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Abstract  45 

1. Motion-activated cameras (“camera traps”) are increasingly used in ecological and 46 

management studies for remotely observing wildlife and have been regarded as among the most 47 

powerful tools for wildlife research. However, studies involving camera traps result in millions 48 

of images that need to be analyzed, typically by visually observing each image, in order to 49 

extract data that can be used in ecological analyses.  50 

2. We trained machine learning models using convolutional neural networks with the ResNet-18 51 

architecture and 3,367,383 images to automatically classify wildlife species from camera trap 52 

images obtained from five states across the United States. We tested our model on an 53 

independent subset of images not seen during training from the United States and on an out-of-54 

sample (or “out-of-distribution” in the machine learning literature) dataset of ungulate images 55 

from Canada. We also tested the ability of our model to distinguish empty images from those 56 

with animals in another out-of-sample dataset from Tanzania, containing a faunal community 57 

that was novel to the model.  58 

3. The trained model classified approximately 2,000 images per minute on a laptop computer 59 

with 16 gigabytes of RAM. The trained model achieved 98% accuracy at identifying species in 60 

the United States, the highest accuracy of such a model to date. Out-of-sample validation from 61 

Canada achieved 82% accuracy, and correctly identified 94% of images containing an animal in 62 

the dataset from Tanzania. We provide an R package (Machine Learning for Wildlife Image 63 

Classification; MLWIC) that allows the users to A) implement the trained model presented here 64 

and B) train their own model using classified images of wildlife from their studies.  65 
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4. The use of machine learning to rapidly and accurately classify wildlife in camera trap images 66 

can facilitate non-invasive sampling designs in ecological studies by reducing the burden of 67 

manually analyzing images. We present an R package making these methods accessible to 68 

ecologists. We discuss the implications of this technology for ecology and considerations that 69 

should be addressed in future implementations of these methods.  70 

Keywords: artificial intelligence, camera trap, convolutional neural network, deep learning, deep 71 

neural networks, image classification, machine learning, R package, remote sensing, wildlife 72 

game camera  73 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 13, 2018. ; https://doi.org/10.1101/346809doi: bioRxiv preprint 

https://doi.org/10.1101/346809


4 
 

Introduction 74 

An understanding of species’ distributions is fundamental to many questions in ecology 75 

(MacArthur, 1984; Brown, 1995). Observations of wildlife can be used to model species 76 

distributions and population abundance and evaluate how these metrics relate to environmental 77 

conditions (Elith, Kearney, & Phillips, 2010; Tikhonov et al., 2017). However, developing 78 

statistically sound data for species observations is often difficult and expensive (Underwood, 79 

Chapman, & Connell, 2000) and significant effort has been devoted to correcting bias in more 80 

easily collected or opportunistic observation data (Royle & Dorazio, 2008; MacKenzie et al., 81 

2017). Recently, technological advances have improved our ability to observe animals remotely. 82 

Sampling methods such as acoustic recordings, images from crewless aircraft (or “drones”), and 83 

motion-activated cameras that automatically photograph wildlife (i.e., “camera traps”) are 84 

commonly used (Blumstein et al., 2011; O’Connell et al., 2011; Getzin et al., 2012). These tools 85 

offer great promise for increasing efficiency of observing wildlife remotely over large 86 

geographical areas with minimal human involvement and have made considerable contributions 87 

to ecology (Rovero et al., 2013; Howe et al., 2017). However, a common limitation is these 88 

methods lead to a large accumulation of data – audio and video recordings and images – which 89 

must be first classified in order to be used in ecological studies predicting occupancy or 90 

abundance (Swanson et al., 2015; Niedballa et al., 2016). The large burden of classification, such 91 

as manually viewing and classifying images from camera traps, often constrains studies by 92 

reducing the sampling intensity (e.g., number of cameras deployed), limiting the geographical 93 

extent and duration of studies. Recently, machine learning has emerged as a potential solution for 94 

automatically classifying recordings and images.  95 
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Machine learning methods have been used to classify wildlife in camera trap images with 96 

varying levels of success and human involvement in the process. One application of a machine 97 

learning approach has been to distinguish empty and non-target animal images from those 98 

containing the target species to reduce the number of images requiring manual classification. 99 

