rif1 has a direct role in copy number<br>control and that Rif1 acts downstream of SUUR in the underreplication process. Although<br>underreplication is largely dependent on SUUR, there are several sites that display a modest<br>degree of underreplication in the absence of SUUR (Demakova et al., 2007; Sher et al., 2012). In<br>a Rif1 mutant, however, these sites are fully replicated and there is no longer any detectable                                                                                                        |
| 452<br>453<br>454<br>455<br>456<br>457 | replication fork progression, we have uncovered a physical interaction between SUUR and Rif1.<br>Through subsequent analysis, we demonstrated that Rif1 has a direct role in copy number<br>control and that Rif1 acts downstream of SUUR in the underreplication process. Although<br>underreplication is largely dependent on SUUR, there are several sites that display a modest<br>degree of underreplication in the absence of SUUR (Demakova et al., 2007; Sher et al., 2012). In<br>a Rif1 mutant, however, these sites are fully replicated and there is no longer any detectable<br>levels of underreplication within any regions of the genome. It is possible that Rif1 is capable of |

Further emphasizing the critical role Rif1 plays in copy number control, we have shown that Rif1 461 462 acts downstream of SUUR in promoting underreplication. SUUR is still able to associate with 463 chromatin in the absence of Rif1, but is unable to promote underreplication. Underreplicated 464 regions of the genome, including heterochromatin, tend to be late replicating, raising the 465 possibility that changes in replication timing in a Rif1 mutant suppresses underreplication. Rif1 466 mutant endo cycling cells of Drosophila display a cytological pattern of late replication, where 467 heterochromatin is discretely replicated. While Rif1 is likely to control replication timing in 468 Drosophila, we argue that the changes in copy number associated with loss of Rif1 function are 469 not solely due to a loss of late replication. This is supported by the clear pattern of late 470 replication of heterochromatin in *Rif1* mutant endo cycling cells, although heterochromatin appears to be fully replicated in these cells. Previous work in mammalian polyploid cells has 471 472 shown that underreplication is dependent on Rif1, which was attributed to changes in 473 replication timing (Hannibal and Baker, 2016). It is important to note that Rif1-dependent 474 changes in replication timing were not measured in this system and that many genomic regions 475 transition from early to late replication in a *Rif1* mutant (Foti et al., 2015). Our work raises the 476 possibility that Rif1 has a direct role in mammalian underreplication through a mechanism 477 similar to that of Drosophila and may not simply be due to indirect changes in replication 478 timing. Future work will be necessary to define the role of mammalian Rif1 in underreplication. 479

480 **Rif1 regulates replication fork progression** 

481 Our analysis of amplification loci demonstrates that Rif1 controls replication fork progression
482 independently of initiation control, thus demonstrating that Rif1 has a specific effect on

replication fork progression. Therefore, we have uncovered a new role for Rif1 in DNA 483 484 metabolism as a regulator of replication fork progression. Rif1 has been identified as part of the 485 replisome in human cells by nascent chromatin capture, a technique that identifies proteins 486 associated with newly synthesized chromatin (Alabert et al., 2014). Multiple studies have 487 assessed whether loss of Rif1 function affects replication fork progression in yeast, mouse and 488 human cells, but have come to different conclusions (Alver et al., 2017; Cornacchia et al., 2012; 489 Hiraga et al., 2017; Yamazaki et al., 2012). DNA fiber assays have been used to measure fork 490 progression in these studies and nearly all have shown that *Rif1* mutants have a slight increase 491 in replication fork progression although not always statistically significant. There could be 492 several reasons for these differing results; Rif1 may control replication fork progression in specific genomic regions that may be underrepresented in some assays, Rif1 function could 493 494 vary among different cell types, or sample sizes may have been too small to reach significance. 495 Our observations, taken together with these previous studies, leave open the possibility that 496 Rif1-mediated control of replication fork progression could be an evolutionarily conserved 497 function of Rif1. We do not suggest that Rif1 is constitutively associated with replication forks in 498 all cell types. Rather, Rif1 could be recruited to replication forks at a specific time in S phase, or 499 in specific developmental contexts, to modulate the progression of replication forks and 500 provide an additional layer of regulation of the DNA replication program. 501 502 How could SUUR and Rif1 function in concert to inhibit replication fork progression? We have

shown that Rif1 retention at replication forks is dependent on SUUR. Additionally,

504 underreplication depends on Rif1's ability to interact with PP1. Rif1/PP1 dephosphorylates

| 505 | DDK-activated helicases to control replication initiation (Davé et al., 2014; Hiraga et al., 2017; |
|-----|----------------------------------------------------------------------------------------------------|
| 506 | 2014). More recently, however, DDK-phosphorylated MCM subunits were shown to be                    |
| 507 | necessary to maintain CMG association and stability of the helicase (Alver et al., 2017). This     |
| 508 | result suggests that continued phosphorylation of the helicase is necessary for replication fork   |
| 509 | progression (Alver et al., 2017). We propose that SUUR recruits Rif1/PP1 to replication forks      |
| 510 | where it is able to dephosphorylate MCM subunits, ultimately inhibiting replication fork           |
| 511 | progression. Although this mechanism needs to be tested biochemically, it provides a               |
| 512 | framework to address the underlying molecular mechanism responsible for controlling DNA            |
| 513 | copy number and could provide new insight into the mechanism(s) Rif1 employs to regulate           |
| 514 | replication timing.                                                                                |
| 515 |                                                                                                    |
| 516 |                                                                                                    |
| 517 |                                                                                                    |
| 518 |                                                                                                    |
| 519 |                                                                                                    |
| 520 |                                                                                                    |
| 521 |                                                                                                    |
| 522 |                                                                                                    |
| 523 |                                                                                                    |
| 524 |                                                                                                    |
| 525 |                                                                                                    |
| 526 |                                                                                                    |

#### 527 MATERIALS AND METHODS

- 528
- 529 Strain list:
- 530 WT Oregon R
- 531  $SuUR^{-} w^{118}$ ;  $SuUR^{ES}$
- 532  $SUUR^{\Delta SNF} SUUR^{ES}$ ,  $PBac\{w^+ SUUR^{\Delta SNF}\}$
- 533  $Rif1^{-} w^{118}$ ;  $Rif1^{1} / Rif1^{2}$
- 534  $Rif1^{PP1} w^{118}; Rif1^{PP1}$
- 535

536 BAC-mediated recombineering:

537 BAC-mediated recombineering (Sharan et al., 2009) was used to delete the portion of the SuUR 538 gene corresponding to the SNF2 domain. An *attB-P[acman]* clone with a 21-kb genomic region 539 containing the SuUR and a galk insertion in the SuUR coding region (described in (Nordman et 540 al., 2014)) was used as a starting vector. Next, a gene block (IDT) was used to replace the galK 541 cassette and generate a precise deletion within the SuUR gene. The resulting vector was verified by fingerprinting, PCR and sequencing. The  $SuUR^{\Delta SNF}$  BAC was injected into a strain 542 harboring the 86F8 landing site (Best Gene Inc.). 543 544 545 Generation of heat shock-inducible, FLAG tagged SuUR transgenic lines: 546 The portion of the SuUR gene encoding the SNF2 domain (amino acids 1 to 278) was fused to 547 the SV40 NLS (Barolo et al., 2000) and a 3X-FLAG tag sequence was added to the 5' end of SuUR 548 SNF2 sequence. The resulting construct was cloned into the pCaSpeR-hs vector (Thummel and

549 Pirrotta, V.: Drosophila Genomics Resource Center) using the Notl and Xbal restriction sites. A 550 3X-FLAG tag sequence was added to the 5' end of of the SuUR coding region and cloned into 551 the pCaSpeR-hs vector also using the Notl and Xbal restriction sites. The resulting constructs were verified by sequencing and injected into a  $w^{1118}$  strain (Best Gene Inc.). 552 553 554 CRISPR mutagenesis: 555 To generate null alleles of *Rif1*, gRNAs targeting the 5' and 3' ends of the *Rif1* gene were cloned into the pU6-BbsI plasmid as described (Gratz et al., 2015) using the DRSC Find CRISPRs tool 556 557 (http://www.flyrnai.org/crispr2/index.html). Both gRNAs were co-injected into a nos-Cas9 expression stock (Best Gene Inc.). Surviving adults were individually crossed to CyO/Tft 558 559 balancer stock and CyO-balanced progeny were screened by PCR for a deletion of the Rif1 locus. Stocks harboring a deletion were further characterized by sequencing. Both  $Rif1^1$  and 560 *Rif1*<sup>2</sup> mutants had substantial deletions of the *Rif1* gene and both had frame shift mutations 561 early in the coding region.  $Rif1^{1}$  has a frame shift mutation at amino acid 14, whereas  $Rif1^{2}$  has 562 563 a frame shift mutation at amino acid 11. 564 565 To generate a *Rif1* allele defective for PP1 binding, the pU6-BbsI vector expressing the gRNA 566 targeting the 3' end of *Rif1* was co-injected with a recovery vector that contained the 567 mutagenized SILK and RVSV (SAAK and RASA) sites with 1kb of homology upstream and 568 downstream of the mutagenized region. Surviving adults were crossed as above and screened 569 by sequencing.

570

Ovaries were dissected from females fattened for two days on wet yeast in Ephrussi Beadle

571 Cytological analysis and microscopy:

572

| -2-<br>th 50μM<br><sup>2</sup> C. Alexa<br>at room<br>γ using |
|---------------------------------------------------------------|
| °C. Alexa<br>at room                                          |
| at room                                                       |
|                                                               |
| using                                                         |
| using                                                         |
| E                                                             |
|                                                               |
|                                                               |
|                                                               |
| ary                                                           |
|                                                               |
| udies                                                         |
| l Click-iT                                                    |
|                                                               |
|                                                               |
| ,<br>L                                                        |

591 *Rif1 antibody production:* 

| 592 | Rif1 antiserum was produced in guinea pigs and rabbits (Cocalico Biologicals Inc.). Briefly, a Rif1 |
|-----|-----------------------------------------------------------------------------------------------------|
| 593 | protein fragment from residues 694-1094 (Sreesankar et al., 2012) was C-terminally six-             |
| 594 | histidine tagged and and expressed in <i>E. coli</i> Rossetta DE3 cells and purified using Ni-NTA   |
| 595 | Agarose beads (Qiagen). The purified protein was used for injection (Cocalico Biologicals Inc.)     |
| 596 | and serum was affinity purified as described (Moore and Orr-Weaver, 1998). Affinity purified        |
| 597 | guinea pig anti-Rif1 antibody was used for immunofluorescence.                                      |
| 598 |                                                                                                     |
| 599 | IP-mass spec:                                                                                       |
| 600 | Flies containing heat shock-inducible SuUR transgenes were expanded into population cages. 0-       |
| 601 | 24 hour embryos were collected, incubated at 37°C for one hour, and allowed to recover for          |
| 602 | one hour following heat shock treatment. Wild-type embryos were used as a negative control.         |
| 603 | Embryos were dechorionated in bleach and fixed for 20 minutes in 2% formaldehyde.                   |
| 604 | Approximately 0.5g of fixed and dechorionated embryos were used for each replicate. Embryos         |
| 605 | were disrupted by douncing in Buffer 1 (Shao et al., 1999), followed by centrifugation at 3,000 x   |

g for 2 minutes at 4°C and resuspended in lysis buffer 3 (MacAlpine et al., 2010) . Chromatin

607 was prepared by sonicating nuclei for a total of 40 cycles of 30" ON and 30" OFF at max power

using a Bioruptor 300 (Diagnenode) with vortexing and pausing after every 10 cycles. Cleared

609 lysates were incubated with anti-FLAG M2 affinity gel (Sigma) for 2 hours at 4°C. After extensive

610 washing in LB3 and LB3 with 1M NaCl, proteins were eluted using 3X FLAG peptide (Sigma).

