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Abstract  45 

1. Motion-activated cameras (“camera traps”) are increasingly used in ecological and 46 

management studies for remotely observing wildlife and have been regarded as among the most 47 

powerful tools for wildlife research. However, studies involving camera traps result in millions 48 

of images that need to be analyzed, typically by visually observing each image, in order to 49 

extract data that can be used in ecological analyses.  50 

2. We trained machine learning models using convolutional neural networks with the ResNet-18 51 

architecture and 3,367,383 images to automatically classify wildlife species from camera trap 52 

images obtained from five states across the United States. We tested our model on an 53 

independent subset of images not seen during training from the United States and on an out-of-54 

sample (or “out-of-distribution” in the machine learning literature) dataset of ungulate images 55 

from Canada. We also tested the ability of our model to distinguish empty images from those 56 

with animals in another out-of-sample dataset from Tanzania, containing a faunal community 57 

that was novel to the model.  58 

3. The trained model classified approximately 2,000 images per minute on a laptop computer 59 

with 16 gigabytes of RAM. The trained model achieved 98% accuracy at identifying species in 60 

the United States, the highest accuracy of such a model to date. Out-of-sample validation from 61 

Canada achieved 82% accuracy, and correctly identified 94% of images containing an animal in 62 

the dataset from Tanzania. We provide an R package (Machine Learning for Wildlife Image 63 

Classification; MLWIC) that allows the users to A) implement the trained model presented here 64 

and B) train their own model using classified images of wildlife from their studies.  65 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 9, 2018. ; https://doi.org/10.1101/346809doi: bioRxiv preprint 

https://doi.org/10.1101/346809


3 
 

4. The use of machine learning to rapidly and accurately classify wildlife in camera trap images 66 

can facilitate non-invasive sampling designs in ecological studies by reducing the burden of 67 

manually analyzing images. We present an R package making these methods accessible to 68 

ecologists. We discuss the implications of this technology for ecology and considerations that 69 

should be addressed in future implementations of these methods.  70 

Keywords: artificial intelligence, camera trap, convolutional neural network, deep neural 71 

networks, image classification, machine learning, R package, remote sensing  72 
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Introduction 73 

An understanding of species’ distributions is fundamental to many questions in ecology 74 

(MacArthur, 1984; Brown, 1995). Observations of wildlife can be used to model species 75 

distributions and population abundance and evaluate how these metrics relate to environmental 76 

conditions (Elith, Kearney, & Phillips, 2010; Tikhonov et al., 2017). However, developing 77 

statistically sound data for species observations is often difficult and expensive (Underwood, 78 

Chapman, & Connell, 2000) and significant effort has been devoted to correcting bias in more 79 

easily collected or opportunistic observation data (Royle & Dorazio, 2008; MacKenzie et al., 80 

2017). Recently, technological advances have improved our ability to observe animals remotely. 81 

Sampling methods such as acoustic recordings, images from crewless aircraft (or “drones”), and 82 

motion-activated cameras that automatically photograph wildlife (i.e., “camera traps”) are 83 

commonly used (Blumstein et al., 2011; O’Connell et al., 2011; Getzin et al., 2012). These tools 84 

offer great promise for increasing efficiency of observing wildlife remotely over large 85 

geographical areas with minimal human involvement and have made considerable contributions 86 

to ecology (Rovero et al., 2013; Howe et al., 2017). However, a common limitation is these 87 

methods lead to a large accumulation of data – audio and video recordings and images – which 88 

must be first classified in order to be used in ecological studies predicting occupancy or 89 

abundance (Swanson et al., 2015; Niedballa et al., 2016). The large burden of classification, such 90 

as manually viewing and classifying images from camera traps, often constrains studies by 91 

reducing the sampling intensity (e.g., number of cameras deployed), limiting the geographical 92 

extent and duration of studies. Recently, machine learning has emerged as a potential solution for 93 

automatically classifying recordings and images.  94 
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Machine learning methods have been used to classify wildlife in camera trap images with 95 

varying levels of success and human involvement in the process. One application of a machine 96 

learning approach has been to distinguish empty and non-target animal images from those 97 

containing the target species to reduce the number of images requiring manual classification. 98 

This approach has been generally successful, allowing researchers to remove up to 76% of 99 

images containing non-target species (Swinnen et al., 2014). Development of methods to identify 100 

several wildlife species in images has been more problematic. Yu et al. (2013) used sparse 101 

coding spatial pyramid matching (Lazebnik, Schmid, & Ponce, 2006) to identify 18 species in 102 

images, achieving high accuracy (82%), but their approach necessitates each training image to be 103 

manually cropped, requiring a large time investment. Attempts to use machine learning to 104 

classify species in images without manual cropping have achieved far lower accuracies: 38% 105 

