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Abstract 

From nests to nets intricate wiring diagrams surround the birth and the death of life. Here we 

show that the same rule of complex network self-organization is valid across different physical 

scales and allows to predict protein interactions, food web trophic relations and world trade 

network transitions. This rule, which we named CH2-L3, is a network automaton that is based 

on paths of length-three and that maximizes internal links in local communities and minimizes 

external ones, according to a mechanistic model essentially driven by topological 

neighbourhood information.  
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Introduction 

Recently, a pioneering study of Kovács et al. [1] empirically disclosed a link prediction principle 

based on paths of length three (L3) for network-based prediction of protein interactions [1] 

that astonishingly overcomes any rival method based on paths of length two (L2). The L3 

principle was motivated by both 3D-structural and evolutionary arguments associated with 

protein interactions, and the associated mechanistic model (mathematical formula) 

introduced by Kovács et al. [1] for modelling the L3 principle in unweighted and undirected 

networks is: 

𝐿3(𝑢, 𝑣) = ∑
1

√𝑑𝑠 ∗ 𝑑𝑡𝑠,𝑡 ∈ 𝐿3

 

where: u and v are the two seed nodes of the candidate interaction; s and t are the two 

intermediate nodes on the considered path of length three; 𝑑𝑠 and 𝑑𝑡 are the respective node 

degrees; and the summation is executed over all the paths of length three. Kovács et al. 

motivate the penalization for the degree of s and t as follows [1]: << We expect that node 

pairs connected by the highest number of L3 paths are most likely to be directly connected. 

However, high degree nodes (hubs) might induce multiple, unspecific shortcuts in the 

network, biasing the results. To cancel potential degree biases caused by intermediate hubs 

in the paths, we assign a degree-normalized L3 score to each node pair, u and v >>. 

However, although this new graceful link prediction strategy was introduced according to 

biologically sound rationales and was convincingly supported by empirical evidence, its 

mathematical definition as a mechanistic model was empirically introduced more as a matter 

of intuition than as derivation from current theoretical knowledge, and it actually misses any 

connection to already known link prediction generalized principles. De facto, this represents 

a significant conceptual limitation because it obstacles the theoretical understanding of the 

universal mechanisms and modelling formalisms that are behind link prediction. The 

importance of the L3 model discovery remains valid, but the lack of understanding has a clear 

negative impact on both the definition of a comprehensive theory of link prediction and the 

improvement/extension of L3 modelling to any type of complex network. 
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Results 

 

Principles and modelling 

 

Resource allocation on paths of length n 

The first objective of this study is to understand the generalized mechanistic principle of 

complex network self-organization behind the mathematical formula introduced by Kovács et 

al. [1] for modelling the L3 principle in unweighted and undirected networks. And, what is the 

first important discovery? 

The first important finding of this study is surprisingly banal: the generalized principle behind 

the L3 formula proposed by Kovács et al. [1] is already well known in network science, in 

particular in link prediction, and lies in only two words: resource allocation (RA) [2]. In order 

to prove it we need few and simple mathematical steps. The basic formula of the RA model 

on a path of length two (which from here forward we will call RA-L2) is: 

𝑅𝐴_𝐿2(𝑢, 𝑣) = ∑
1

𝑑𝑧
𝑧 ∈ 𝐿2

 

where: u and v are the two seed nodes of the candidate interaction; 𝑧 is the intermediate 

node on the considered path of length two; 𝑑𝑧 is the respective node degree; and the 

summation is executed over all the paths of length two. 

In order to generalize to paths of length n > 2, we need an operator that merges the single 

contributes of each weighted (in this case degree-penalized) common neighbour on the path 

of length n. If, without lack of generality, we use as merging operator the geometrical mean 

(which is a choice for designing a robust estimator, since if only one common neighbour on 

the path has a low weight, then the whole path is penalized), we derive the following 

generalized formula for paths of length n: 

𝑅𝐴_𝐿𝑛(𝑢, 𝑣) = ∑
1

(𝑑1 ∗ … ∗ 𝑑𝑛−1)
1

𝑛−1𝑧1…𝑧𝑛−1 ∈ 𝐿𝑛

 

where: u and v are the two seed nodes of the candidate interaction; 𝑧1 … 𝑧𝑛−1 are the 

intermediate nodes on the considered path of length n; 𝑑𝑧1
… 𝑑𝑧𝑛−1

 are the respective node 

degrees; and the summation is executed over all the paths of length n. 
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For paths of length n = 3, the general formula given above becomes clearly equal to L3, which 

indeed extends the resource allocation principle on paths of length three, therefore from here 

forward we will call L3 with the new name of RA-L3. 