611 Crosslinks were reversed by boiling purified material in Laemmli buffer with β-mercaptoethanol

612 for 20 minutes.

613

614 Immunoprecipitated samples were separated on a 4-12% NuPAGE Bis-Tris gel (Invitrogen), 615 proteins were stained with Novex colloidal Coomassie stain (Invitrogen), and destained in water. Coomassie stained gel regions were cut from the gel and diced into 1mm<sup>3</sup> cubes. 616 617 Proteins were reduced and alkylated, destained with 50% MeCN in 25mM ammonium 618 bicarbonate, and in-gel digested with trypsin (10ng/uL) in 25mM ammonium bicarbonate 619 overnight at 37°C. Peptides were extracted by gel dehydration with 60% MeCN, 0.1% TFA, the 620 extracts were dried by speed vac centrifugation, and reconstituted in 0.1% formic acid. 621 Peptides were analyzed by LC-coupled tandem mass spectrometry (LC-MS/MS). An analytical 622 column was packed with 20cm of C18 reverse phase material (Jupiter, 3 μm beads, 300Å, 623 Phenomenox) directly into a laser-pulled emitter tip. Peptides were loaded on the capillary 624 reverse phase analytical column (360 μm O.D. x 100 μm I.D.) using a Dionex Ultimate 3000 625 nanoLC and autosampler. The mobile phase solvents consisted of 0.1% formic acid, 99.9% 626 water (solvent A) and 0.1% formic acid, 99.9% acetonitrile (solvent B). Peptides were gradient-627 eluted at a flow rate of 350 nL/min, using a 120-minute gradient. The gradient consisted of the 628 following: 1-3min, 2% B (sample loading from autosampler); 3-98 min, 2-45% B; 98-105 min, 45-629 90% B; 105-107 min, 90% B; 107-110 min, 90-2% B; 110-120 min (column re-equilibration), 2% 630 B. A Q Exactive HF mass spectrometer (Thermo Scientific), equipped with a nanoelectrospray 631 ionization source, was used to mass analyze the eluting peptides using a data-dependent 632 method. The instrument method consisted of MS1 using an MS AGC target value of 3e6, 633 followed by up to 15 MS/MS scans of the most abundant ions detected in the preceding MS 634 scan. A maximum MS/MS ion time of 40 ms was used with a MS2 AGC target of 1e5. Dynamic 635 exclusion was set to 20s, HCD collision energy was set to 27 nce, and peptide match and isotope

| 636 | exclusion were enabled. For identification of peptides, tandem mass spectra were searched          |
|-----|----------------------------------------------------------------------------------------------------|
| 637 | with Sequest (Thermo Fisher Scientific) against a Drosophila melanogaster database created         |
| 638 | from the UniprotKB protein database (www.uniprot.org). Search results were assembled using         |
| 639 | Scaffold 4.3.4 (Proteome Software).                                                                |
| 640 |                                                                                                    |
| 641 | Genome-wide copy number profiling:                                                                 |
| 642 | Embryos were collected immediately after 2 hours of egg laying. Salivary glands were dissected     |
| 643 | in EBR from 50 wandering 3 <sup>rd</sup> instar larvae per genotype and flash frozen. Ovaries were |
| 644 | dissected from females fattened for two days on wet yeast in EBR and 50 stage 13 egg               |
| 645 | chambers were isolated for each genotype and flash frozen. Tissues were thawed on ice,             |
| 646 | resuspended in LB3 and dounced using a Kontes B-type pestle. Dounced homogenates were              |
| 647 | sonicated using a Bioruptor 300 (Diagenode) for 10 cycles of 30" on and 30" off at maximal         |
| 648 | power. Lysates were treated with RNase and Proteinase K and genomic DNA was isolated by            |
| 649 | phenol-chloroform extraction. Illumina libraries were prepared using NEB DNA Ultra II (New         |
| 650 | England Biolabs) following the manufacturers protocol. Barcoded libraries were sequenced           |
| 651 | using Illumina NextSeq500 platform.                                                                |
| 652 |                                                                                                    |
| 653 | Bioinformatics:                                                                                    |
| 654 | Reads were mapped to the Drosophila genome (BDGP Release 6) using BWA using default                |

parameters (Li and Durbin, 2009). CNVnator 0.3.3 was used for the detection of

underreplicated regions using a bin size of 1000 (Abyzov et al., 2011). Regions were identified

as underreplicated if they were identified as underreplicated in 0-2h embryonic DNA and were

| 658 | greater than 10kb in length. The number of reads for underreplicated regions was called by              |
|-----|---------------------------------------------------------------------------------------------------------|
| 659 | using bedtools multicov tool for the underreplicated and uncalled regions. Average read depth           |
| 660 | per region was determined by multiplying the number of reads in a region by the read length             |
| 661 | and dividing by the total region length. Read depth was normalized between samples by scaling           |
| 662 | the total reads obtained per sample. Statistical comparison between the regions was with a t-           |
| 663 | test. For read depth in pericentric heterochromatin regions, the chromatin arm was binned into          |
| 664 | 10kb windows and the number of reads for each window was called using bedtools multicov                 |
| 665 | using only uniquely mapped reads.                                                                       |
| 666 |                                                                                                         |
| 667 | Half maximum analysis of amplicon copy number profiles was performed as described                       |
| 668 | previously (Alexander et al., 2015; Nordman et al., 2014). Briefly, $\log_2$ ratios were generated      |
| 669 | using bamCompare from deepTool 2.5.0 by comparing stage 13 follicle cell profiles to a 0-2h             |
| 670 | embryo sample. Smoothed $log_2$ -transformed data was used to determine the point of                    |
| 671 | maximum copy number associated with each amplicon. The chromosome coordinate                            |
| 672 | corresponding to half the maximum value for each arm of the amplicon was then determined.               |
| 673 |                                                                                                         |
| 674 | Copy number analysis by droplet-digital PCR (ddPCR)                                                     |
| 675 | Genomic DNA was extracted from salivary glands isolated from wandering 3 <sup>rd</sup> instar larvae as |
| 676 | described above. Primer sets annealing to the mid-point of the indicated UR regions were used           |
| 677 | (previously described in (Nordman et al., 2014; Sher et al., 2012)). ddPCR was performed                |
| 678 | according to manufacture's recommendations (BioRad). All ddPCR reactions were performed in              |
| 679 | triplicate from three independent biological replicates. The concentration value for each set of        |

| 680 | primers in an underreplicated domain was divided by the concentration value of a fully     |
|-----|--------------------------------------------------------------------------------------------|
| 681 | replicated control to generate the bar graph. Error bars represent the SEM.                |
| 682 |                                                                                            |
| 683 | Western blotting:                                                                          |
| 684 | Ovaries were dissected from females fattened for two days on wet yeast and suspended in    |
| 685 | Laemmli buffer supplemented with DTT. Ovaries were homogenized and boiled and extracts     |
| 686 | were loaded on a 4-20% Mini-PROTEAN TGX Stain-Free gel (BioRad). After electrophoresis the |
| 687 | gel was activated and imaged according to the manufacturers recommendations. Protein was   |
| 688 | transferred to a PDVF membrane using a Trans-Blot Turbo Transfer System (BioRad). After    |
| 689 | blocking and incubation with antibodies, blots were imaged using an Amersham 600 CCD       |
| 690 | imager.                                                                                    |
| 691 |                                                                                            |
| 692 | DATA ACCESS                                                                                |
| 693 | Data sets described in this manuscript can be found under the GEO accession number:        |
| 694 | GSE114370.                                                                                 |
| 695 |                                                                                            |
| 696 | ACKNOWLEDGMENTS                                                                            |
| 697 | We thank Kristie Rose at the Vanderbilt Proteomics core for mass spectrometry and Olivia   |
| 698 | Koues from the VANTAGE core at Vanderbilt for Illumina sequencing. Terry Orr-Weaver,       |

699 Stephen Bell, Katherine Friedman, James Dewar, Dave Cortez and members of the Nordman lab

for providing critical comments on the manuscript. We thank Brooke Hamilton for assistance in

| 701                                    | generating the <i>Rif1</i> mutants. This work was supported by an NIH R00 award 5R00GM104151 to                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 702                                    | J.T.N.                                                                                                                                                                                                                                                                                                                                                                                                            |
| 703                                    |                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 704                                    | DISCLOSURE                                                                                                                                                                                                                                                                                                                                                                                                        |
| 705                                    | The authors have no conflicts of interest                                                                                                                                                                                                                                                                                                                                                                         |
| 706                                    |                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 707                                    |                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 708                                    | REFERENCES                                                                                                                                                                                                                                                                                                                                                                                                        |
| 709<br>710<br>711<br>712               | Abyzov, A., Urban, A.E., Snyder, M., Gerstein, M., 2011. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 21, 974–984. doi:10.1101/gr.114876.110                                                                                                                                                                 |
| 713<br>714<br>715                      | Aggarwal, B.D., Calvi, B.R., 2004. Chromatin regulates origin activity in Drosophila follicle cells.<br>Nature 430, 372–376. doi:10.1038/nature02694                                                                                                                                                                                                                                                              |
| 716<br>717<br>718<br>719<br>720        | Alabert, C., Bukowski-Wills, JC., Lee, SB., Kustatscher, G., Nakamura, K., de Lima Alves, F.,<br>Menard, P., Mejlvang, J., Rappsilber, J., Groth, A., 2014. Nascent chromatin capture<br>proteomics determines chromatin dynamics during DNA replication and identifies unknown<br>fork components. Nature Cell Biology 16, 281–293. doi:doi:10.1038/ncb2918                                                      |
| 721<br>722<br>723<br>724               | <ul> <li>Alexander, J.L., Barrasa, M.I., Orr-Weaver, T.L., 2015. Replication fork progression during re-<br/>replication requires the DNA damage checkpoint and double-strand break repair. Curr. Biol.<br/>25, 1654–1660. doi:10.1016/j.cub.2015.04.058</li> </ul>                                                                                                                                               |
| 725<br>726<br>727<br>728               | <ul> <li>Alver, R.C., Chadha, G.S., Gillespie, P.J., Blow, J.J., 2017. Reversal of DDK-Mediated MCM</li> <li>Phosphorylation by Rif1-PP1 Regulates Replication Initiation and Replisome Stability</li> <li>Independently of ATR/Chk1. Cell Reports 18, 2508–2520. doi:10.1016/j.celrep.2017.02.042</li> </ul>                                                                                                     |
| 729<br>730<br>731<br>732<br>733<br>734 | <ul> <li>Andreyeva, E.N., Bernardo, T.J., Kolesnikova, T.D., Lu, X., Yarinich, L.A., Bartholdy, B.A., Guo, X., Posukh, O.V., Healton, S., Willcockson, M.A., Pindyurin, A.V., Zhimulev, I.F., Skoultchi, A.I., Fyodorov, D.V., 2017. Regulatory functions and chromatin loading dynamics of linker histone H1 during endoreplication in Drosophila. Genes Dev. 31, 603–616. doi:10.1101/gad.295717.116</li> </ul> |
| 735<br>736                             | Andreyeva, E.N., Kolesnikova, T.D., Belyaeva, E.S., Glaser, R.L., Zhimulev, I.F., 2008. Local DNA underreplication correlates with accumulation of phosphorylated H2Av in the Drosophila                                                                                                                                                                                                                          |