(Chen et al., 2014) and 57% (Gomez Villa, Salazar, & Vargas, 2017). However, more recently 106 

Norouzzadeh et al. (2018) used convolutional neural networks with 3.2 million classified images 107 

from camera traps to automatically classify 48 species of Serengeti wildlife in images with 95% 108 

accuracy.  109 

Despite these advances in automatically identifying wildlife in camera trap images, the 110 

approaches remain study specific and the technology is generally inaccessible to most ecologists. 111 

Training such models typically requires extensive computer programming skills and tools for 112 

novice programmers (e.g., an R package) are limited. Making this technology available to 113 

ecologists has the potential to greatly expand ecological inquiry and non-invasive sampling 114 

designs, allowing for larger and longer-term ecological studies. In addition, automated 115 

approaches to identifying wildlife in camera trap images have important applications in detecting 116 

invasive species or sensitive species and improving their management.  117 
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We sought to develop a machine learning approach that can be applied across study sites and 118 

provide software that ecologists can use for identification of wildlife in their own camera trap 119 

images. Using over three million identified images of wildlife from camera traps from five 120 

locations across the United States, we trained and tested deep learning models that automatically 121 

classify wildlife. We provide an R package (Machine Learning for Wildlife Image Classification; 122 

MLWIC) that allows researchers to classify camera trap images from North America or train 123 

their own machine learning models to classify images. We also address some basic issues in the 124 

potential use of machine learning for classifying wildlife in camera trap images in ecology. 125 

Because our approach nearly eliminates the need for manual curation of camera trap images we 126 

also discuss how this new technology can be applied to improve ecological studies in the future.  127 

 128 

Materials and Methods 129 

Camera trap images  130 

Species in camera trap images from five locations across the United States (California, Colorado, 131 

Florida, South Carolina, and Texas) were identified manually by researchers (see Appendix S1 132 

for a description of each field location). Images were either classified by a single wildlife expert 133 

or evaluated independently by two researchers; any conflicts were decided by a third observer 134 

(Appendix S1). If any part of an animal (e.g., leg or ear) was identified as being present in an 135 

image, this was included as an image of the species. This resulted in a total of 3,741,656 136 

classified images that included 28 species or groups (see Table 1) across the study locations. We 137 

present these images and their classifications for other scientists to use for model development as 138 

the North American Camera Trap Images (NACTI) dataset. Images were re-sized to a resolution 139 
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of 256 x 256 pixels using a custom Python script before running models to increase processing 140 

speed. A subset of images (approximately 10%) was withheld using conditional sampling to be 141 

used for testing of the model (described below). This resulted in 3,367,383 images used to train 142 

the model and 374,273 images used for testing.    143 

 144 

Machine learning process 145 

Supervised machine learning algorithms use training examples to “learn” how to complete a task 146 

(Mohri, Rostamizadeh, & Talwalkar, 2012; Goodfellow, Bengio, & Courville, 2016). One 147 

popular class of machine learning algorithms is artificial neural network, which loosely mimics 148 

the learning behavior of the mammalian brain (Gurney, 2014; Goodfellow et al., 2016). An 149 

artificial neuron in a neural network has several inputs, each with an associated weight. For each 150 

artificial neuron, the inputs are multiplied by the weights, summed, and then evaluated by a non-151 

linear function, which is called the activation function (e.g., Sigmoid, Tanh, or Sine). Usually 152 

each neuron also has an extra connection with a constant input value of 1 and its associated 153 

weight, called a “bias,” for neurons. The result of the activation function can be passed as input 154 

into other artificial neurons or serve as network outputs. For example, consider an artificial 155 

neuron with three inputs (𝐼1, 𝐼2, and 𝐼3); the output (θ) is calculated based on:  156 