 

Local-community-paradigm and Cannistraci-Hebb automata on paths of length n 

The second objective of this study is to extend to paths of length n also the local community 

paradigm (LCP) theory and the associated network automata model for link prediction that at 

the moment are defined only on L2. The motivation to generalize LCP methods to L3 is that 

empirical evidences provided by several studies [3]–[9] in link prediction, and confirmed also 

by Kovács et al. [1], show that Cannistraci resource allocation (CRA) – which is putatively the 

local community extension of RA-L2 – outperforms both RA-L2 and the large majority of other 

neighbourhood-based mechanistic and parameter-free L2-models. Hence, the question is 

whether also CRA-L3 would outperform RA-L3. To make so, we need before to review and 

extend the LCP theory to paths of length n and then we need to define the mathematical 

formula of the new CRA-L3 model that arises according to this generalization. In order to 

implement this plan, at first we need to recall the basic rationale behind the LCP theory. 

In 1949, Donald Olding Hebb advanced a local learning rule in neuronal networks that can be 

summarized in the following: neurons that fire together wire together [10]. In practice, the 

Hebbian learning theory assumes that different engrams (memory traces) are memorised by 

the differing neurons’ cohorts that are co-activated within a given network. Yet, the concept 

of wiring together was not further specified, and could be interpreted in two different ways. 

The first interpretation is that the connectivity already present, between neurons that fire 

together, is reinforced; whereas the second interpretation is the emergence and formation 

of new connectivity between non-interacting neurons already embedded in an interacting 

cohort. In 2013 Cannistraci et al. [3] noticed that, considering only the network topology, the 

second interpretation of the Hebbian learning could be formalized as a mere problem of 

topological link prediction in complex networks. The rationale is the following. The network 

topology plays a crucial role in isolating cohorts of neurons in functional communities that 

naturally and preferentially can perform local processing, by virtue of this predetermined 

local-community topological organization. In practice, the local-community organization of 

the network topology creates a physical and structural ‘energy barrier’ that allows the 

neurons to preferentially fire together within a certain community and therefore to add links 
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inside that community, implementing a type of local topological learning. In few words: the 

local-community organization influences (by increasing) the likelihood that a cohort of 

neurons fires together because they are confined in the same local community, consequently 

also the likelihood that they will create new connections inside the community is increased 

by the mere structure of the network topology. Inspired by this intuition, Cannistraci et al. [3] 

called this local topological learning theory epitopological learning, which stems from the 

second interpretation of the Hebbian leaning. The definition was not clearly given in the first 

article [3] that was quite immature, and therefore we now provide an elucidation of the 

concepts behind this theory by offering new definitions. Epitopological learning occurs when 

cohorts of neurons tend to be preferentially co-activated, because they are topologically 

restricted in a local community, and therefore they tend to facilitate learning by forming new 

connections instead of merely retuning the weights of existing connections in the local 

community. As a key intuition, Cannistraci et al. [3] postulated also that the identification of 

this form of learning in neuronal networks was only a special case, hence the epitopological 

learning and the associated local-community-paradigm (LCP) were proposed as local rules of 

learning, organization and link-growth valid in general for topological link prediction in any 

complex network with LCP architecture [3]. On the basis of these ideas, they proposed a new 

class of link predictors that demonstrated - also in following studies of other authors - to 

outperform many state of the art local-based link predictors [3]–[9], [11] both in brain 

connectomes and in other types of complex networks (such as social, biological, economical, 

etc.). In addition, they proposed that the local-community-paradigm is a necessary paradigm 

of network organization to trigger epitopological learning in any type of complex network. In 

conclusion, the LCP originated from the initial idea to explain how the network topology 

indirectly influences the process of learning a memory by adding new connections in a 

network of neurons, and consequently it was generalized to advocate mechanistic modelling 

of topological growth and self-organization in real monopartite [3] and bipartite [12] complex 

networks, with a significant impact also on prediction of drug-target interactions exploiting 

exclusively bipartite network topology [13]. A recent study of Narula et al. [14] shows that 

local-community-paradigm and epitopological learning can enhance our understanding of 

how local brain connectivity is able to process, learn and memorize chronic pain [14]. And 

how can this be exploited also in the domain of prediction of protein interactions? 
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Protein interactomes display a clear LCP architecture [3], where protein complexes are 

confined in local and topologically isolated network structures, which are often coincident 

with functional network modules that play a crucial role in molecular circuits. The key 

generalized idea behind the LCP network architecture is that, for instance, a local community 

of neurons or proteins should take functional advantage of being confined in a local assembly 

of operational units. Each local assembly - if it is properly activated by an external signal 

coming from another region of the network - performs a functional operation by means of a 

structural remodelling of the internal connectivity (named iLCL in Fig. 1) between the 

operational units that are embedded in the network local community. The systems supported 

by LCP network architecture are very dynamic and react to a stimulus with a local plastic 

remodelling. In case of operational units such as neurons, the local community remodelling 

can implement for instance a learning process. Instead, In case of operational units such as 

proteins, the local community remodelling is necessary to implement for instance a biological 

process, which emerges by the molecular-complex rearrangement in the 3D space. 