| 737<br>738<br>739               | melanogaster polytene chromosomes. Chromosome Res. 16, 851–862.<br>doi:10.1007/s10577-008-1244-4                                                                                                                                                                                                                                                                         |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 740<br>741<br>742<br>743        | Barolo, S., Carver, L.A., Posakony, J.W., 2000. GFP and beta-galactosidase transformation vectors for promoter/enhancer analysis in Drosophila. BioTechniques 29, 726, 728, 730, 732.                                                                                                                                                                                    |
| 744<br>745<br>746<br>747        | Bassett, A.R., Tibbit, C., Ponting, C.P., Liu, JL., 2013. Highly Efficient Targeted Mutagenesis of<br>Drosophila with the CRISPR/Cas9 System. Cell Reports 1–9.<br>doi:10.1016/j.celrep.2013.06.020                                                                                                                                                                      |
| 748<br>749<br>750               | Beadle, G.W., Ephrussi, B., 1935. Transplantation in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 21, 642–646.                                                                                                                                                                                                                                                              |
| 751<br>752<br>753               | Bell, S.P., Labib, K., 2016. Chromosome Duplication in Saccharomyces cerevisiae. Genetics 203, 1027–1067. doi:10.1534/genetics.115.186452                                                                                                                                                                                                                                |
| 754<br>755<br>756<br>757        | Belyaeva, E.S., Goncharov, F.P., Demakova, O.V., Kolesnikova, T.D., Boldyreva, L.V., Semeshin, V.F., Zhimulev, I.F., 2012. Late replication domains in polytene and non-polytene cells of Drosophila melanogaster. PLoS ONE 7, e30035. doi:10.1371/journal.pone.0030035                                                                                                  |
| 758<br>759<br>760<br>761        | Blumenthal, A.B., Kriegstein, H.J., Hogness, D.S., 1974. The Units of DNA Replication in<br>Drosophila melanogaster Chromosomes. Cold Spring Harb. Symp. Quant. Biol. 38, 205–223.<br>doi:10.1101/SQB.1974.038.01.024                                                                                                                                                    |
| 762<br>763<br>764               | Calvi, B.R., Lilly, M.A., Spradling, A.C., 1998. Cell cycle control of chorion gene amplification.<br>Genes Dev. 12, 734–744.                                                                                                                                                                                                                                            |
| 765<br>766<br>767<br>768<br>769 | Cayrou, C., Coulombe, P., Vigneron, A., Stanojcic, S., Ganier, O., Peiffer, I., Rivals, E., Puy, A.,<br>Laurent-Chabalier, S., Desprat, R., Méchali, M., 2011. Genome-scale analysis of metazoan<br>replication origins reveals their organization in specific but flexible sites defined by<br>conserved features. Genome Res. 21, 1438–1449. doi:10.1101/gr.121830.111 |
| 770<br>771<br>772<br>773        | Chapman, J.R., Barral, P., Vannier, J.B., Borel, V., Steger, M., 2013. RIF1 Is Essential for 53BP1-<br>Dependent Nonhomologous End Joining and Suppression of DNA Double-Strand Break<br>Resection. Molecular Cell. 49, 858-871                                                                                                                                          |
| 774<br>775<br>776<br>777        | Claycomb, J.M., Macalpine, D.M., Evans, J.G., Bell, S.P., Orr-Weaver, T.L., 2002. Visualization of replication initiation and elongation in Drosophila. J. Cell Biol. 159, 225–236. doi:10.1083/jcb.200207046                                                                                                                                                            |
| 778<br>779<br>780               | Claycomb, J.M., Orr-Weaver, T.L., 2005. Developmental gene amplification: insights into DNA replication and gene expression. Trends Genet 21, 149–162. doi:10.1016/j.tig.2005.01.009                                                                                                                                                                                     |

| 781        | Cornacchia, D., Dileep, V., Quivy, JP., Foti, R., Tili, F., Mellwig, R.S., Antony, C., Almouzni, G.,      |
|------------|-----------------------------------------------------------------------------------------------------------|
| 782        | Gilbert, D.M., Buonomo, S.B.C., 2012. Mouse Rif1 is a key regulator of the replication-                   |
| 783        | timing programme in mammalian cells. EMBO J. 31, 3678–3690.                                               |
| 784        | doi:10.1038/emboj.2012.214                                                                                |
| 785        |                                                                                                           |
| 786        | Davé, A., Cooley, C., Garg, M., Bianchi, A., 2014. Protein phosphatase 1 recruitment by Rif1              |
| 787        | regulates DNA replication origin firing by counteracting DDK activity. Cell Reports 7, 53–61.             |
| 788        | doi:10.1016/j.celrep.2014.02.019                                                                          |
| 789        | doi.10.1010/j.ccircp.2014.02.013                                                                          |
| 790        | Debatisse, M., Le Tallec, B., Letessier, A., Dutrillaux, B., Brison, O., 2012. Common fragile sites:      |
| 791        | mechanisms of instability revisited. Trends Genet 28, 22–32. doi:10.1016/j.tig.2011.10.003                |
| 792        |                                                                                                           |
| 792        | Demakova O.V. Pokholkova C.V. Kolecnikova T.D. Demakov S.A. Androvova F.N. Polyzova                       |
| 795<br>794 | Demakova, O.V., Pokholkova, G.V., Kolesnikova, T.D., Demakov, S.A., Andreyeva, E.N., Belyaeva,            |
|            | E.S., Zhimulev, I.F., 2007. The SU(VAR)3-9/HP1 Complex Differentially Regulates the                       |
| 795        | Compaction State and Degree of Underreplication of X Chromosome Pericentric                               |
| 796        | Heterochromatin in Drosophila melanogaster. Genetics 175, 609–620.                                        |
| 797        | doi:10.1534/genetics.106.062133                                                                           |
| 798        |                                                                                                           |
| 799        | Di Virgilio, M., Callen, E., Yamane, A., Zhang, W., Jankovic, M., Gitlin, A.D., Feldhahn, N., Resch,      |
| 800        | W., Oliveira, T.Y., Chait, B.T., Nussenzweig, A., Casellas, R., Robbiani, D.F., Nussenzweig,              |
| 801        | M.C., 2013. Rif1 Prevents Resection of DNA Breaks and Promotes Immunoglobulin Class                       |
| 802        | Switching. Science 339, 711–715. doi:10.1128/MCB.22.2.555-566.2002                                        |
| 803        |                                                                                                           |
| 804        | Durkin, S.G., Glover, T.W., 2007. Chromosome fragile sites. Annu. Rev. Genet. 41, 169–192.                |
| 805        | doi:10.1146/annurev.genet.41.042007.165900                                                                |
| 806        |                                                                                                           |
| 807        | Eaton, M.L., Prinz, J.A., MacAlpine, H.K., Tretyakov, G., Kharchenko, P.V., Macalpine, D.M.,              |
| 808        | 2011. Chromatin signatures of the Drosophila replication program. Genome Res. 21, 164–                    |
| 809        | 174. doi:10.1101/gr.116038.110                                                                            |
| 810        |                                                                                                           |
| 811        | Edgar, B.A., Orr-Weaver, T.L., 2001. Endoreplication cell cycles: more for less. Cell 105, 297–           |
| 812        | 306.                                                                                                      |
| 813        |                                                                                                           |
| 814        | Filion, G.J., van Bemmel, J.G., Braunschweig, U., Talhout, W., Kind, J., Ward, L.D., Brugman, W.,         |
| 815        | de Castro, I.J., Kerkhoven, R.M., Bussemaker, H.J., van Steensel, B., 2010. Systematic                    |
| 816        | protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 143,            |
| 817        | 212–224. doi:10.1016/j.cell.2010.09.009                                                                   |
| 818        |                                                                                                           |
| 819        | Foti, R., Gnan, S., Cornacchia, D., Dileep, V., Bulut-Karslioglu, A., Diehl, S., Buness, A., Klein, F.A., |
| 820        | Huber, W., Johnstone, E., Loos, R., Bertone, P., Gilbert, D.M., Manke, T., Jenuwein, T.,                  |
| 821        | Buonomo, S.C.B., 2015. Nuclear Architecture Organized by Rif1 Underpins the Replication-                  |
| 822        | Timing Program. Molecular Cell. doi:10.1016/j.molcel.2015.12.001                                          |
| 823        |                                                                                                           |
| 824        | Gilbert, D.M., 2002. Replication timing and transcriptional control: beyond cause and effect.             |
|            |                                                                                                           |