𝜃 =  𝑇𝑎𝑛ℎ(𝑤1𝐼1 +  𝑤2𝐼2 + 𝑤3𝐼3 + 𝑤4𝐼𝑏) (eqn 1), 157 

where 𝑤1, 𝑤2, 𝑤3 and 𝑤4 are the weights associated with each input, 𝐼𝑏 is the bias, and 𝑇𝑎𝑛ℎ(𝑥) 158 

is the activation function (Fig. 1). To solve complex problems multiple neurons are needed, so 159 

we put them into a network. We arrange neurons in a hierarchical structure of layers; neurons in 160 

each layer take input from the previous layer, process them, and pass the output to the next layer.  161 
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Then, an algorithm, called backpropagation (Rumelhart, Hinton, & Williams, 1986), tunes the 162 

parameters of the neural network (weights and bias values) enabling it to produce the desired 163 

output when we feed an input to the network. This process is called training. To adjust the 164 

weights, we define a loss function as a measure of the difference between the predicted (current) 165 

output of the neural network and the correct output (𝑌). The loss function (𝐿) is the mean 166 

squared error: 167 

𝐿 =
1

𝑛
∑ (𝑌 −  𝜃)2𝑛

𝑖=1  (eqn2). 168 

 We compute the contribution of each weight to the loss value (
𝑑𝐿

𝑑𝑊
) using the chain rule in 169 

calculus. Weights are then adjusted so the loss value is minimized. In this “weight update” step, 170 

all the weights are updated to minimize 𝐿: 171 

𝑤𝑖 = 𝑤𝑖 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 −  𝜂
𝑑𝐿

𝑑𝑊
 (eqn 3), 172 

where 𝜂 is the learning rate and is chosen by the scientist. A higher 𝜂 indicates larger steps are 173 

taken per training sample, which may be faster, but a value that is too large will be imprecise and 174 

can destabilize learning. After adjusting the weights, the same input should result in an output 175 

that is closer to the desired output. For more details of backpropagation and training, see 176 

Goodfellow et al., 2016.  177 

In fully connected neural networks, each neuron in every layer is connected to (provides input to) 178 

every neuron in the next layer. Conversely, in convolutional neural networks, which are inspired 179 

by the retina of the human eye, several convolutional layers exist in which each neuron only 180 

receives input from a small sliding subset of neurons (“receptive field”) in the previous layer. We 181 

call the output of a group of neurons the “feature map,” which depicts the response of a neuron 182 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 9, 2018. ; https://doi.org/10.1101/346809doi: bioRxiv preprint 

https://doi.org/10.1101/346809


9 
 

to its input. When we use convolutional neural networks to classify animal images, the receptive 183 

field of neurons in the first layer of the network is a sliding subset of the image. In subsequent 184 

layers, the receptive field of neurons is a sliding subset of the feature map from previous layers. 185 

We interpret the output of the final layer as the probability of the presence of species in the 186 

image. A softmax function is used at the final layer to ensure that the outputs sum to one. For 187 

more details on this process, see Simonyan & Zisserman, 2014.  188 

Deep neural networks (or “deep learning”) are artificial networks with several (> 3) layers of 189 

structure. In our example, we provided a set of animal images from camera traps of different 190 

species and their labels (species identifiers) to a deep neural network, and the model learned how 191 

to identify species in other images that were not used for training. Once a model is trained, we 192 

can use it to classify new images. The trained model uses the output of the final layer in the 193 

network to assign a confidence to each species or group it evaluates, where the total confidence 194 

assigned to all groups for each image sums to one. Generally, the majority of the confidence is 195 

attributed to one group, the “top guess.” For example, for 90% of the images in our test dataset, 196 

the model attributed > 95% confidence to the top guess. Therefore, for the purpose of this paper, 197 

we mainly discuss accuracy with regard to the top guess, but our R package presents the five 198 

groups with the highest confidence, the “top five guesses,” and the confidence associated with 199 

each guess.  200 

Neural network architecture refers to several details about the network including the type and 201 

number of neurons and the number of layers. We trained a deep convolutional neural network 202 

(ResNet-18) architecture because it has few parameters, but performs well; see He et al. (2016) 203 

for full details of this architecture. Networks were trained in the TensorFlow framework (Adabi 204 

et al., 2016) using Mount Moran, a high performance computing cluster (Advanced Research 205 
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Computing Center, 2012). First, since invasive wild pigs (Sus scrofa) are a subject of several of 206 

our field studies, we developed a “Pig/no pig” model, in which we determined if a pig was either 207 

present or absent in the image. In the “Species Level” model, we identified images to the species 208 

level when possible. Specifically, if our classified image dataset included < 2,000 images for a 209 

species, it was either grouped with taxonomically similar species (by genera, families, or order), 210 

or it was not included in the trained model (Table 1). In the “Group Level” model, species were 211 

grouped with taxonomically similar species into classifications that had ecological relevance 212 