The previous conceptual and mathematical formalizations of the LCP-theory were immature 

and put more emphasis on the fact that the information content related with the common 

neighbour nodes should be complemented with the topological information emerging from 

the interactions between them (the iLCL in Fig. 1). However, here we would like to remark 

that the local isolation of the operational units in the different local communities is equally 

important to carve the LCP architecture in the network, and this is guaranteed by the fact that 

the common neighbours minimize their interactions external to the local community (the 

eLCL in Fig. 1). This minimization forms a sort of topological energy barrier, which in turn 

confines the signal processing to remain internally to the local community. Hereafter, we will 

revise the LCP idea and its mathematical formalization in order to explicitly take into account 

also the minimization of the external links (the eLCL in Fig. 1). However, in this article we will 

discuss the implications of this theoretical revision not only on modelling of protein 

interactomes, but also on other types of networks. 

Recently, Muscoloni et al. [15] discussed how local parameter-free mechanistic models to 

predict link-growth in complex networks (such as the common neighbours and LCP-based 

indices discussed in the previous section) can be interpreted as network automata that 

compute the likelihood to close ‘local rings’ in the network whenever a link is missing in the 

topology (see Suppl. Fig. 1 for visual clarification). The local ring is the closure of a ‘local 
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tunnel’ obtained by adding to the topology the missing link for which the likelihood to appear 

is computed. The local tunnel is the ensemble of all the local paths (which can be the smallest 

shortest-paths definable on a given network topology or the paths of a fixed arbitrary length) 

that connect two nonadjacent nodes (extremities of the tunnel), and the common neighbours 

are all the nodes embedded in the tunnel structure, therefore they represent an estimation 

of the size of the tunnel (see Fig. 1 for an example). The study of Muscoloni et al. [15] discusses 

also that the Cannistraci-resource-allocation (CRA) is a local-ring network automaton model 

that seems strongly related and able to predict the growth of network topology which is 

associated to hyperbolic geometry. 

For the CRA network automaton model the likelihood of a new link to appear is function not 

only of the number of common neighbours, but also function of the iLCLs and eLCLs (Fig. 1). 

Therefore, the mathematical formula of CRA in L2 is: 

𝐶𝐻1_𝐿2(𝑢, 𝑣) = ∑
𝑑𝑖𝑧

𝑑𝑧
𝑧 ∈ 𝐿2

 

where: u and v are the two seed nodes of the candidate interaction; 𝑧 is the intermediate 

node on the considered path of length two; 𝑑𝑧 is the respective node degree; 𝑑𝑖𝑧 is the 

respective internal node degree (number of iLCL); and the summation is executed over all the 

paths of length two. 

However, looking at this formula, it is evident that the principle behind CRA is not a resource 

allocation penalization at all. On the contrary, the model is based on the common neighbours’ 

rewards of the internal links (iLCL) balanced by the penalization of the external links only. 

Hence, the current name is misleading. Since this model is a generalization and 

reinterpretation of a Hebbian learning local-rule to create new topology in networks, we 

decide to rename CRA as L2-based Cannistraci-Hebb network automaton model number one 

(CH1-L2), rather than Cannistraci-Resource-Allocation (CRA), as it was named in the previous 

articles [3]–[9], [11]–[13]. Yet, we have to admit that the formula of CH1-L2 is conceptually 

and mathematically awkward. If we want to design a model that is based on the minimization 

of the eLCL and the maximization of the iLCL, why not to write it directly and explicitly? This 

is what we propose to realize with the definition of a new model that we name CH2-L2 and 

that theoretically should be a straightforward mathematical formalization to express the 

principle or rule of topological self-organization behind the Cannistraci-Hebb network 

automaton modelling. The formula of CH2-L2 is: 
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𝐶𝐻2_𝐿2 = ∑ (
𝑑𝑖𝑧

∗

𝑑𝑒𝑧
∗

=
1 + 𝑑𝑖𝑧

1 + 𝑑𝑒𝑧
)

𝑧 ∈ 𝐿2

 

where: u and v are the two seed nodes of the candidate interaction; 𝑧 is the intermediate 

node on the considered path of length two; 𝑑𝑖𝑧 is the respective internal node degree 

(number of iLCL); 𝑑𝑒𝑧 is the respective external node degree (number of eLCL); and the 

summation is executed over all the paths of length two. Note that a unitary term is added to 

the numerator and denominator to avoid the saturation of the value in case of iLCL or eLCL 

equal to zero. 