| 825<br>826                      | Curr. Opin. Cell Biol. 14, 377–383.                                                                                                                                                                                                                                                                                                       |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 827<br>828<br>829<br>830        | Gratz, S.J., Cummings, A.M., Nguyen, J.N., Hamm, D.C., Donohue, L.K., Harrison, M.M.,<br>Wildonger, J., O'Connor-Giles, K.M., 2013. Genome Engineering of Drosophila with the<br>CRISPR RNA-Guided Cas9 Nuclease. Genetics. doi:10.1534/genetics.113.152710                                                                               |
| 831<br>832<br>833<br>834        | Gratz, S.J., Rubinstein, C.D., Harrison, M.M., Wildonger, J., O'Connor-Giles, K.M., 2015. CRISPR-<br>Cas9 Genome Editing in Drosophila. Curr Protoc Mol Biol 111, 31.2.1–31.2.20.<br>doi:10.1002/0471142727.mb3102s111                                                                                                                    |
| 835<br>836<br>837<br>838        | Hannibal, R.L., Baker, J.C., 2016. Selective Amplification of the Genome Surrounding Key<br>Placental Genes in Trophoblast Giant Cells. Current Biology 1–18.<br>doi:10.1016/j.cub.2015.11.060                                                                                                                                            |
| 839<br>840<br>841<br>842        | Hannibal, R.L., Chuong, E.B., Rivera-Mulia, J.C., Gilbert, D.M., Valouev, A., Baker, J.C., 2014.<br>Copy Number Variation Is a Fundamental Aspect of the Placental Genome. PLoS Genet. 10,<br>e1004290. doi:10.1371/journal.pgen.1004290                                                                                                  |
| 843<br>844<br>845<br>846        | Hardy, C.F., Sussel, L., Shore, D., 1992. A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes & Dev 6, 801–814. doi:10.1101/gad.6.5.801                                                                                                                                                |
| 847<br>848<br>849<br>850        | Hayano, M., Kanoh, Y., Matsumoto, S., Renard-Guillet, C., Shirahige, K., Masai, H., 2012. Rif1 is a<br>global regulator of timing of replication origin firing in fission yeast. Genes & Dev 26, 137–<br>150. doi:10.1101/gad.178491.111                                                                                                  |
| 851<br>852<br>853<br>854<br>855 | Hiraga, SI., Alvino, G.M., Chang, F., Lian, HY., Sridhar, A., Kubota, T., Brewer, B.J., Weinreich,<br>M., Raghuraman, M.K., Donaldson, A.D., 2014. Rif1 controls DNA replication by directing<br>Protein Phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex.<br>Genes Dev. 28, 372–383. doi:10.1101/gad.231258.113 |
| 856<br>857<br>858<br>859<br>860 | Hiraga, SI., Ly, T., Garzón, J., Hořejší, Z., Ohkubo, Y.N., Endo, A., Obuse, C., Boulton, S.J.,<br>Lamond, A.I., Donaldson, A.D., 2017. Human RIF1 and protein phosphatase 1 stimulate DNA<br>replication origin licensing but suppress origin activation. EMBO Rep. 18, 403–419.<br>doi:10.15252/embr.201641983                          |
| 861<br>862<br>863<br>864        | Hua, B.L., Orr-Weaver, T.L., 2017. DNA Replication Control During Drosophila Development:<br>Insights into the Onset of S Phase, Replication Initiation, and Fork Progression. Genetics<br>207, 29–47. doi:10.1534/genetics.115.186627                                                                                                    |
| 865<br>866<br>867               | Jackson, A.P., Laskey, R.A., Coleman, N., 2014. Replication proteins and human disease. Cold<br>Spring Harbor Perspectives in Biology 6. doi:10.1101/cshperspect.a013060                                                                                                                                                                  |
| 868                             | Kolesnikova, T.D., Makunin, I.V., Volkova, E.I., Pirrotta, V., Belyaeva, E.S., Zhimulev, I.F., 2005.                                                                                                                                                                                                                                      |

869 Functional dissection of the Suppressor of UnderReplication protein of Drosophila 870 melanogaster: identification of domains influencing chromosome binding and DNA 871 replication. Genetica 124, 187-200. 872 873 Kolesnikova, T.D., Posukh, O.V., Andreyeva, E.N., Bebyakina, D.S., Ivankin, A.V., Zhimulev, I.F., 874 2013. Drosophila SUUR protein associates with PCNA and binds chromatin in a cell cycle-875 dependent manner. Chromosoma 122, 55–66. doi:10.1007/s00412-012-0390-9 876 877 Letessier, A., Millot, G.A., Koundrioukoff, S., Lachagès, A.-M., Vogt, N., Hansen, R.S., Malfoy, B., 878 Brison, O., Debatisse, M., 2011. Cell-type-specific replication initiation programs set fragility 879 of the FRA3B fragile site. Nature 470, 120–123. doi:10.1038/nature09745 880 881 Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler 882 transform. Bioinformatics 25, 1754–1760. doi:10.1093/bioinformatics/btp324 883 Lifeng Xu, E.H.B., 2004. Human Rif1 protein binds aberrant telomeres and aligns along anaphase 884 885 midzone microtubules. J. Cell Biol. 167, 819-830. doi:10.1083/jcb.200408181 886 887 Lilly, M.A., Duronio, R.J., 2005. New insights into cell cycle control from the Drosophila 888 endocycle. Oncogene 24, 2765–2775. doi:10.1038/sj.onc.1208610 889 890 MacAlpine, H.K., Gordân, R., Powell, S.K., Hartemink, A.J., Macalpine, D.M., 2010. Drosophila 891 ORC localizes to open chromatin and marks sites of cohesin complex loading. Genome Res. 892 20, 201–211. doi:10.1101/gr.097873.109 893 894 Makunin, I.V., Volkova, E.I., Belyaeva, E.S., Nabirochkina, E.N., Pirrotta, V., Zhimulev, I.F., 2002. 895 The Drosophila suppressor of underreplication protein binds to late-replicating regions of 896 polytene chromosomes. Genetics 160, 1023–1034. 897 898 Matson, J.P., Dumitru, R., Coryell, P., Baxley, R.M., Chen, W., Twaroski, K., Webber, B.R., Tolar, 899 J., Bielinsky, A.-K., Purvis, J.E., Cook, J.G., 2017. Rapid DNA replication origin licensing 900 protects stem cell pluripotency. Elife 6. doi:10.7554/eLife.30473 901 902 Mattarocci, S., Shyian, M., Lemmens, L., Damay, P., Altintas, D.M., Shi, T., Bartholomew, C.R., 903 Thomä, N.H., Hardy, C.F.J., Shore, D., 2014. Rif1 controls DNA replication timing in yeast 904 through the PP1 phosphatase Glc7. Cell Reports 7, 62–69. doi:10.1016/j.celrep.2014.03.010 905 906 Mesner, L.D., Valsakumar, V., Karnani, N., Dutta, A., Hamlin, J.L., Bekiranov, S., 2011. Bubble-907 chip analysis of human origin distributions demonstrates on a genomic scale significant 908 clustering into zones and significant association with transcription. Genome Res. 21, 377– 909 389. doi:10.1101/gr.111328.110 910 911 Miotto, B., Ji, Z., Struhl, K., 2016. Selectivity of ORC binding sites and the relation to replication 912 timing, fragile sites, and deletions in cancers. Proc. Natl. Acad. Sci. U.S.A. 113, E4810-

| 913<br>914                             | E4819. doi:10.1073/pnas.1609060113                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 915<br>916<br>917                      | Moore, D.P., Orr-Weaver, T.L., 1998. Chromosome segregation during meiosis: building an unambivalent bivalent. Curr Top Dev Biol 37, 263–299.                                                                                                                                                                                                                               |
| 918<br>919<br>920<br>921               | Newman, T.J., Mamun, M.A., Nieduszynski, C.A., Blow, J.J., 2013. Replisome stall events have shaped the distribution of replication origins in the genomes of yeasts. Nucleic Acids Res. doi:10.1093/nar/gkt728                                                                                                                                                             |
| 922<br>923<br>924<br>925               | Nordman, J., Li, S., Eng, T., Macalpine, D., Orr-Weaver, T.L., 2011. Developmental control of the DNA replication and transcription programs. Genome Res. 21, 175–181. doi:10.1101/gr.114611.110                                                                                                                                                                            |
| 926<br>927<br>928<br>929               | Nordman, J.T., Kozhevnikova, E.N., Verrijzer, C.P., Pindyurin, A.V., Andreyeva, E.N., Shloma,<br>V.V., Zhimulev, I.F., Orr-Weaver, T.L., 2014. DNA Copy-Number Control through Inhibition<br>of Replication Fork Progression. Cell Reports 9, 841–849. doi:10.1016/j.celrep.2014.10.005                                                                                     |
| 930<br>931<br>932<br>933               | Nordman, J.T., Orr-Weaver, T.L., 2015. Understanding replication fork progression, stability, and chromosome fragility by exploiting the Suppressor of Underreplication protein. Bioessays. doi:10.1002/bies.201500021                                                                                                                                                      |
| 934<br>935<br>936<br>937<br>938        | Norio, P., Kosiyatrakul, S., Yang, Q., Guan, Z., Brown, N.M., Thomas, S., Riblet, R., Schildkraut,<br>C.L., 2005. Progressive activation of DNA replication initiation in large domains of the<br>immunoglobulin heavy chain locus during B cell development. Mol. Cell 20, 575–587.<br>doi:10.1016/j.molcel.2005.10.029                                                    |
| 939<br>940<br>941<br>942               | Peace, J.M., Ter-Zakarian, A., Aparicio, O.M., 2014. Rif1 Regulates Initiation Timing of Late<br>Replication Origins throughout the <i>S. cerevisiae</i> Genome. PLoS ONE 9, e98501.<br>doi:10.1371/journal.pone.0098501                                                                                                                                                    |
| 942<br>943<br>944<br>945<br>946<br>947 | Pindyurin, A.V., Boldyreva, L.V., Shloma, V.V., Kolesnikova, T.D., Pokholkova, G.V., Andreyeva,<br>E.N., Kozhevnikova, E.N., Ivanoschuk, I.G., Zarutskaya, E.A., Demakov, S.A., Gorchakov, A.A.,<br>Belyaeva, E.S., Zhimulev, I.F., 2008. Interaction between the Drosophila heterochromatin<br>proteins SUUR and HP1. J. Cell. Sci. 121, 1693–1703. doi:10.1242/jcs.018655 |
| 948<br>949<br>950<br>951<br>952        | Pindyurin, A.V., Moorman, C., de Wit, E., Belyakin, S.N., Belyaeva, E.S., Christophides, G.K.,<br>Kafatos, F.C., van Steensel, B., Zhimulev, I.F., 2007. SUUR joins separate subsets of PcG, HP1<br>and B-type lamin targets in Drosophila. J. Cell. Sci. 120, 2344–2351. doi:10.1242/jcs.006007                                                                            |
| 953<br>954<br>955<br>956               | Remus, D., Beall, E.L., Botchan, M.R., 2004. DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding. EMBO J. 23, 897–907. doi:10.1038/sj.emboj.7600077                                                                                                                                                                                    |