(Appendix S2). The Group Level model contained fewer groups than the Species Level model, 213 

so that more training images were available for each group. We used both models because if the 214 

Species Level model had poor accuracy, we predicted the Group Level model would have better 215 

accuracy since more training images would be available for several groups. As it is the most 216 

broadly applicable model and is the one implemented in the MLWIC package, we will mainly 217 

discuss the Species Level model here, but show results from the Group Level to demonstrate 218 

alternative approaches.  219 

For each of the three models, 90% of the classified images for each species or group were used 220 

to train the model and 10% of the images were used to test it in most cases. However, we wanted 221 

to evaluate the model’s performance for each species present at each study site, so we altered 222 

training-testing allocation for the rare situations where there were few classified images of a 223 

species at a site. Specifically, with 1-9 classified images for a species at a site, we used all of 224 

these images for testing and none for training; for site-species pairs with 10-30 images, 50% 225 

were used for training and testing; and for > 30 images per site for each species, 90% were 226 

allocated to training and 10% to testing (Appendices S3 - S7 show the number of training and 227 

test images for each species at each site).  228 
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 229 

Evaluating model accuracy 230 

Model testing was conducted by running the trained model on the withheld images that were not 231 

used to train the model. Accuracy (𝐴) was assessed as the proportion of images in the test dataset 232 

(𝑁) that were correctly classified (𝐶) by the top guess (𝐴 = 𝐶/𝑁). Top 5 accuracy (𝐴5) was 233 

defined as the proportion of images in the test dataset that were correctly classified by any of the 234 

top 5 assignments (𝐶5; 𝐴5 = 𝐶5/𝑁). For each species or group we calculated the rate of false 235 

positives (𝐹𝑃) as the proportion of images classified as this species or group (𝑁𝑚𝑜𝑑𝑒𝑙 𝑔𝑟𝑜𝑢𝑝) by 236 

the model’s top guess that contained a different species according to human observers 237 

(𝑁𝑡𝑟𝑢𝑒 𝑜𝑡ℎ𝑒𝑟; 𝐹𝑃 =  𝑁𝑡𝑟𝑢𝑒 𝑜𝑡ℎ𝑒𝑟/𝑁𝑚𝑜𝑑𝑒𝑙 𝑔𝑟𝑜𝑢𝑝). We calculated the rate of false negatives for each 238 

species (𝐹𝑁) as the proportion of images observers classified as a specific species or group 239 

(𝑁𝑡𝑟𝑢𝑒 𝑔𝑟𝑜𝑢𝑝) that the model’s top guess classified differently (𝑁𝑚𝑜𝑑𝑒𝑙 𝑜𝑡ℎ𝑒𝑟; 𝐹𝑁 =240 

 𝑁𝑚𝑜𝑑𝑒𝑙 𝑜𝑡ℎ𝑒𝑟/𝑁𝑡𝑟𝑢𝑒 𝑔𝑟𝑜𝑢𝑝). This assumes the observers were correct in their classification of 241 

images. We fit generalized additive models (GAMs) to the relationship between accuracy and the 242 

logarithm (base 10) of the number of images used to train the model. We also calculated the 243 

accuracy and rates of error specific to each of the five data sets from which images were 244 

acquired.  245 

To evaluate how the model would perform for a completely new study site in North America, we 246 

used a dataset of 5,900 classified images of ungulates (moose, cattle, elk, and wild pigs) from 247 

Saskatchewan, Canada by running the Species Level model on these images. We also evaluated 248 

the ability of the model to operate on images with a completely different species community 249 

(from Tanzania) to determine the model’s ability to correctly classify images as having an animal 250 
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or being empty when encountering new species that it has not been trained to recognize. This 251 

was done using 3.2 million classified images from the Snapshot Serengeti dataset (Swanson et 252 

al., 2015).  253 

 254 

Results 255 

Our models performed well, achieving ≥ 97.5% accuracy of identifying the correct species with 256 

the top guess (Table 2). The model determining presence or absence of wild pigs had the highest 257 

accuracy of all of our models (98.6%; Pig/no pig; Table 2). For the Species Level and Group 258 