This approach has been generally successful, allowing researchers to remove up to 76% of 100 

images containing non-target species (Swinnen et al., 2014). Development of methods to identify 101 

several wildlife species in images has been more problematic. Yu et al. (2013) used sparse 102 

coding spatial pyramid matching (Lazebnik, Schmid, & Ponce, 2006) to identify 18 species in 103 

images, achieving high accuracy (82%), but their approach necessitates each training image to be 104 

manually cropped, requiring a large time investment. Attempts to use machine learning to 105 

classify species in images without manual cropping have achieved far lower accuracies: 38% 106 

(Chen et al., 2014) and 57% (Gomez Villa, Salazar, & Vargas, 2017). However, more recently 107 

Norouzzadeh et al. (2018) used convolutional neural networks with 3.2 million classified images 108 

from camera traps to automatically classify 48 species of Serengeti wildlife in images with 95% 109 

accuracy.  110 

Despite these advances in automatically identifying wildlife in camera trap images, the 111 

approaches remain study specific and the technology is generally inaccessible to most ecologists. 112 

Training such models typically requires extensive computer programming skills and tools for 113 

novice programmers (e.g., an R package) are limited. Making this technology available to 114 

ecologists has the potential to greatly expand ecological inquiry and non-invasive sampling 115 

designs, allowing for larger and longer-term ecological studies. In addition, automated 116 

approaches to identifying wildlife in camera trap images have important applications in detecting 117 

invasive species or rare species and improving their management.  118 
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We sought to develop a machine learning approach that can be applied across study sites and 119 

provide software that ecologists can use for identification of wildlife in their own camera trap 120 

images. Using over three million identified images of wildlife from camera traps from five 121 

locations across the United States, we trained and tested deep learning models that automatically 122 

classify wildlife. We provide an R package (Machine Learning for Wildlife Image Classification; 123 

MLWIC) that allows researchers to classify camera trap images from North America or train 124 

their own machine learning models to classify images. We also address some basic issues in the 125 

potential use of machine learning for classifying wildlife in camera trap images in ecology. 126 

Because our approach nearly eliminates the need for manual curation of camera trap images we 127 

also discuss how this new technology can be applied to improve ecological studies in the future.  128 

 129 

Materials and Methods 130 

Camera trap images  131 

Species in camera trap images from five locations across the United States (California, Colorado, 132 

Florida, South Carolina, and Texas) were identified manually by researchers (see Appendix S1 133 

for a description of each field location). Images were either classified by a single wildlife expert 134 

or evaluated independently by two researchers; any conflicts were decided by a third observer 135 

(Appendix S1). If any part of an animal (e.g., leg or ear) was identified as being present in an 136 

image, this was included as an image of the species. This resulted in a total of 3,741,656 137 

classified images that included 28 species or groups (see Table 1) across the study locations. 138 

Images were re-sized to a resolution of 256 x 256 pixels using a custom Python script before 139 

running models to increase processing speed. A subset of images (approximately 10%) was 140 
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withheld using conditional sampling to be used for testing of the model (described below). This 141 

resulted in 3,367,383 images used to train the model and 374,273 images used for testing.    142 

 143 

Machine learning process 144 

Supervised machine learning algorithms use training examples to “learn” how to complete a task 145 

(Mohri, Rostamizadeh, & Talwalkar, 2012; Goodfellow, Bengio, & Courville, 2016). One 146 

popular class of machine learning algorithms is artificial neural network, which loosely mimics 147 

the learning behavior of the mammalian brain (Gurney, 2014; Goodfellow et al., 2016). An 148 

artificial neuron in a neural network has several inputs, each with an associated weight. For each 149 

artificial neuron, the inputs are multiplied by the weights, summed, and then evaluated by a non-150 

linear function, which is called the activation function (e.g., Sigmoid, Tanh, or Sine). Usually 151 

each neuron also has an extra connection with a constant input value of 1 and its associated 152 

weight, called a “bias,” for neurons. The result of the activation function can be passed as input 153 

into other artificial neurons or serve as network outputs. For example, consider an artificial 154 

neuron with three inputs (𝐼1, 𝐼2, and 𝐼3); the output (θ) is calculated based on:  155 

𝜃 =  𝑇𝑎𝑛ℎ(𝑤1𝐼1 +  𝑤2𝐼2 + 𝑤3𝐼3 + 𝑤4𝐼𝑏) (eqn 1), 156 

where 𝑤1, 𝑤2, 𝑤3 and 𝑤4 are the weights associated with each input, 𝐼𝑏 is the bias, and 𝑇𝑎𝑛ℎ(𝑥) 157 

is the activation function (Fig. 1). To solve complex problems multiple neurons are needed, so 158 

we put them into a network. We arrange neurons in a hierarchical structure of layers; neurons in 159 

each layer take input from the previous layer, process them, and pass the output to the next layer.  160 