| 957<br>958<br>959        | Rhind, N., Gilbert, D.M., 2013. DNA replication timing. Cold Spring Harbor Perspectives in Biology 5, a010132. doi:10.1101/cshperspect.a010132                                                                                                                                           |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 960<br>961               | Rudkin, G.T. 1969. Non replicating DNA in Drosophila. Genetics 61, 227-238.                                                                                                                                                                                                              |
| 962<br>963<br>964<br>965 | Shao, Z., Raible, F., Mollaaghababa, R., Guyon, J.R., Wu, C.T., Bender, W., Kingston, R.E., 1999.<br>Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell 98, 37–46.<br>doi:10.1016/S0092-8674(00)80604-2                                                              |
| 966<br>967<br>968<br>969 | Sharan, S.K., Thomason, L.C., Kuznetsov, S.G., Court, D.L., 2009. Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc 4, 206–223. doi:10.1038/nprot.2008.227                                                                                      |
| 970<br>971<br>972<br>973 | Sher, N., Bell, G.W., Li, S., Nordman, J., Eng, T., Eaton, M.L., Macalpine, D.M., Orr-Weaver, T.L.,<br>2012. Developmental control of gene copy number by repression of replication initiation<br>and fork progression. Genome Res. 22, 64–75. doi:10.1101/gr.126003.111                 |
| 974<br>975<br>976        | Siddiqui, K., On, K.F., Diffley, J.F.X., 2013. Regulating DNA replication in eukarya. Cold Spring<br>Harbor Perspectives in Biology 5. doi:10.1101/cshperspect.a012930                                                                                                                   |
| 977<br>978<br>979        | Spradling, A., Orr-Weaver, T., 1987. Regulation of DNA replication during Drosophila<br>development. Annu. Rev. Genet. 21, 373–403. doi:10.1146/annurev.ge.21.120187.002105                                                                                                              |
| 980<br>981<br>982<br>983 | Sreesankar, E., Bharathi, V., Mishra, R.K., Mishra, K., 2015. Drosophila Rif1 is an essential gene<br>and controls late developmental events by direct interaction with PP1-87B. Sci Rep 5,<br>10679. doi:10.1038/srep10679                                                              |
| 984<br>985<br>986<br>987 | Sreesankar, E., Senthilkumar, R., Bharathi, V., Mishra, R.K., Mishra, K., 2012. Functional diversification of yeast telomere associated protein, Rif1, in higher eukaryotes. BMC Genomics 13, 255. doi:10.1186/1471-2164-13-255                                                          |
| 988<br>989<br>990<br>991 | Sukackaite, R., Cornacchia, D., Jensen, M.R., Mas, P.J., Blackledge, M., Enervald, E., Duan, G.,<br>Auchynnikava, T., Köhn, M., Hart, D.J., Buonomo, S.B.C., 2017. Mouse Rif1 is a regulatory<br>subunit of protein phosphatase 1 (PP1). Sci Rep 7, 2119. doi:10.1038/s41598-017-01910-1 |
| 992<br>993<br>994<br>995 | Swenson, J.M., Colmenares, S.U., Strom, A.R., Costes, S.V., Karpen, G.H., 2016. The composition<br>and organization of Drosophila heterochromatin are heterogeneous and dynamic. Elife 5.<br>doi:10.7554/eLife.16096                                                                     |
| 996<br>997<br>998<br>999 | Yamazaki, S., Ishii, A., Kanoh, Y., Oda, M., Nishito, Y., Masai, H., 2012. Rif1 regulates the replication timing domains on the human genome. EMBO J. 31, 3667–3677.<br>doi:10.1038/emboj.2012.180                                                                                       |
| 1000                     | Yarosh, W., Spradling, A.C., 2014. Incomplete replication generates somatic DNA alterations                                                                                                                                                                                              |

bioRxiv preprint doi: https://doi.org/10.1101/346650; this version posted June 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

within Drosophila polytene salivary gland cells. Genes Dev. 28, 1840–1855.
doi:10.1101/gad.245811.114

1003

Zielke, N., Edgar, B.A., DePamphilis, M.L., 2013. Endoreplication. Cold Spring Harbor
 Perspectives in Biology 5, a012948–a012948. doi:10.1101/cshperspect.a012948
 Timmermann, M. Lettemberger, F. Buonema, S. P., Sfair, A., do Longo, T., 2013, 5205

Zimmermann, M., Lottersberger, F., Buonomo, S.B., Sfeir, A., de Lange, T., 2013. 53BP1
Regulates DSB Repair Using Rif1 to Control 5' End Resection. Science 339, 700–704.
doi:10.1016/j.jsb.2005.06.002

- 1010
- 1011
- 1012 FIGURE LEGENDS
- 1013

# 1014 Figure 1. The SNF2 domain is essential for SUUR function and replication fork localization.

1015 (A) Schematic representation of the SUUR and SUUR<sup> $\Delta$ SNF</sup> proteins. (B) Illumina-based copy

1016 number profiles (Reads Per Million; RPM) of *chr2L* 1-20,000,000 from larval salivary glands.

1017 Black bars below each profile represent underreplicated regions identified by CNVnator. (C)

1018 Average read depth in regions of euchromatic underreplication domains called in wild-type

salivary glands vs. the full replicated regions of the genome. A Welch Two Sample t-test was

1020 used to determine *p* values. (D) Quantitative droplet-digital PCR (ddPCR) copy number assay for

1021 multiple underreplicated regions. Each bar is the average enrichment relative to fully replicated

1022 control region for three biological replicates. Error bars are the SEM. (E) Localization of SUUR in

1023 wild-type and  $SuUR^{\Delta SNF}$  mutant follicle cells. A single representative stage 13 follicle cell nucleus

1024 is shown. Arrowheads indicate sites of amplification. Asterisk marks the chromocenter

1025 (heterochromatin). Scale bars are 2µm. DAPI=blue, SUUR=green, EdU=red.

1026

1027 Figure 2. Rif1 is required for underreplication.

1028 (A) Schematic representation of the *Rif1* gene and CRISPR-induced *Rif1* mutants. Lightning bolts 1029 represent the 5' and 3' gRNA positions. (B) Illumina-based copy number profiles of the chr2L 1030 from larval salivary glands. Black bars below each profile represent underreplicated regions identified by CNVnator. The wild-type and SuUR profiles are the same as in Figure 1b. (C) 1031 1032 Average read depth in regions of euchromatic underreplication domains called in wild-type 1033 salivary glands vs. the fully replicated regions of the genome. A Welch Two Sample t-test was used to determine p values. (D) Quantitative droplet-digital PCR (ddPCR) copy number assay for 1034 1035 multiple underreplicated regions. Each bar is the average enrichment relative to fully replicated 1036 control region for three biological replicates. Error bars are the SEM. 1037 Figure 3. Rif1 regulates replication fork progression. 1038 1039 (A) Illumina-based copy number profile of sites of follicle cell gene amplification. DNA was 1040 extracted from wild type and *Rif1* mutant stage 13 egg chambers and compared to DNA 1041 extracted from 0-2 hr embryos. The resulting graphs are the log<sub>2</sub>-transformed ratios of egg 1042 chamber relative to embryonic DNA. Bars below the graphs represent the distance between the 1043 half-maximum copy number on each side of the replication origin. (B) Fraction of cells that 1044 display visible amplification foci in each stage of gene amplification. Average of two biological 1045 replicates in which two egg chambers from each stage were used per biological replicate. 100-1046 300 follicle cells were counted per genotype. Error bars are the SEM. 1047

1048 Figure 4. Rif1 acts downstream of SUUR.

41

bioRxiv preprint doi: https://doi.org/10.1101/346650; this version posted June 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

- 1049 Localization of replication forks (EdU) and SUUR in a wild-type and *Rif1* mutant follicle cell
- 1050 nuclei. A single representative stage 13 follicle cell nucleus is shown. Scale bars are 2µm.
- 1051 Arrowheads indicate sites of amplification. Asterisks marks the chromocenter
- 1052 (heterochromatin). DAPI=blue, SUUR=green, EdU=red.
- 1053
- 1054
- 1055 Figure 5. SUUR is necessary to retain Rif1 at replication forks.
- 1056 Localization of active replication forks (EdU) and Rif1 in a wild-type and SuUR mutant follicle cell
- 1057 nuclei. Single representative follicle cell nuclei are shown for each stage. Scale bars are 2µm.
- 1058 Arrowheads indicate sites of amplification. Asterisk marks the chromocenter
- 1059 (heterochromatin).
- 1060

1061

## 1062 Figure 6. The Rif1/PP1 interaction is necessary to promote underreplication.

- 1063 (A) Quantitative droplet-digital PCR (ddPCR) copy number assay for multiple underreplicated
- 1064 regions. Each bar is the average enrichment relative to fully replicated control region for three
- 1065 biological replicates. Error bars are the SEM. (B) A new model for SUUR-mediated
- 1066 underreplication. In this model SUUR serves as a scaffold to recruit a Rif1/PP1 complex to
- 1067 replication forks where Rif1/PP1 inhibits replication fork progression through
- 1068 dephosphorylation of a component of the replisome. Replication fork image is adapted from
- 1069 (Nordman and Orr-Weaver, 2015)
- 1070

bioRxiv preprint doi: https://doi.org/10.1101/346650; this version posted June 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

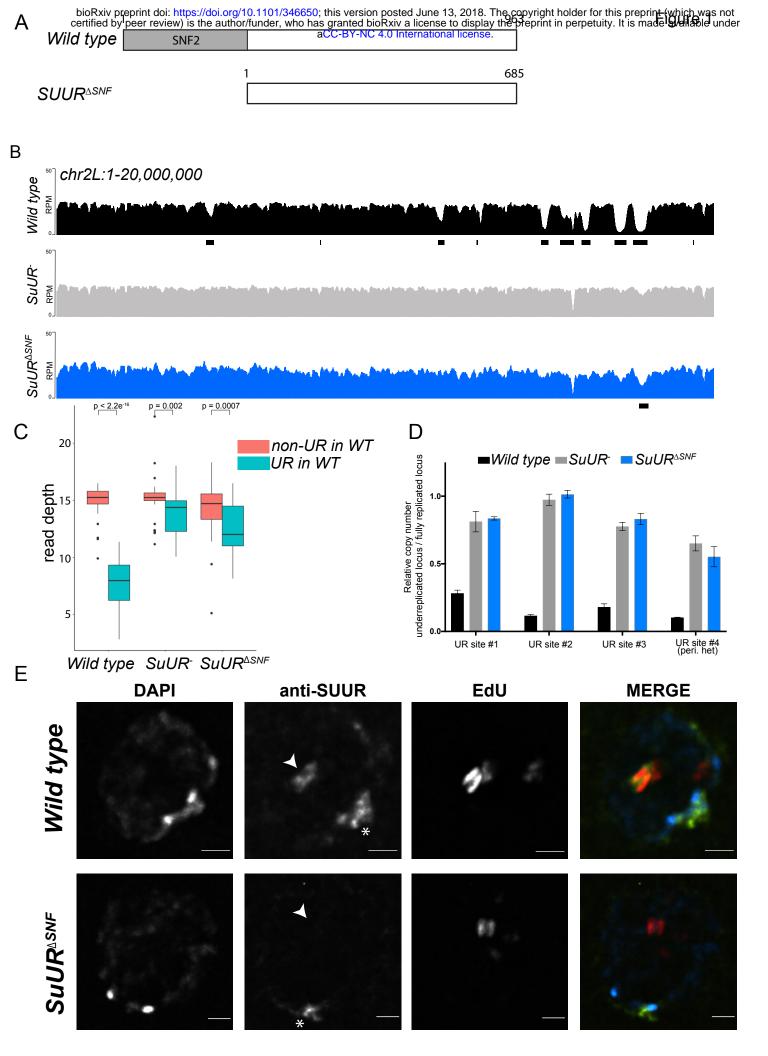
| 1071 | Supplemental Figure S1 – related to Figure 1. Genome-wide copy number profile of the                                |
|------|---------------------------------------------------------------------------------------------------------------------|
| 1072 | SuUR <sup>ASNF</sup> mutant.                                                                                        |
| 1073 | Illumina-based copy number profiles of all chromosome arms except the fourth for larval                             |
| 1074 | salivary glands of the indicated genotypes and wild type 0-2h embryos in which DNA is fully                         |
| 1075 | replicated. Black bars below each profile represent called underreplicated regions.                                 |
| 1076 |                                                                                                                     |
| 1077 | Supplemental Figure S2 – related to Figure 2 and Figure 5. Verification of <i>Rif1</i> mutants and                  |
| 1078 | validation of anti-Rif1 antibody.                                                                                   |
| 1079 | (A) Western blot analysis of ovary extracts prepared from the indicated genotypes. Serum                            |
| 1080 | produced in guinea pigs was used at 1:1000 dilution. (B) Immunofluorescence of ovaries using                        |
| 1081 | affinity purified anti-Rif1 antibody produced in guinea pigs. Exposure times were equal between                     |
| 1082 | the two genotypes. (C) Embryo hatch rate assay comparing embryos laid by wild-type or                               |
| 1083 | <i>Rif1<sup>1</sup>/Rif1<sup>2</sup></i> mutant mothers. n=300 embryos per genotype. Each data point represents the |
| 1084 | hatch rate of a group of 10 embryos. An unpaired student t-test was used to generate the <i>p</i>                   |
| 1085 | value.                                                                                                              |
| 1086 |                                                                                                                     |
| 1087 | Supplemental Figure S3 – related to Figure 2. Genome-wide copy number profile of the <i>Rif1</i>                    |
| 1088 | mutant.                                                                                                             |
| 1089 | (A) Illumina-based copy number profiles of all chromosome arms except the fourth for larval                         |
| 1090 | salivary glands of the indicated genotypes. Black bars below each profile represent called                          |
| 1091 | underreplicated regions. (B) Box plot represents read depth in 10 kb bins in the pericentric                        |
| 1092 | chromatin regions for chr 2L, 2R, 3L and 3R. A Welch Two Sample t-test was used to compare                          |