Level models, the top 5 accuracy was > 99.9%. The model confidence in the correct answer 259 

varied, but was mostly > 95%; see Fig. 2 for confidences for each image for three example 260 

species. Supporting a similar finding for camera trap images in Norouzzadeh et al. (2018), and a 261 

general trend in deep learning (Goodfellow et al., 2016), species and groups that had more 262 

images available for training were classified more accurately (Fig. 3, Table 1). GAMs relating 263 

the number of training images with accuracy predicted 95% accuracy could be achieved when 264 

approximately 71,000 training images were available for a species or group. However, these 265 

models were not perfect fits to the data, and for several species and groups, 95% accuracy was 266 

achieved with fewer than 70,000 images (Fig. 3). We found there was not a large effect of 267 

daytime vs. nighttime on accuracy in the Species Level model as daytime accuracy was 98.2% 268 

and nighttime accuracy was 96.6%. The top 5 accuracies for both times of day were ≥ 99.9%. 269 

When we subsetted the testing dataset by study site, we found that site-specific accuracies ranged 270 

from 90-99% (Appendices S3 - S7). The model performed poorly (0 – 22% accuracy) for species 271 

in the four instances when the model did not include training images from that site (when < 10 272 

classified images were available for the species/study site combination; Appendices S3 - S7). 273 
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Upon further investigation, we found these images were difficult to classify manually. For 274 

example, striped skunks in Florida were misclassified in both of the images from this study site 275 

(Appendix S5). These images both contained the same individual at the same camera, and most 276 

wildlife experts would not classify it as a skunk (Appendix S8).  277 

When we conducted out-of-sample validation by using our model to evaluate images of 278 

ungulates from Canada, we achieved an overall accuracy of 81.8% with a top 5 accuracy of 279 

90.9%. When we tested the ability of our model to accurately predict presence or absence of an 280 

animal in the image using the Serengeti Snapshot dataset, we found that 85.1% were classified 281 

correctly as empty, while 94.3% of images containing an animal were classified as containing an 282 

animal. Our trained model was capable of classifying approximately 2,000 images per minute on 283 

a Macintosh laptop with 16 gigabytes (GB) of RAM.  284 

 285 

Discussion 286 

To our knowledge, our Species Level model achieved the highest accuracy (97.5%) to date in 287 

using machine learning for wildlife image classification (a recent paper achieved 95% accuracy; 288 

Norouzzadeh et al., 2018). This model performed almost as well during the night as during the 289 

day (accuracy = 97% and 98%, respectively). We provide this model as an R package (MLWIC), 290 

which is especially useful for researchers studying the species and groups available in this 291 

package (Table 1) in North America, as it performed well in classifying ungulates in an out-of-292 

sample test of images from Canada. The model can also be valuable for researchers studying 293 

other species by removing images without any animals from the dataset before beginning manual 294 

classification, as we achieved high accuracy in separating empty images from those containing 295 
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animals in a dataset from Tanzania. This R package can also be a valuable tool for any 296 

researchers that have classified images, as they can use the package to train their own model that 297 

can then classify any subsequent images collected.  298 

 299 

Optimizing camera trap use and application in ecology 300 

The ability to rapidly identify millions of images from camera traps can fundamentally change 301 

the way ecologists design and implement wildlife studies. Camera trap projects amass large 302 

numbers of images which require a sizable time investment to manually classify. For example, 303 

the Snapshot Serengeti project (Swanson et al., 2015) amassed millions of images and employed 304 

28,000 volunteers to manually classify 1.5 million images (Swanson et al., 2016; Palmer et al., 305 

2017). We found researchers can classify approximately 200 images per hour. Therefore, a 306 

project that amasses 1 million images would require 10,000 hours for each image to be doubly 307 

observed. To reduce the number of images that need to be classified manually, ecologists using 308 

camera traps often limit the number of photos taken by reducing the size of camera arrays, 309 

reducing the duration of camera trap studies, and imposing limits on the number of photos a 310 

camera takes (Kelly et al., 2008; Scott et al., 2018). This constraint can be problematic in many 311 

studies, particularly those addressing rare or elusive species that are often the subject of 312 

ecological studies (O’Connell et al., 2011), as these species often require more effort to detect 313 

(Tobler et al., 2008). Using deep learning methods to automatically classify images essentially 314 

eliminates one of the primary reasons camera trap arrays are limited in size or duration. The 315 