Then, an algorithm, called backpropagation (Rumelhart, Hinton, & Williams, 1986), tunes the 161 

parameters of the neural network (weights and bias values) enabling it to produce the desired 162 
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output when we feed an input to the network. This process is called training. To adjust the 163 

weights, we define a loss function as a measure of the difference between the predicted (current) 164 

output of the neural network and the correct output (𝑌). The loss function (𝐿) is the mean 165 

squared error: 166 

𝐿 =
1

𝑛
∑ (𝑌 −  𝜃)2𝑛

𝑖=1  (eqn2). 167 

 We compute the contribution of each weight to the loss value (
𝑑𝐿

𝑑𝑊
) using the chain rule in 168 

calculus. Weights are then adjusted so the loss value is minimized. In this “weight update” step, 169 

all the weights are updated to minimize 𝐿: 170 

𝑤𝑖 = 𝑤𝑖 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 −  𝜂
𝑑𝐿

𝑑𝑊
 (eqn 3), 171 

where 𝜂 is the learning rate and is chosen by the scientist. A higher 𝜂 indicates larger steps are 172 

taken per training sample, which may be faster, but a value that is too large will be imprecise and 173 

can destabilize learning. After adjusting the weights, the same input should result in an output 174 

that is closer to the desired output. For more details of backpropagation and training, see 175 

Goodfellow et al., 2016.  176 

In fully connected neural networks, each neuron in every layer is connected to (provides input to) 177 

every neuron in the next layer. Conversely, in convolutional neural networks, which are inspired 178 

by the retina of the human eye, several convolutional layers exist in which each neuron only 179 

receives input from a small sliding subset of neurons (“receptive field”) in the previous layer. We 180 

call the output of a group of neurons the “feature map,” which depicts the response of a neuron 181 

to its input. When we use convolutional neural networks to classify animal images, the receptive 182 

field of neurons in the first layer of the network is a sliding subset of the image. In subsequent 183 
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layers, the receptive field of neurons is a sliding subset of the feature map from previous layers. 184 

We interpret the output of the final layer as the probability of the presence of species in the 185 

image. A softmax function is used at the final layer to ensure that the outputs sum to one. For 186 

more details on this process, see Simonyan & Zisserman, 2014.  187 

Deep neural networks (or “deep learning”) are artificial networks with several (> 3) layers of 188 

structure. In our example, we provided a set of animal images from camera traps of different 189 

species and their labels (species identifiers) to a deep neural network, and the model learned how 190 

to identify species in other images that were not used for training. Once a model is trained, we 191 

can use it to classify new images. The trained model uses the output of the final layer in the 192 

network to assign a confidence to each species or group it evaluates, where the total confidence 193 

assigned to all groups for each image sums to one. Generally, the majority of the confidence is 194 

attributed to one group, the “top guess.” For example, for 90% of the images in our test dataset, 195 

the model attributed > 95% confidence to the top guess. Therefore, for the purpose of this paper, 196 

we mainly discuss accuracy with regard to the top guess, but our R package presents the five 197 

groups with the highest confidence, the “top five guesses,” and the confidence associated with 198 

each guess.  199 

Neural network architecture refers to several details about the network including the type and 200 

number of neurons and the number of layers. We trained a deep convolutional neural network 201 

(ResNet-18) architecture because it has few parameters, but performs well; see He et al. (2016) 202 

for full details of this architecture. Networks were trained in the TensorFlow framework (Adabi 203 

et al., 2016) using Mount Moran, a high performance computing cluster (Advanced Research 204 

Computing Center, 2012). First, since invasive wild pigs (Sus scrofa) are a subject of several of 205 

our field studies, we developed a “Pig/no pig” model, in which we determined if a pig was either 206 
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present or absent in the image. In the “Species Level” model, we identified images to the species 207 

level when possible. Specifically, if our classified image dataset included < 2,000 images for a 208 

species, it was either grouped with taxonomically similar species (by genera, families, or order), 209 

or it was not included in the trained model (Table 1). In the “Group Level” model, species were 210 

grouped with taxonomically similar species into classifications that had ecological relevance 211 

(Appendix S2). The Group Level model contained fewer groups than the Species Level model, 212 

so that more training images were available for each group. We used both models because if the 213 