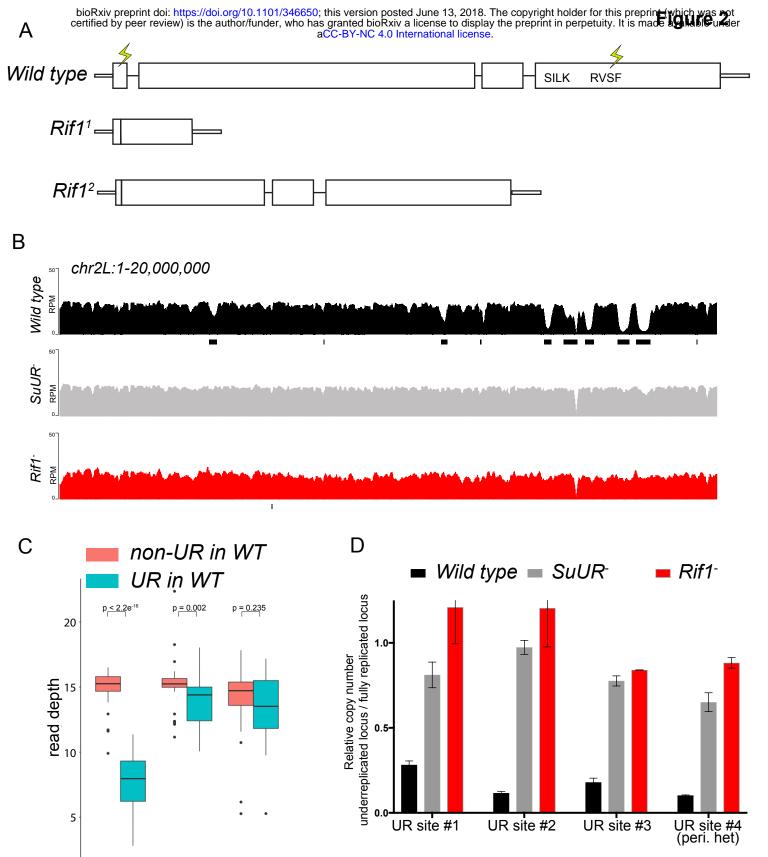
43

| 1093 | the same regions between SuUR and Rif1 mutants. The same wild-type, SuUR and 0-2h embr | ryo |
|------|----------------------------------------------------------------------------------------|-----|
| 1094 | plots as in Supplemental Figure S1.                                                    |     |

1095

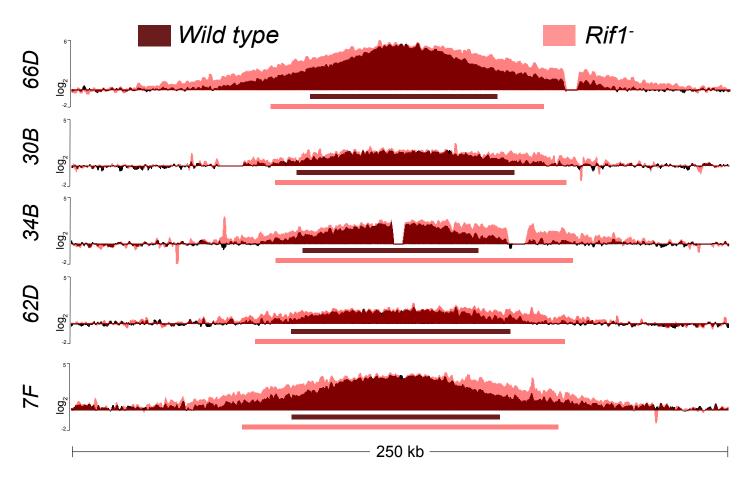
# 1096 Supplemental Figure S4. Rif1 mutant salivary gland cells display a pattern of late replication.


- 1097 (A) Representative immunofluorescent images of 3<sup>rd</sup> instar salivary glands pulse labelled with
- 1098 EdU and stained with anti-HP1 to mark heterochromatin. Wild-type cells fail to incorporate EdU
- 1099 into regions of heterochromatin due to underreplication, whereas EdU can be detected in the
- 1100 heterochromatic regions of *SuUR* and *Rif1* mutants. DAPI=blue, EdU=green, HP1=red (B)
- 1101 Quantitation of three biological replicates. Out of the total number of EdU positive cells, the
- 1102 fraction incorporating EdU predominantly in the heterochromatic (HP1) regions were
- 1103 measured. More than 200 EdU positive cells were scored for each genotype.
- 1104


### 1105 Supplemental Figure S5. *Rif1* mutant endo cycling cells have enlarged chromocenters.

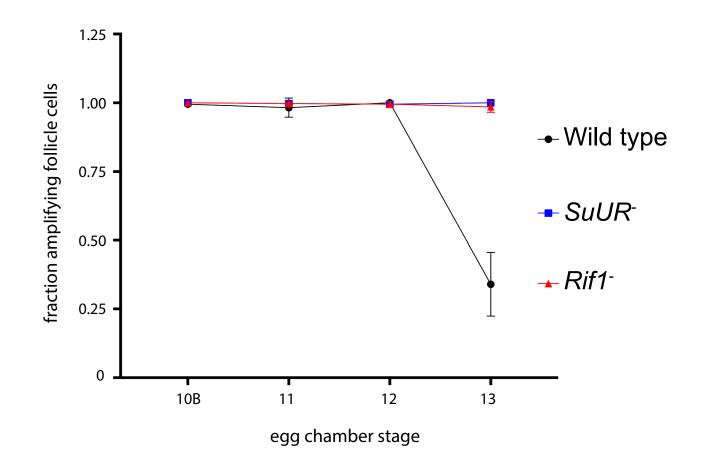
- 1106 Representative image of of nurse cell nuclei from stage 10 egg chambers. Egg chambers were
- stained with DAPI. Scale bar is 10 µm. Exposure times and scaling are equal in all images.
- 1108

# Supplemental Figure S6 – related to Figure 6. The Rif1<sup>PP1</sup> protein expression is similar to wild type Rif1.

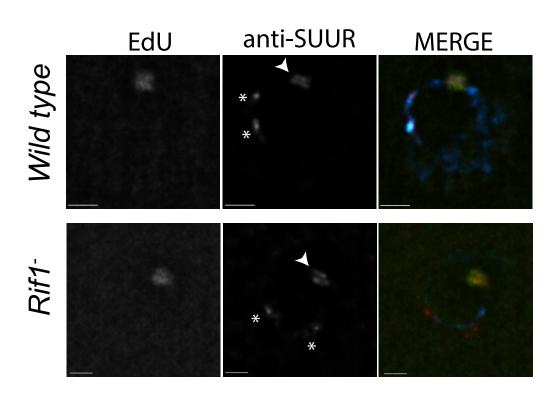

- 1111 (A) Western blot analysis of ovary extracts from  $Rif1^{PP1}/Rif1^1$  and  $Rif1^1/+$  adults. Serum was
- 1112 produced in guinea pigs and used at 1:1000 dilution.






Wild type SuUR Rif1

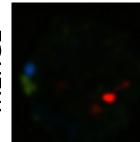
bioRxiv preprint doi: https://doi.org/10.1101/346650; this version posted June 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made solution a CC-BY-NC 4.0 International license.



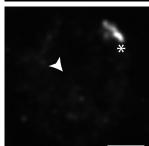


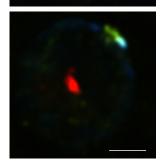

Α

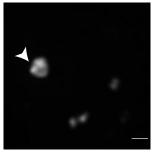


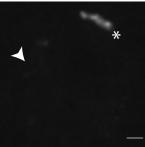

bioRxiv preprint doi: https://doi.org/10.1101/346650; this version posted June 13, 2018. The copyright holder for this preprint (which was pot certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made a graduate under aCC-BY-NC 4.0 International license.