Suppl. Fig. 1 suggests a geometrical interpretation about how the CH network automata 

models work in a monopartite topology. The local-tunnel (which is formed in a hidden high-

dimensional geometrical space that here we project in the hyperbolic disk for simplifying the 

visualization, provides a route of connectivity between the two nonadjacent nodes. Although 

in the hyperbolic disk visualization the local-tunnel has a shape that resembles the hyperbolic 

distances (curved toward the centre), we clarify that the proposed term ‘tunnel’ is only an 

idealized definition; in fact the shape of this bridging structure could also geometrically look 

as a chamber or basin, but this does not change the meaning of the definition. The higher the 

number of common neighbours, the higher the size of the local-tunnel. For each common 

neighbour, the higher the number of iLCLs in comparison to the eLCLs, the more the shape of 

the local-tunnel is well-defined and therefore its existence confirmed. Therefore, in link 

prediction, CH models estimate a likelihood that is proportional both to the size of the local-

tunnel and to the extent to which the local-tunnel exists. On the other hand, the common 

neighbour network automaton model only estimates a likelihood proportional to the size of 

the local-tunnel, which is a significant limitation. Furthermore, the local-community 

represents the central chunk of the local-tunnel exclusively formed by CNs and iLCLs. The 

local-community represents a bridging structure which is fundamental to transfer the 

information between the two seed nodes.  

In order to formulate CH1 and CH2 in paths of length n, we need to define what is the local-

community in paths of length n. To this aim, it is easier to provide an example for paths of 

length three as represented in the Fig. 1. The common neighbours are all the intermediate 

nodes touched by any path of length three that connect the two seed nodes u and v. The iLCL 

are the links between common neighbours that are attached to different seed nodes, 

to guarantee a direct flux of information that forms a local-tunnel between the seed 
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nodes (Fig 1). On the contrary, an example of links that should not be considered as iLCL 

although they connect common neighbours are provided in Suppl. Fig. 2. These links are not 

iLCL because they do not participate directly to deliver flux of information from one seed node 

to the other one, in fact they create a bridge between two nodes that are exclusively 

neighbours of the same seed node. The local-community is the structure that is posed at the 

centre of the tunnel formed by the L3 paths and it is composed of the common neighbours 

and the iLCL. Hence, the mathematical formulae for the CH1 and the CH2 models for paths of 

length n are: 

𝐶𝐻1_𝐿𝑛(𝑢, 𝑣) = ∑
(𝑑𝑖1 ∗ … ∗ 𝑑𝑖𝑛−1)

1
𝑛−1

(𝑑1 ∗ … ∗ 𝑑𝑛−1)
1

𝑛−1𝑧1…𝑧𝑛−1 ∈ 𝐿𝑛

 

𝐶𝐻2_𝐿𝑛(𝑢, 𝑣) = ∑
(𝑑𝑖𝑧1

∗ ∗ … ∗ 𝑑𝑖𝑧𝑛−1
∗ )

1
𝑛−1

(𝑑𝑒𝑧1
∗ ∗ … ∗ 𝑑𝑒𝑧𝑛−1

∗ )
1

𝑛−1𝑧1…𝑧𝑛−1 ∈ 𝐿𝑛

 

where: u and v are the two seed nodes of the candidate interaction; 𝑧1 … 𝑧𝑛−1 are the 

intermediate nodes on the considered path of length n; 𝑑𝑧1
… 𝑑𝑧𝑛−1

 are the respective node 

degrees; 𝑑𝑖𝑧1
… 𝑑𝑖𝑧𝑛−1

 are the respective internal node degrees (number of iLCL); 

𝑑𝑒𝑧1
… 𝑑𝑒𝑧𝑛−1

 are the respective external node degrees (number of eLCL); terms with an 

asterisk as superscript indicate that a unitary value is added (𝑑𝑖𝑧1
∗ = 1 + 𝑑𝑖𝑧1

 and 𝑑𝑒𝑧1
∗ =

1 + 𝑑𝑒𝑧1
); and the summation is executed over all the paths of length n. 

The respective formulae of CH1-L3 and CH2-L3 are provided in Fig. 1. 