Species Level model had poor accuracy, we predicted the Group Level model would have better 214 

accuracy since more training images would be available for several groups. As it is the most 215 

broadly applicable model and is the one implemented in the MLWIC package, we will mainly 216 

discuss the Species Level model here, but show results from the Group Level to demonstrate 217 

alternative approaches.  218 

For each of the three models, 90% of the classified images for each species or group were used 219 

to train the model and 10% of the images were used to test it in most cases. However, we wanted 220 

to evaluate the model’s performance for each species present at each study site, so we altered 221 

training-testing allocation for the rare situations where there were few classified images of a 222 

species at a site. Specifically, with 1-9 classified images for a species at a site, we used all of 223 

these images for testing and none for training; for site-species pairs with 10-30 images, 50% 224 

were used for training and testing; and for > 30 images per site for each species, 90% were 225 

allocated to training and 10% to testing (Appendices S3 - S7 show the number of training and 226 

test images for each species at each site).  227 

 228 

Evaluating model accuracy 229 
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Model testing was conducted by running the trained model on the withheld images that were not 230 

used to train the model. Accuracy (𝐴) was assessed as the proportion of images in the test dataset 231 

(𝑁) that were correctly classified (𝐶) by the top guess (𝐴 = 𝐶/𝑁). Top 5 accuracy (𝐴5) was 232 

defined as the proportion of images in the test dataset that were correctly classified by any of the 233 

top 5 assignments (𝐶5; 𝐴5 = 𝐶5/𝑁). For each species or group we calculated the rate of false 234 

positives (𝐹𝑃) as the proportion of images classified as this species or group (𝑁𝑚𝑜𝑑𝑒𝑙 𝑔𝑟𝑜𝑢𝑝) by 235 

the model’s top guess that contained a different species according to human observers 236 

(𝑁𝑡𝑟𝑢𝑒 𝑜𝑡ℎ𝑒𝑟; 𝐹𝑃 =  𝑁𝑡𝑟𝑢𝑒 𝑜𝑡ℎ𝑒𝑟/𝑁𝑚𝑜𝑑𝑒𝑙 𝑔𝑟𝑜𝑢𝑝). We calculated the rate of false negatives for each 237 

species (𝐹𝑁) as the proportion of images observers classified as a specific species or group 238 

(𝑁𝑡𝑟𝑢𝑒 𝑔𝑟𝑜𝑢𝑝) that the model’s top guess classified differently (𝑁𝑚𝑜𝑑𝑒𝑙 𝑜𝑡ℎ𝑒𝑟; 𝐹𝑁 =239 

 𝑁𝑚𝑜𝑑𝑒𝑙 𝑜𝑡ℎ𝑒𝑟/𝑁𝑡𝑟𝑢𝑒 𝑔𝑟𝑜𝑢𝑝). This assumes the observers were correct in their classification of 240 

images. We fit generalized additive models (GAMs) to the relationship between accuracy and the 241 

logarithm (base 10) of the number of images used to train the model. We also calculated the 242 

accuracy and rates of error specific to each of the five data sets from which images were 243 

acquired.  244 

To evaluate how the model would perform for a completely new study site in North America, we 245 

used a dataset of 5,900 classified images of ungulates (moose, cattle, elk, and wild pigs) from 246 

Saskatchewan, Canada by running the Species Level model on these images. We also evaluated 247 

the ability of the model to operate on images with a completely different species community 248 

(from Tanzania) to determine the model’s ability to correctly classify images as having an animal 249 

or being empty when encountering new species that it has not been trained to recognize. This 250 

was done using 3.2 million classified images from the Snapshot Serengeti dataset (Swanson et 251 

al., 2015).  252 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 13, 2018. ; https://doi.org/10.1101/346809doi: bioRxiv preprint 

https://doi.org/10.1101/346809


12 
 

 253 

Results 254 

Our models performed well, achieving ≥ 97.5% accuracy of identifying the correct species with 255 

the top guess (Table 2). The model determining presence or absence of wild pigs had the highest 256 

accuracy of all of our models (98.6%; Pig/no pig; Table 2). For the Species Level and Group 257 