Species Level model in our R package can accurately classify 1 million images in less than nine 316 

hours with minimal human involvement.  317 
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Another reason to limit the number of photos taken by camera traps is storage limitations on 318 

cameras (Rasambainarivo et al., 2017; Hanya et al., 2018). When classifying images manually, 319 

we might try to use high resolution photos to improve technicians’ abilities to accurately classify 320 

images, but higher resolution photos require more storage on cameras. Our results show a model 321 

can be accurately trained and applied using low-resolution (256 x 256 pixel) images, but many of 322 

these images were re-sized from a higher resolution, which might contain more information than 323 

those which originated at a low resolution. Nevertheless, we hypothesize a model can be 324 

accurately trained using images from low resolution cameras, and our R package allows users 325 

who have such images to test this hypothesis. If supported, this can make camera trap data 326 

storage much more efficient. Typical cameras set for 2048 x 1536 pixel resolution will run out of 327 

storage space when they reach approximately 1,250 photos per GB of storage. Taking low 328 

resolution images instead can increase the number of photos stored per GB to about 10,000 and 329 

thus decrease the frequency at which researchers must visit cameras to change storage cards by a 330 

factor of eight. Minimizing human visitation also will reduce human scents and disturbances that 331 

could deter some species from visiting cameras. In the future, it may be possible to implement a 332 

machine learning model on a game camera (Elias et al., 2017) that automatically classifies 333 

images as empty or containing animals so that empty images are discarded immediately and not 334 

stored on the camera. This type of approach could dramatically reduce the frequency with which 335 

technicians need to visit cameras. Furthermore, if models effectively use low-resolution images, 336 

it is not necessary for researchers to purchase high resolution cameras. Instead, researchers can 337 

purchase lower cost, lower resolution cameras and allocate funding toward purchasing more 338 

cameras and creating larger camera arrays.  339 

 340 
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Applications to management of invasive and sensitive species 341 

By removing some of the major burdens associated with the use of camera traps, our approach 342 

can be utilized by ecologists and wildlife managers to conduct more extensive camera trapping 343 

surveys than were previously possible. One potential use is in monitoring the distribution of 344 

sensitive or invasive species. For example, the distribution of invasive wild pigs in North 345 

America is commonly monitored using camera traps. Humans introduce this species into new 346 

locations that are often geographically distant from their existing range (Tabak et al., 2017), 347 

which can quickly lead to newly-established populations. Camera traps could be placed in areas 348 

at risk for introduction and provide constant surveillance. An automated image classification 349 

model that simply ‘looks’ for pigs in images could monitor camera trap images and alert 350 

managers when images with pigs are found, facilitating removal of animals before populations 351 

establish. Additionally, after wild pigs have been eradicated from a region, camera traps could be 352 

used to monitor the area to verify eradication success and automatically detect re-colonization or 353 

reintroduction events. Similar approaches can be used in other study systems to more rapidly 354 

detect novel invasive species arrivals, track the effects of management interventions, monitor 355 

species of conservation concern, or monitor sensitive species following reintroduction efforts.  356 

 357 

Limitations 358 

Using out-of-sample model validation on a dataset from Canada revealed a lower accuracy 359 

(82%) than at study sites from which our model was trained. Additionally, when we did not 360 

include images of species/site combinations in training the model, due to low sample sizes, the 361 

model performed poorly (Appendices S3 - S7; but these images were often difficult to classify 362 
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even by wildlife experts, Appendix S8). One potential explanation is the model evaluated both 363 

the animal and the environment in the image and these are confounded in the species 364 

identification (Norouzzadeh et al., 2018). Therefore, the model may have lower accuracies in 365 

environments that were not in the training dataset. Ideally, the training dataset would include 366 

training images representing the range of environments in which a species exists. Our model 367 

includes training images from diverse ecosystems, making it relevant for classifying images from 368 

many locations in North America. A further limitation is in our reported overall accuracy, which 369 

is reported across all of the images that were available for testing, and we had considerable 370 

imbalance in the number of images per species (Table 1). We provide accuracies for each 371 

species, so the reader can more directly inspect model accuracy. Finally, our model was trained 372 

using images that were classified by human observers, which are capable of making errors 373 

(O’Connell et al., 2011; Meek, Vernes, & Falzon, 2013), meaning some of the images in our 374 

training dataset were likely misclassified. Supervised machine learning algorithms require such 375 

training examples, and therefore we are unaware of a method for training such models without 376 

the potential for human classification error. Instead, we must acknowledge that these models will 377 

make mistakes due to imperfections in both human observation and model accuracy.  378 