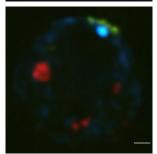


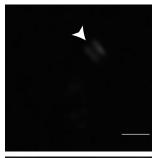

SuUR<sup>-</sup>


# anti-Rif1 MERGE

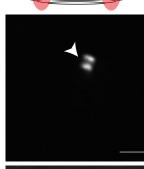

# \*



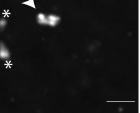





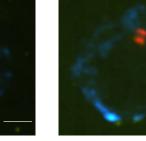









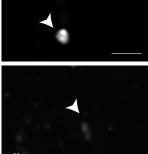


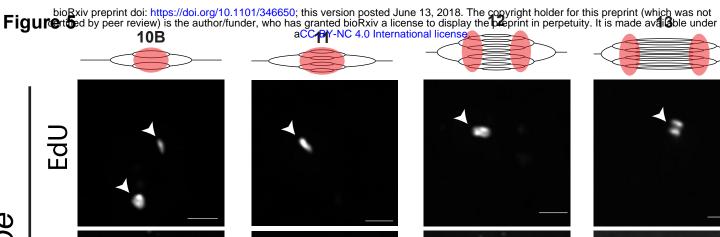




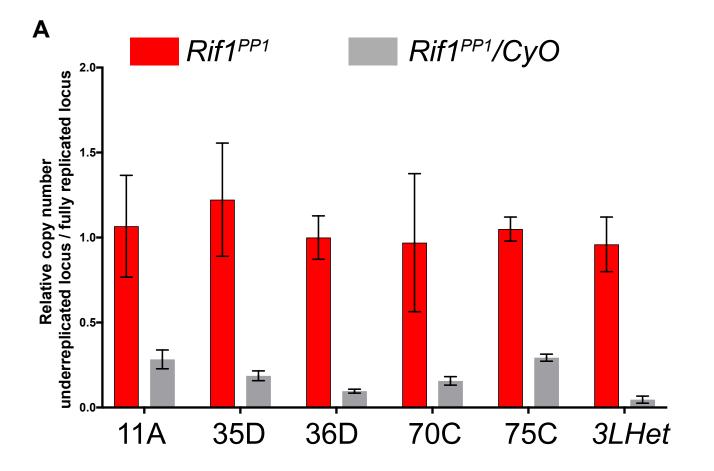




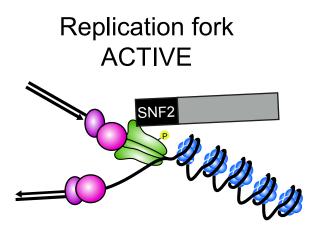





Wild type anti-Rif1

MERGE


EdU

EdU



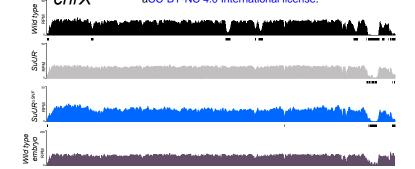


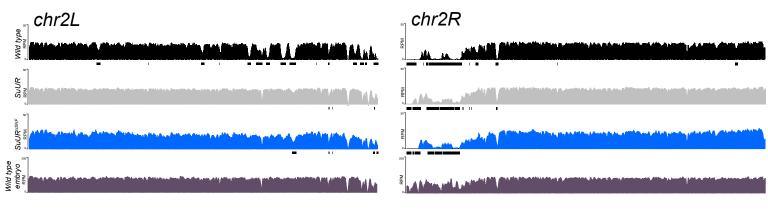

bioRxiv preprint doi: https://doi.org/10.1101/346650; this version posted June 13, 2018. The copyright holder for this preprint (which was pot certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made a solution of the acc-BY-NC 4.0 International license.

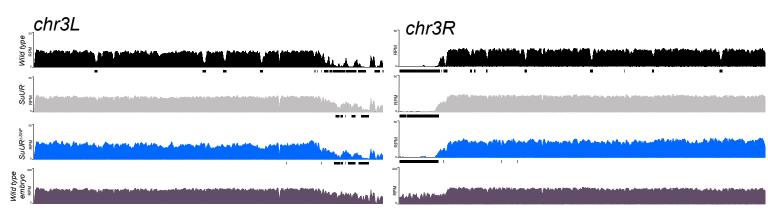


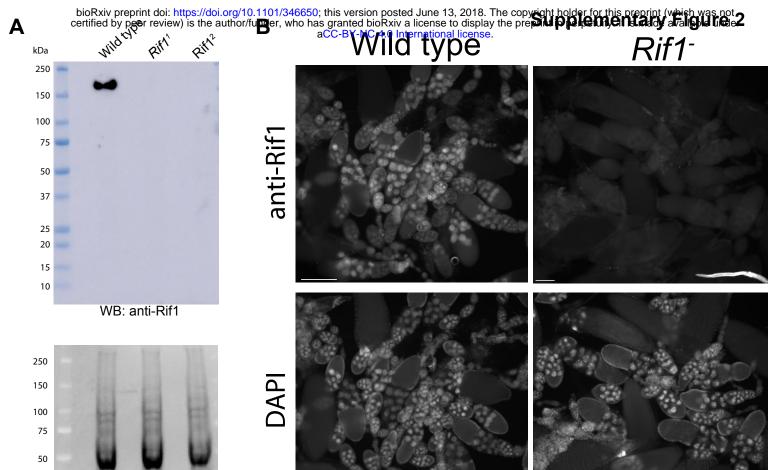
В




Replication fork INACTIVE SNF2 Rif1/ PP1

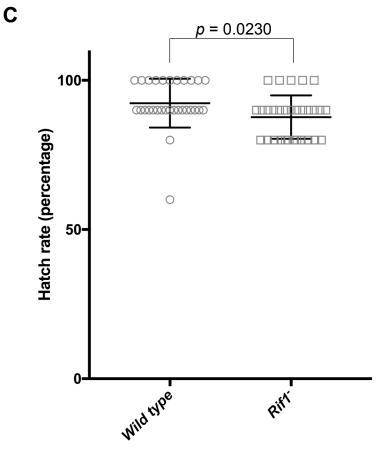

| Table 1       | Full length SUUR |          |          | SNF2 domain |          |          | negative control |          |          |
|---------------|------------------|----------|----------|-------------|----------|----------|------------------|----------|----------|
|               | Repl. #1         | Repl. #2 | Repl. #3 | Repl. #1    | Repl. #2 | Repl. #3 | Repl. #1         | Repl. #2 | Repl. #3 |
| SUUR          | 36               | 48       | 26       | 21          | 18       | 10       | 1                | 1        | 2        |
| Rif1(CG30085) | 29               | 24       | 14       | 1           | 0        | 0        | 0                | 0        | 0        |


| Comparison of Rif1 abundance* |             |  |  |  |
|-------------------------------|-------------|--|--|--|
| Full length vs. SNF2          | p < 0.00010 |  |  |  |
| Full length vs. neg. ctrl     | p < 0.00010 |  |  |  |


\*Fisher's Exact Test

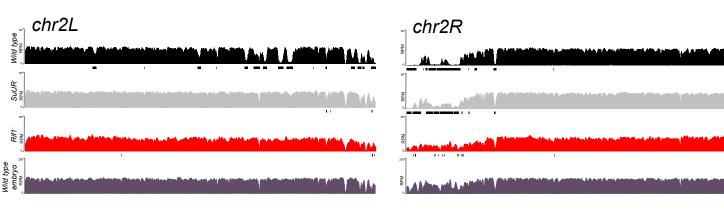
bioRxiv preprint doi: https://doi.org/10.1101/346650; this version posted June 13, 2018. The copyright helder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in Steparties.

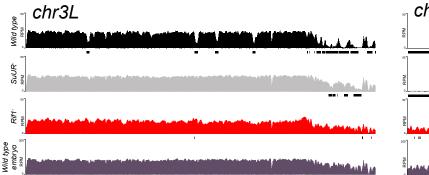




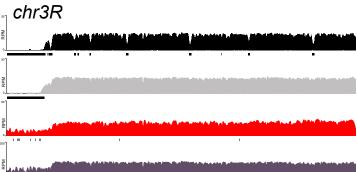


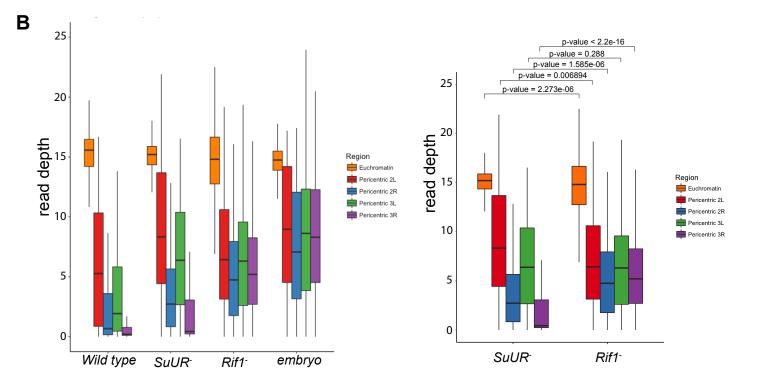


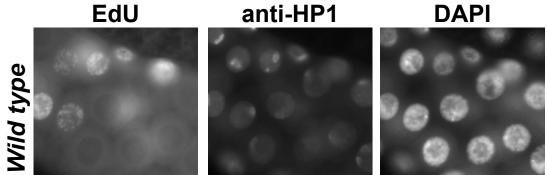


Total protein

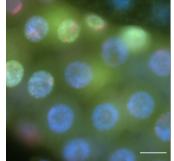



bioRxiv preprint doi: https://doi.org/10.1101/346650; this version posted June 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the **OMPTAUNDER**, who has granted bioRxiv a license to display the pre**DM P Picture 11, 2018**. The **OMPTAUNCE III and a relieve a CC-BY-NC 4.0** International license.

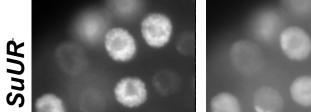




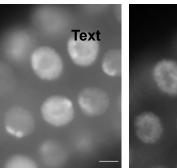


Α

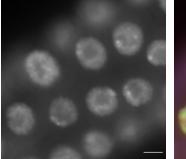


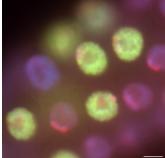


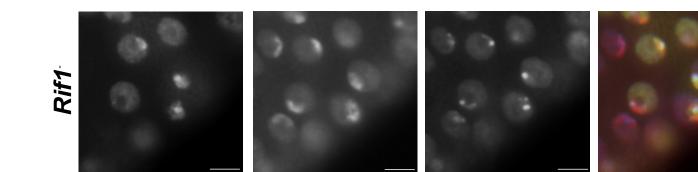

bioRxiv preprint doi: https://doi.org/10.1101/346650; this version posted June 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint (which was not a CC-BY-NC 4.0 International license.

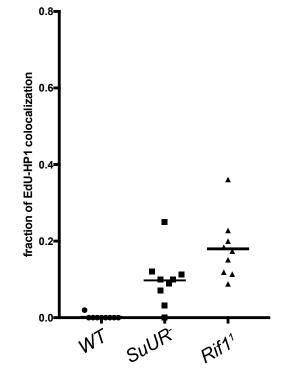




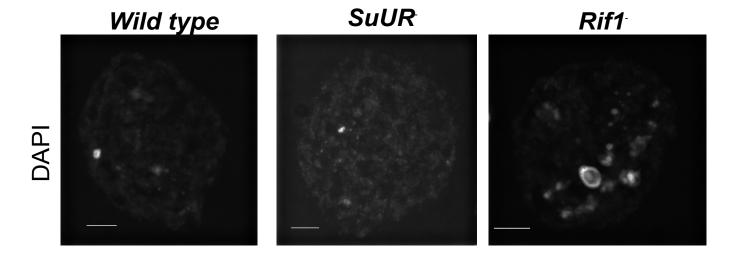


MERGE



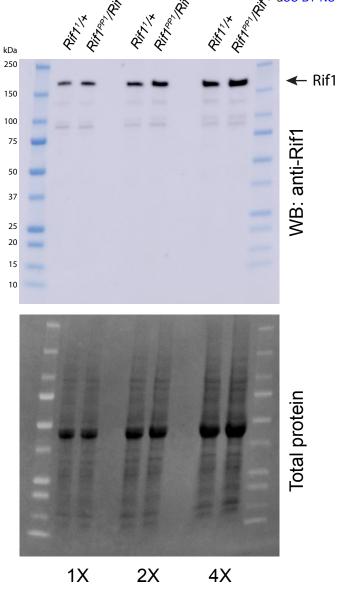


Α


В










bioRxiv preprint doi: https://doi.org/10.1101/346650; this version posted June 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint **preprint preprint are acc**-BY-NC 4.0 International license.



bioRxiv preprint doi: https://doi.org/10.1101/346650; this version posted June 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bid via license to display the preprint **Ppice 19, 2019**. acC-BY-NC 4.0 International license.