Level models, the top 5 accuracy was > 99.9%. The model confidence in the correct answer 258 

varied, but was mostly > 95%; see Fig. 2 for confidences for each image for three example 259 

species. Supporting a similar finding for camera trap images in Norouzzadeh et al. (2018), and a 260 

general trend in deep learning (Goodfellow et al., 2016), species and groups that had more 261 

images available for training were classified more accurately (Fig. 3, Table 1). GAMs relating 262 

the number of training images with accuracy predicted 95% accuracy could be achieved when 263 

approximately 71,000 training images were available for a species or group. However, these 264 

models were not perfect fits to the data, and for several species and groups, 95% accuracy was 265 

achieved with fewer than 70,000 images (Fig. 3). We found there was not a large effect of 266 

daytime vs. nighttime on accuracy in the Species Level model as daytime accuracy was 98.2% 267 

and nighttime accuracy was 96.6%. The top 5 accuracies for both times of day were ≥ 99.9%. 268 

When we subsetted the testing dataset by study site, we found that site-specific accuracies ranged 269 

from 90-99% (Appendices S3 - S7). The model performed poorly (0 – 22% accuracy) for species 270 

in the four instances when the model did not include training images from that site (when < 10 271 

classified images were available for the species/study site combination; Appendices S3 - S7). 272 

Upon further investigation, we found these images were difficult to classify manually. For 273 

example, striped skunks in Florida were misclassified in both of the images from this study site 274 
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(Appendix S5). These images both contained the same individual at the same camera, and most 275 

wildlife experts would not classify it as a skunk (Appendix S8).  276 

When we conducted out-of-sample validation by using our model to evaluate images of 277 

ungulates from Canada, we achieved an overall accuracy of 81.8% with a top 5 accuracy of 278 

90.9%. When we tested the ability of our model to accurately predict presence or absence of an 279 

animal in the image using the Serengeti Snapshot dataset, we found that 85.1% were classified 280 

correctly as empty, while 94.3% of images containing an animal were classified as containing an 281 

animal. Our trained model was capable of classifying approximately 2,000 images per minute on 282 

a Macintosh laptop with 16 gigabytes (GB) of RAM.  283 

 284 

Discussion 285 

To our knowledge, our Species Level model achieved the highest accuracy (97.5%) to date in 286 

using machine learning for wildlife image classification (a recent paper achieved 95% accuracy; 287 

Norouzzadeh et al., 2018). This model performed almost as well during the night as during the 288 

day (accuracy = 97% and 98%, respectively). We provide this model as an R package (MLWIC), 289 

which is especially useful for researchers studying the species and groups available in this 290 

package (Table 1) in North America, as it performed well in classifying ungulates in an out-of-291 

sample test of images from Canada. The model can also be valuable for researchers studying 292 

other species by removing images without any animals from the dataset before beginning manual 293 

classification, as we achieved high accuracy in separating empty images from those containing 294 

animals in a dataset from Tanzania. This R package can also be a valuable tool for any 295 
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researchers that have classified images, as they can use the package to train their own model that 296 

can then classify any subsequent images collected.  297 

 298 

Optimizing camera trap use and application in ecology 299 

The ability to rapidly identify millions of images from camera traps can fundamentally change 300 

the way ecologists design and implement wildlife studies. Camera trap projects amass large 301 

numbers of images which require a sizable time investment to manually classify. For example, 302 

the Snapshot Serengeti project (Swanson et al., 2015) amassed millions of images and employed 303 

28,000 volunteers to manually classify 1.5 million images (Swanson et al., 2016; Palmer et al., 304 

2017). We found researchers can classify approximately 200 images per hour. Therefore, a 305 

project that amasses 1 million images would require 10,000 hours for each image to be doubly 306 

observed. To reduce the number of images that need to be classified manually, ecologists using 307 

camera traps often limit the number of photos taken by reducing the size of camera arrays, 308 

reducing the duration of camera trap studies, and imposing limits on the number of photos a 309 

camera takes (Kelly et al., 2008; Scott et al., 2018). This constraint can be problematic in many 310 

studies, particularly those addressing rare or elusive species that are often the subject of 311 

ecological studies (O’Connell et al., 2011), as these species often require more effort to detect 312 

(Tobler et al., 2008). Using deep learning methods to automatically classify images essentially 313 

eliminates one of the primary reasons camera trap arrays are limited in size or duration. The 314 