 379 

Future directions 380 

As this new technology becomes more widely available, ecologists will need to decide how it 381 

will be applied in ecological analyses. For example, when using machine learning model output 382 

to design occupancy and abundance models, we can incorporate accuracy estimates that were 383 

generated when conducting model testing. The error of a machine learning model in identifying a 384 

species is similar to the problem of imperfect detection of wildlife when conducting field 385 
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surveys. Wildlife are often not detected when they are present (false negatives) and occasionally 386 

detected when they are absent (false positives); ecologists have developed models to effectively 387 

estimate occupancy when data have these types of errors (Royle & Link, 2006; Guillera-Arroita 388 

et al., 2017). We can use Bayesian occupancy and abundance models where the central 389 

tendencies of the prior distributions for the false negative and false positive error rates are 390 

derived from testing the machine learning model (e.g., values in Table 1). While we would 391 

expect false positive rates in occupancy models to resemble the false positive error rates for the 392 

machine learning model, false negative error rates would be a function of the both the machine 393 

learning model and the propensity for some species to avoid detection by cameras when they are 394 

present (Tobler et al., 2015).  395 

Another area in need of development is how to group taxa when few images are available for the 396 

species. We grouped species when few images were available for model training using an 397 

arbitrary cut off of approximately 2,000 images per group (Table 1). We had few images of 398 

horses (Equus spp.), but the model identified these images relatively well (93% accuracy), 399 

presumably because they are phenotypically different from other species in our dataset. We also 400 

had few images of opossums (Didelphis virginiana), but we did not group this species because it 401 

is phenotypically different from other species in our dataset and was of ecological interest in our 402 

studies; we achieved lower accuracy for this species (78%). We also included a group for rodents 403 

from species for which we only had few images (Erethizon dorsatum, Marmota flaviventris, 404 

Genomys spp., Mus spp., Neotoma spp., Peromyscus spp., Tamais spp., and Rattus spp.). The 405 

model achieved relatively low accuracy for this group (79%), presumably because there were 406 

few images for training (3,279) and members of this group are phenotypically different, making 407 

it difficult for the model to train on this group. When researchers develop new machine learning 408 
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models, they will need to consider the available data, the species or groups in their study, and the 409 

ecological question that the model will help address.  410 

Here, we mainly focused on the species or class that the model predicted with the highest 411 

confidence (the top guess), but in many cases researchers may want to incorporate information 412 

from the model’s confidence in the guess and additional model guesses. For example, if we are 413 

interested in the highest overall accuracy, we could only consider images where the confidence 414 

in the top guess is > 95%. If we subset the results from our model test in this manner, we remove 415 

10% of the images, but total accuracy increases to 99.6%. However, if the objective of a project 416 

is to identify rare species, researchers may want to focus on all images in which the model 417 

predicts that species to be in the top 5 guesses (the 5 species or groups that the model predicts to 418 

have the highest confidence). In our model test, the correct species was in the top 5 guesses in 419 

99.9% of the images, indicating that this strategy may be viable.  420 

We expect the performance of machine learning models to improve in the future (Jordan & 421 

Mitchell, 2015), allowing ecologists to further exploit this technology. Our model required 422 

manual identification of many images to obtain high levels of accuracy (Table 1). Our model was 423 

also limited in that we were only able to classify the presence or absence of species; we were not 424 

able to determine the number of individuals, their behavior, or demographics. Similar machine 425 

learning models are capable of including the number of animals and their behavior in 426 

classifications (Norouzzadeh et al., 2018), but we could not include these factors because they 427 

were rarely recorded manually in our dataset. As machine learning techniques improve, we 428 

expect models will require fewer manually classified images to achieve high accuracy in 429 

identifying species, counting individuals, and specifying demographic information. Furthermore, 430 

as scientists begin projects intending to use machine learning to classify images, they may be 431 
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more willing to spend time extracting detailed information from fewer images instead of 432 

obtaining less information from all images. This development would create a larger dataset of 433 

information from images that can be used to train models. As machine learning algorithms 434 

improve and ecologists begin considering this technology when they design studies, we think 435 

that many novel applications will arise.  436 

As camera trap use is a common approach to studying wildlife worldwide, there are likely now 437 

large datasets of classified images. If scientists work together and share these datasets, we can 438 

create large image libraries that span continents (Steenweg et al., 2017); we may eventually be 439 

able to train a machine learning model that can identify many global species and be used by 440 

researchers globally. Further, effectively sharing images and classifications can potentially be 441 

integrated with a web-based platform, similar to that employed by Camera Base 442 

(http://www.atrium-biodiversity.org/tools/camerabase) or eMammal (https://emammal.si.edu/).  443 
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Tables and Figures 