Α

bioRxiv preprint doi: https://doi.org/10.1101/346650; this version posted June 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint **CPP Builder and available d**ar aCC-BY-NC 4.0 International license.

| Supplemental Table 1: Underrepl | cated regions called by CNVnator |
|---------------------------------|----------------------------------|
|                                 |                                  |

| chr   | start    | end      | OregonR | ,<br>SuUR- | SuUR∆SNF | Rif1- |
|-------|----------|----------|---------|------------|----------|-------|
| chrX  | 9001     | 52000    | +       |            | +        |       |
| chrX  | 80001    | 108000   | +       |            |          |       |
| chrX  | 2976001  | 3125000  | +       |            |          |       |
| chrX  | 12052001 | 12382000 | +       |            |          |       |
| chrX  | 14062001 | 14101000 | +       |            |          |       |
| chrX  | 14292001 | 14563000 | +       |            |          |       |
| chrX  | 20686001 | 20957000 | +       |            |          |       |
| chrX  | 20962001 | 20998000 | +       |            |          |       |
| chrX  | 21525001 | 21544000 | +       | +          |          | +     |
| chrX  | 21667001 | 21807000 | +       | +          | +        |       |
| chrX  | 21814001 | 21829000 | +       |            |          |       |
| chrX  | 21843001 | 21895000 | +       | +          | +        |       |
| chrX  | 21904001 | 21965000 | +       | +          | +        |       |
| chrX  | 21972001 | 22433000 | +       | +          | +        |       |
| chrX  | 22611001 | 22787000 | +       | +          |          |       |
| chrX  | 23053001 | 23064000 | +       | +          |          |       |
| chrX  | 23175001 | 23205000 | +       |            |          |       |
| chrX  | 23285001 | 23535000 | +       | +          | +        |       |
| chr2L | 4538001  | 4777000  | +       |            |          |       |
| chr2L | 8013001  | 8024000  | +       |            |          |       |
| chr2L | 11587001 | 11777000 | +       |            |          |       |
| chr2L | 12781001 | 12799000 | +       |            |          |       |
| chr2L | 14722001 | 14946000 | +       |            |          |       |
| chr2L | 15306001 | 15721000 | +       |            |          |       |
| chr2L | 15960001 | 16154000 | +       |            |          |       |
| chr2L | 16161001 | 16217000 | +       |            |          |       |
| chr2L | 16948001 | 17199000 | +       |            |          |       |
| chr2L | 17201001 | 17312000 | +       |            |          |       |
| chr2L | 17520001 | 17951000 | +       |            | +        |       |
| chr2L | 19345001 | 19358000 | +       |            |          |       |
| chr2L | 20128001 | 20199000 | +       | +          | +        |       |
| chr2L | 21833001 | 22085000 | +       |            |          |       |
| chr2L | 22284001 | 22522000 | +       |            |          |       |
| chr2L | 22614001 | 22752000 | +       |            |          |       |
| chr2L | 23198001 | 23406000 | +       | +          | +        | +     |
| chr2L | 23415001 | 23513712 | +       |            | +        | +     |
| chr2R | 1        | 699000   | +       | +          | +        | +     |
| chr2R | 1194001  | 1206000  | +       |            |          |       |
| chr2R | 1379001  | 1501000  | +       | +          | +        |       |
| chr2R | 1557001  | 1589000  | +       |            |          |       |

bioRxiv preprint doi: https://doi.org/10.1101/346650; this version posted June 13, 2018. The copyright bolder for this preprint (version and certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint preprint preprint and avalance of a contact of the certified by peer review. A contact of the certified by peer review is the author/funder, who has granted bioRxiv a license to display the preprint preprint preprint of a contact of the certified by peer review.

| chr2R | 1609001  | 1700000  | +   |   |   |   |
|-------|----------|----------|-----|---|---|---|
| chr2R | 1707001  | 1968000  | + + | + | + |   |
|       |          |          |     |   |   |   |
| chr2R | 1975001  | 2163000  | +   | + | + | + |
| chr2R | 2170001  | 2409000  | +   | + | + | + |
| chr2R | 2421001  | 2500000  | +   | + | + |   |
| chr2R | 2508001  | 2546000  | +   | + | + |   |
| chr2R | 2551001  | 3506000  | +   | + |   | + |
| chr2R | 3513001  | 3871000  | +   | + | + | + |
| chr2R | 4414001  | 4425000  | +   | + |   |   |
| chr2R | 4871001  | 5057000  | +   |   |   |   |
| chr2R | 6283001  | 6476000  | +   | + |   |   |
| chr2R | 10623001 | 10637000 | +   |   |   | + |
| chr2R | 23133001 | 23313000 | +   |   |   |   |
| chr3L | 4850001  | 5034000  | +   |   |   |   |
| chr3L | 5043001  | 5075000  | +   |   |   |   |
| chr3L | 13559001 | 13805000 | +   |   |   |   |
| chr3L | 15196001 | 15475000 | +   |   |   |   |
| chr3L | 18190001 | 18431000 | +   |   |   |   |
| chr3L | 22577001 | 22627000 | +   |   |   |   |
| chr3L | 22803001 | 22820000 | +   |   |   |   |
| chr3L | 23157001 | 23173000 | +   |   | + |   |
| chr3L | 23355001 | 23538000 | +   |   |   |   |
| chr3L | 23550001 | 23679000 | +   |   |   |   |
| chr3L | 23775001 | 24005000 | +   |   |   |   |
| chr3L | 24056001 | 25075000 | +   | + | + |   |
| chr3L | 25135001 | 25838000 | +   | + | + |   |
| chr3L | 25844001 | 25965000 | +   |   | + |   |
| chr3L | 26085001 | 26161000 | +   |   | + |   |
| chr3L | 26166001 | 26311000 | +   | + |   |   |
| chr3L | 26315001 | 26705000 | +   | + | + |   |
| chr3L | 27391001 | 27815000 | +   |   |   | + |
| chr3L | 28042001 | 28110227 | +   |   |   |   |
| chr3R | 1        | 1257000  | +   | + | + | + |
| chr3R | 1266001  | 1655000  | +   | + |   |   |
| chr3R | 1664001  | 2569000  | +   | + | + |   |
| chr3R | 2572001  | 2824000  | +   | + | + | + |
| chr3R | 2831001  | 3034000  | +   | + | + | + |
| chr3R | 3040001  | 3129000  | +   | + |   | + |
| chr3R | 3136001  | 3533000  | +   | + | + |   |
| chr3R | 3674001  | 3692000  | +   | + | 1 |   |
| chr3R | 3827001  | 3842000  | +   | + | 1 |   |
| chr3R | 3890001  | 4175000  | +   |   | + |   |

bioRxiv preprint doi: https://doi.org/10.1101/346650; this version posted June 13, 2018. The copyright bolder for this preprint (version and certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint preprint preprint and avalance of a contact of the certified by peer review. A contact of the certified by peer review is the author/funder, who has granted bioRxiv a license to display the preprint preprint preprint of a contact of the certified by peer review.

| chr3R | 6159001  | 6327000  | + |   |   |
|-------|----------|----------|---|---|---|
| chr3R | 6515001  | 6624000  | + |   |   |
| chr3R | 7572001  | 7714000  | + | + |   |
| chr3R | 10919001 | 11142000 | + | + |   |
| chr3R | 16712001 | 16948000 | + |   |   |
| chr3R | 19704001 | 19715000 | + |   |   |
| chr3R | 22142001 | 22303000 | + |   | + |
| chr3R | 28020001 | 28252000 | + |   |   |

# Supplemental Table 2

| half max position |       |            |               |                |                     |                                   |  |  |  |
|-------------------|-------|------------|---------------|----------------|---------------------|-----------------------------------|--|--|--|
| Wild type         |       | max (log2) | left arm (bp) | right arm (bp) | half max total (bp) | fold change relative to wild type |  |  |  |
| 7F                | chrX  | 3.911      | 8439400       | 8518500        | 79100               | 1                                 |  |  |  |
| 22B*              | chr2L | 1.961      | 1888300       | 1937200        | 48900               | 1                                 |  |  |  |
| 30B               | chr2L | 1.798      | 9504800       | 9587600        | 82800               | 1                                 |  |  |  |
| 34B               | chr2L | 2.33       | 13371800      | 13438500       | 66700               | 1                                 |  |  |  |
| 62D               | chr3L | 1.678      | 2231600       | 2314900        | 83300               | 1                                 |  |  |  |
| 66D               | chr3L | 5.494      | 8694700       | 8765800        | 71100               | 1                                 |  |  |  |

|       | half max position |            |               |                |                     |             |  |  |  |  |
|-------|-------------------|------------|---------------|----------------|---------------------|-------------|--|--|--|--|
| SuUR- |                   | max (log2) | left arm (bp) | right arm (bp) | half max total (bp) |             |  |  |  |  |
| 7F    | chrX              | 3.528      | 8425000       | 8528900        | 103900              | 1.313527181 |  |  |  |  |
| 22B*  | chr2L             | NA         | NA            | NA             | NA                  | NA          |  |  |  |  |
| 30B   | chr2L             | 1.682      | 9506100       | 9607700        | 101600              | 1.22705314  |  |  |  |  |
| 34B   | chr2L             | 2.355      | 13364800      | 13473500       | 108700              | 1.629685157 |  |  |  |  |
| 62D   | chr3L             | 1.745      | 2221200       | 2342400        | 121200              | 1.454981993 |  |  |  |  |
| 66D   | chr3L             | 4.88       | 8685700       | 8778600        | 92900               | 1.306610408 |  |  |  |  |

# half max position

| Rif1- |       | max (log2) | left arm (bp) | right arm (bp) | half max total (bp) |             |
|-------|-------|------------|---------------|----------------|---------------------|-------------|
| 7F    | chrX  | 3.824      | 8420700       | 8540700        | 120000              | 1.517067004 |
| 22B*  | chr2L | NA         | NA            | NA             | NA                  | NA          |
| 30B   | chr2L | 1.807      | 9496800       | 9607300        | 110500              | 1.334541063 |
| 34B   | chr2L | 2.474      | 13361400      | 13474400       | 113000              | 1.694152924 |
| 62D   | chr3L | 1.719      | 2217900       | 2335500        | 117600              | 1.411764706 |
| 66D   | chr3L | 5.465      | 8679700       | 8783500        | 103800              | 1.459915612 |

\*22B is a strain specific amplicon present in Oregon R and not SuUR and Rif1 mutants