Species Level model in our R package can accurately classify 1 million images in less than nine 315 

hours with minimal human involvement.  316 
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Another reason to limit the number of photos taken by camera traps is storage limitations on 317 

cameras (Rasambainarivo et al., 2017; Hanya et al., 2018). When classifying images manually, 318 

we might try to use high resolution photos to improve technicians’ abilities to accurately classify 319 

images, but higher resolution photos require more storage on cameras. Our results show a model 320 

can be accurately trained and applied using low-resolution (256 x 256 pixel) images, but many of 321 

these images were re-sized from a higher resolution, which might contain more information than 322 

those which originated at a low resolution. Nevertheless, we hypothesize a model can be 323 

accurately trained using images from low resolution cameras, and our R package allows users 324 

who have such images to test this hypothesis. If supported, this can make camera trap data 325 

storage much more efficient. Typical cameras set for 2048 x 1536 pixel resolution will run out of 326 

storage space when they reach approximately 1,250 photos per GB of storage. Taking low 327 

resolution images instead can increase the number of photos stored per GB to about 10,000 and 328 

thus decrease the frequency at which researchers must visit cameras to change storage cards by a 329 

factor of eight. Minimizing human visitation also will reduce human scents and disturbances that 330 

could deter some species from visiting cameras. In the future, it may be possible to implement a 331 

machine learning model on a game camera (Elias et al., 2017) that automatically classifies 332 

images as empty or containing animals so that empty images are discarded immediately and not 333 

stored on the camera. This type of approach could dramatically reduce the frequency with which 334 

technicians need to visit cameras. Furthermore, if models effectively use low-resolution images, 335 

it is not necessary for researchers to purchase high resolution cameras. Instead, researchers can 336 

purchase lower cost, lower resolution cameras and allocate funding toward purchasing more 337 

cameras and creating larger camera arrays.  338 

 339 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 13, 2018. ; https://doi.org/10.1101/346809doi: bioRxiv preprint 

https://doi.org/10.1101/346809


16 
 

Applications to management of invasive and sensitive species 340 

By removing some of the major burdens associated with the use of camera traps, our approach 341 

can be utilized by ecologists and wildlife managers to conduct more extensive camera trapping 342 

surveys than were previously possible. One potential use is in monitoring the distribution of 343 

sensitive or invasive species. For example, the distribution of invasive wild pigs in North 344 

America is commonly monitored using camera traps. Humans introduce this species into new 345 

locations that are often geographically distant from their existing range (Tabak et al., 2017), 346 

which can quickly lead to newly-established populations. Camera traps could be placed in areas 347 

at risk for introduction and provide constant surveillance. An automated image classification 348 

model that simply ‘looks’ for pigs in images could monitor camera trap images and alert 349 

managers when images with pigs are found, facilitating removal of animals before populations 350 

establish. Additionally, after wild pigs have been eradicated from a region, camera traps could be 351 

used to monitor the area to verify eradication success and automatically detect re-colonization or 352 

reintroduction events. Similar approaches can be used in other study systems to more rapidly 353 

detect novel invasive species arrivals, track the effects of management interventions, monitor 354 

species of conservation concern, or monitor sensitive species following reintroduction efforts.  355 

 356 

Limitations 357 

Using out-of-sample model validation on a dataset from Canada revealed a lower accuracy 358 

(82%) than at study sites from which our model was trained. Additionally, when we did not 359 

include images of species/site combinations in training the model, due to low sample sizes, the 360 

model performed poorly (Appendices S3 - S7; but these images were often difficult to classify 361 
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even by wildlife experts, Appendix S8). One potential explanation is the model evaluated both 362 

the animal and the environment in the image and these are confounded in the species 363 

identification (Norouzzadeh et al., 2018). Therefore, the model may have lower accuracies in 364 

environments that were not in the training dataset. Ideally, the training dataset would include 365 

training images representing the range of environments in which a species exists. Our model 366 

includes training images from diverse ecosystems, making it relevant for classifying images from 367 

many locations in North America. A further limitation is in our reported overall accuracy, which 368 

is reported across all of the images that were available for testing, and we had considerable 369 

imbalance in the number of images per species (Table 1). We provide accuracies for each 370 

species, so the reader can more directly inspect model accuracy. Finally, our model was trained 371 

using images that were classified by human observers, which are capable of making errors 372 

(O’Connell et al., 2011; Meek, Vernes, & Falzon, 2013), meaning some of the images in our 373 

training dataset were likely misclassified. Supervised machine learning algorithms require such 374 

training examples, and therefore we are unaware of a method for training such models without 375 

the potential for human classification error. Instead, we must acknowledge that these models will 376 

make mistakes due to imperfections in both human observation and model accuracy.  377 