Table 1: Accuracy of the Species Level model  

Species or 

group name Scientific name 

Number 

of 

training 

images 

Number 

of test 

images Accuracy 

Top 5 

accuracy 

False 

positive 

rate 

False 

negative 

rate 

Moose Alces alces 8,967 997 0.98 1.00 0.02 0.02 

Cattle Bos taurus 1,817,109 201,903 0.99 1.00 0.01 0.01 

Quail Callipepla californica 2,039 236 0.90 0.96 0.11 0.10 

Canidae Canidae 20,851 2,321 0.89 0.99 0.08 0.11 

Elk Cervus canadensis 185,390 20,606 0.98 1.00 0.01 0.02 

Mustelidae Mustelidae 1,991 223 0.76 0.98 0.12 0.24 

Corvid Corvidae 4,037 452 0.79 1.00 0.15 0.21 

Armadillo Dasypus novemcinctus 8,926 993 0.87 0.99 0.08 0.13 

Turkey Meleagris gallopavo 3,919 447 0.88 1.00 0.12 0.12 

Opossum Didelphis virginiana 1,804 210 0.78 0.96 0.15 0.22 
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Horse Equus spp.  2,517 281 0.93 0.99 0.05 0.07 

Human Homo sapiens 88,667 9,854 0.96 1.00 0.03 0.04 

Rabbits Leporidae 17,768 1,977 0.96 1.00 0.06 0.04 

Bobcat Lynx rufus 22,889 2,554 0.90 0.99 0.05 0.10 

Striped skunk Mephitis mephitis 10,331 1,154 0.95 0.99 0.03 0.05 

Unidentified 

deer Odocoileus spp.  86,502 9,613 0.96 1.00 0.02 0.04 

Rodent Rodentia 3,279 366 0.79 0.98 0.17 0.21 

Mule deer Odocoileus hemionus 76,878 8,543 0.98 1.00 0.03 0.02 

White-tailed 

deer Odocoileus virginianus 12,238 1,360 0.81 1.00 0.22 0.19 

Raccoon Procyon lotor 42,948 4,781 0.88 1.00 0.10 0.12 

Mountain lion Puma concolor 13,272 1,484 0.93 0.98 0.03 0.07 

Squirrel Sciurus spp. 59,072 6,566 0.96 1.00 0.05 0.04 

Wild pig Sus scrofa 287,017 31,893 0.97 1.00 0.02 0.03 
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Fox 

Vulpes vulpes and Urocyon 

Cinereoargentus 10,749 1,204 0.91 0.99 0.07 0.09 

Black Bear Ursus americanus 79,628 8,850 0.94 1.00 0.02 0.06 

Vehicle 

 

23,413 2,602 0.93 1.00 0.04 0.07 

Bird Aves 61,063 6,787 0.94 1.00 0.05 0.06 

Empty 

 

414,119 46,016 0.96 1.00 0.06 0.04 

Total   3,367,383 374,273 0.98 1.00     
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Table 2: Accuracy (across all images for all species) of the three deep learning tasks analyzed 

Model Accuracy (%) 

Pig/no pig 98.6 

Species Level 97.5 

Group Level 97.8 
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Figure 1: Within an artificial neural network, inputs (I) are multiplied by their weights (w), 

summed, and then evaluated by a non-linear function, which also accounts for bias (𝐼𝑏). The 

output (θ) can be passed as input into other neurons or serve as network outputs. 

Backpropagation involves adjusting the weights so that a model can provide the desired output. 
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Fig. 2: Histograms represent the confidence assigned by all of the top five guesses by the 

Species Level model for each of these three example species when it was present in an image. 

The dashed line represents 95% confidence; the majority of model-assigned confidences were 

greater than this value. 
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Fig. 3: Machine learning model accuracy increased with the size of the training dataset. Points 

represent each species or group of species. The line represents the result of generalized additive 

models relating the two variables.  
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Supporting Information 

Appendix S1. Site descriptions for each of the study locations 

Appendix S2. Accuracy of the Group Level for each species 

Appendix S3. Accuracy of the Species Level model at the Tejon research site in California.  

Appendix S4. Accuracy of the Species Level model in Colorado 

Appendix S5. Accuracy of the Species Level model at Buck Island Ranch in Florida 

Appendix S6. Accuracy of the Species Level model at the Camp Bullis Military Training Center 

in Texas 

Appendix S7. Accuracy of the Species Level model at the Savannah River Ecology Laboratory 

in South Carolina 

Appendix S8. Image classified as a striped skunk by humans, but cattle by the Species Level 

model 
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