 378 

Future directions 379 

As this new technology becomes more widely available, ecologists will need to decide how it 380 

will be applied in ecological analyses. For example, when using machine learning model output 381 

to design occupancy and abundance models, we can incorporate accuracy estimates that were 382 

generated when conducting model testing. The error of a machine learning model in identifying a 383 

species is similar to the problem of imperfect detection of wildlife when conducting field 384 
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surveys. Wildlife are often not detected when they are present (false negatives) and occasionally 385 

detected when they are absent (false positives); ecologists have developed models to effectively 386 

estimate occupancy when data have these types of errors (Royle & Link, 2006; Guillera-Arroita 387 

et al., 2017). We can use Bayesian occupancy and abundance models where the central 388 

tendencies of the prior distributions for the false negative and false positive error rates are 389 

derived from testing the machine learning model (e.g., values in Table 1). While we would 390 

expect false positive rates in occupancy models to resemble the false positive error rates for the 391 

machine learning model, false negative error rates would be a function of the both the machine 392 

learning model and the propensity for some species to avoid detection by cameras when they are 393 

present (Tobler et al., 2015).  394 

Another area in need of development is how to group taxa when few images are available for the 395 

species. We grouped species when few images were available for model training using an 396 

arbitrary cut off of approximately 2,000 images per group (Table 1). We had few images of 397 

horses (Equus spp.), but the model identified these images relatively well (93% accuracy), 398 

presumably because they are phenotypically different from other species in our dataset. We also 399 

had few images of opossums (Didelphis virginiana), but we did not group this species because it 400 

is phenotypically different from other species in our dataset and was of ecological interest in our 401 

studies; we achieved lower accuracy for this species (78%). We also included a group for rodents 402 

from species for which we only had few images (Erethizon dorsatum, Marmota flaviventris, 403 

Genomys spp., Mus spp., Neotoma spp., Peromyscus spp., Tamais spp., and Rattus spp.). The 404 

model achieved relatively low accuracy for this group (79%), presumably because there were 405 

few images for training (3,279) and members of this group are phenotypically different, making 406 

it difficult for the model to train on this group. When researchers develop new machine learning 407 
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models, they will need to consider the available data, the species or groups in their study, and the 408 

ecological question that the model will help address.  409 

Here, we mainly focused on the species or class that the model predicted with the highest 410 

confidence (the top guess), but in many cases researchers may want to incorporate information 411 

from the model’s confidence in the guess and additional model guesses. For example, if we are 412 

interested in the highest overall accuracy, we could only consider images where the confidence 413 

in the top guess is > 95%. If we subset the results from our model test in this manner, we remove 414 

10% of the images, but total accuracy increases to 99.6%. However, if the objective of a project 415 

is to identify rare species, researchers may want to focus on all images in which the model 416 

predicts that species to be in the top 5 guesses (the 5 species or groups that the model predicts to 417 

have the highest confidence). In our model test, the correct species was in the top 5 guesses in 418 

99.9% of the images, indicating that this strategy may be viable.  419 

We expect the performance of machine learning models to improve in the future (Jordan & 420 

Mitchell, 2015), allowing ecologists to further exploit this technology. Our model required 421 

manual identification of many images to obtain high levels of accuracy (Table 1). Our model was 422 

also limited in that we were only able to classify the presence or absence of species; we were not 423 

able to determine the number of individuals, their behavior, or demographics. Similar machine 424 

learning models are capable of including the number of animals and their behavior in 425 

classifications (Norouzzadeh et al., 2018), but we could not include these factors because they 426 

were rarely recorded manually in our dataset. As machine learning techniques improve, we 427 

expect models will require fewer manually classified images to achieve high accuracy in 428 

identifying species, counting individuals, and specifying demographic information. Furthermore, 429 

as scientists begin projects intending to use machine learning to classify images, they may be 430 
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more willing to spend time extracting detailed information from fewer images instead of 431 

obtaining less information from all images. This development would create a larger dataset of 432 

information from images that can be used to train models. As machine learning algorithms 433 

improve and ecologists begin considering this technology when they design studies, we think 434 

that many novel applications will arise.  435 

As camera trap use is a common approach to studying wildlife worldwide, there are likely now 436 

large datasets of classified images. If scientists work together and share these datasets, we can 437 

create large image libraries that span continents (Steenweg et al., 2017); we may eventually be 438 

able to train a machine learning model that can identify many global species and be used by 439 

researchers globally. Further, effectively sharing images and classifications can potentially be 440 

integrated with a web-based platform, similar to that employed by Camera Base 441 

(http://www.atrium-biodiversity.org/tools/camerabase) or eMammal (https://emammal.si.edu/).  442 
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Tables and Figures 

Table 1: Accuracy of the Species Level model  

Species or 

group name Scientific name 

Number 

of 

training 

images 

Number 

of test 

images Accuracy 

Top 5 

accuracy 

False 

positive 

rate 

False 

negative 

rate 

Moose Alces alces 8,967 997 0.98 1.00 0.02 0.02 

Cattle Bos taurus 1,817,109 201,903 0.99 1.00 0.01 0.01 

Quail Callipepla californica 2,039 236 0.90 0.96 0.11 0.10 

Canidae Canidae 20,851 2,321 0.89 0.99 0.08 0.11 

Elk Cervus canadensis 185,390 20,606 0.98 1.00 0.01 0.02 

Mustelidae Mustelidae 1,991 223 0.76 0.98 0.12 0.24 

Corvid Corvidae 4,037 452 0.79 1.00 0.15 0.21 

Armadillo Dasypus novemcinctus 8,926 993 0.87 0.99 0.08 0.13 

Turkey Meleagris gallopavo 3,919 447 0.88 1.00 0.12 0.12 

Opossum Didelphis virginiana 1,804 210 0.78 0.96 0.15 0.22 

Horse Equus spp.  2,517 281 0.93 0.99 0.05 0.07 

Human Homo sapiens 88,667 9,854 0.96 1.00 0.03 0.04 

Rabbits Leporidae 17,768 1,977 0.96 1.00 0.06 0.04 

Bobcat Lynx rufus 22,889 2,554 0.90 0.99 0.05 0.10 

Striped skunk Mephitis mephitis 10,331 1,154 0.95 0.99 0.03 0.05 

Unidentified 

deer Odocoileus spp.  86,502 9,613 0.96 1.00 0.02 0.04 

Rodent Rodentia 3,279 366 0.79 0.98 0.17 0.21 

Mule deer Odocoileus hemionus 76,878 8,543 0.98 1.00 0.03 0.02 

White-tailed 

deer Odocoileus virginianus 12,238 1,360 0.81 1.00 0.22 0.19 

Raccoon Procyon lotor 42,948 4,781 0.88 1.00 0.10 0.12 
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Mountain lion Puma concolor 13,272 1,484 0.93 0.98 0.03 0.07 

Squirrel Sciurus spp. 59,072 6,566 0.96 1.00 0.05 0.04 

Wild pig Sus scrofa 287,017 31,893 0.97 1.00 0.02 0.03 

Fox 

Vulpes vulpes and Urocyon 

Cinereoargentus 10,749 1,204 0.91 0.99 0.07 0.09 

Black Bear Ursus americanus 79,628 8,850 0.94 1.00 0.02 0.06 

Vehicle  23,413 2,602 0.93 1.00 0.04 0.07 

Bird Aves 61,063 6,787 0.94 1.00 0.05 0.06 

Empty  414,119 46,016 0.96 1.00 0.06 0.04 

Total   3,367,383 374,273 0.98 1.00     
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Table 2: Accuracy (across all images for all species) of the three deep learning tasks analyzed 

Model Accuracy (%) 

Pig/no pig 98.6 

Species Level 97.5 

Group Level 97.8 
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Figure 1: Within an artificial neural network, inputs (I) are multiplied by their weights (w), 

summed, and then evaluated by a non-linear function, which also accounts for bias (𝐼𝑏). The 

output (θ) can be passed as input into other neurons or serve as network outputs. 

Backpropagation involves adjusting the weights so that a model can provide the desired output. 
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Fig. 2: Histograms represent the confidence assigned by all of the top five guesses by the 

Species Level model for each of these three example species when it was present in an image. 

The dashed line represents 95% confidence; the majority of model-assigned confidences were 

greater than this value. 
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Fig. 3: Machine learning model accuracy increased with the size of the training dataset. Points 

represent each species or group of species. The line represents the result of generalized additive 

models relating the two variables.  
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Supporting Information 
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Appendix S2. Accuracy of the Group Level for each species 

Appendix S3. Accuracy of the Species Level model at the Tejon research site in California.  

Appendix S4. Accuracy of the Species Level model in Colorado 

Appendix S5. Accuracy of the Species Level model at Buck Island Ranch in Florida 

Appendix S6. Accuracy of the Species Level model at the Camp Bullis Military Training Center 

in Texas 
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