At the end of this paragraph we want to stress that till now we never spoke about the triadic 

closure principle because we believe that common neighbours are not associated to any 

triadic closure and that this is in our opinion a misleading principle. In our opinion, a correct 

principle to define common neighbours is in relation to the definition of local paths of length 

n. The common neighbours are in general, according to our proposed definition, all the 

intermediate nodes touched by any path of length n between two nodes in the network. In 

case of paths of length 2 this is specifically coincident with triadic closure, but in case of paths 

of length n we can generally define the operation of ‘local ring’ closure. 
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Experimental evidences 

 

Protein-protein interaction networks 

Our initial experiments are based on 10% random removal and re-prediction of the original 

protein network topology, because as we show in Suppl. Fig. 3-5 the removal of 50% of the 

original links brings to a significant aberration of the network features. 

The first important finding of this study is that the CH2-L3 model performs significantly better 

than RA-L3 (Fig. 2), and similarly CH2-L2 performs better than RA-L2 (Suppl. Fig. 6) when we 

consider link prediction of protein interactions. This implies that in general (regardless of L3 

or L2 implementation of the model) the CH reward/penalization strategy is a principle of self-

organization that works better than the RA penalization, which was the original principle 

behind the L3 model proposed by Kovács et al. [1]. In addition, CH2-L3 performs better than 

CH1-L3 (Suppl. Tables 2-3), and this result indicates that our intuition to design CH2-L3, which 

is a more straightforward mathematical formula for the CH principle, was well-posed. 

Astonishingly, the fact that in general L3 are better than L2 approaches is not confirmed by 

gene ontology (GO) evaluation (Suppl. Tables 4-9), where CH2-L2 and CH1-L2 seem the best 

methods for prediction of missing links evaluated by their relevance according to GO 

annotations. Unfortunately, network topology prediction evaluation and GO evaluation are 

in disagreement on what is the best strategy. This implies that further tests are required to 

investigate the reason of this disagreement. Kovács et al. [1] speculated that the legitimacy 

of using GO terms or functional annotations to evaluate the quality of the predicted physical 

interactions should be questioned. In order to face this contradictory finding, we considered 

the human (H. sapiens) protein network released by Menche et al. [16], which comprises 

13460 proteins and 138427 physical interactions experimentally documented in human cells, 

including protein-protein and regulatory interactions, metabolic pathway and kinase-

substrate interactions, representing one of the largest and completed blueprints of the 

human protein interactome [16]. But, also this further test provides contradictory results. On 

this valuable network, we actually find that the best method for prediction of protein 

interactions according to 10% random removal and re-prediction is CH2-L2, which 

significantly outperforms all the other methods, whereas according to the GO evaluation the 

best method is CH2-L3 (Suppl. Fig. 7). This result is crucial. It might suggest that either the 

network of Menche et al. [16] has some issues in the way it was assembled or the other 
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networks are incomplete and noised. A careful analysis reveals that the average degree and 

average clustering of c network are respectively 20.6 and 0.17, which are significantly higher 

than the respective values for all the other networks that are on average 6.3 and 0.07. The 

natural follow up is to build synthetic networks on which we could change the average degree, 

average clustering and replicate the contradictory results obtained on real networks. 

Therefore, we performed also link prediction on synthetic networks generated with the 

nonuniform popularity-similarity-optimization model (nPSO) [17], [18], which is a recently 

introduced random geometrical graph generative model that allows to build networks in the 

hyperbolic space with clustering, small-worldness, scale-freeness, rich-clubness and a tailored 

community structure. We fixed the size to 1000 nodes and the exponent of the power-law 

degree distribution to 3. We tuned the average degree, the average clustering and community 

number. The important discovery of evaluating the 10% removal and re-prediction on 

synthetic networks is that L2 methods (with CH2-L2 confirming to be the best) perform better 

in general for high average clustering values regardless of variations on the other parameters. 

This makes sense because high clustering means more triangles (higher tendency to L2 

behaviour) between nodes that are close in the geometrical space. Whereas L3 methods (with 

CH2-L3 that confirms to be the best) are better for networks that present simultaneously low 

average degree and very low average clustering, which indicates that the hyperbolic geometry 

is heavily compromised by randomness due to high temperature of the Fermi-Dirac 

connectivity probability distribution in the nPSO model (Fig. 3, left panels). This result might 

indicate that when networks with a hidden hyperbolic geometry and low average degree are 

noised by a consistent amount of random interactions (which represent false positives and 

cause a significant reduction of the average clustering), then L3 methods outperform L2 ones, 

which unfortunately is the exact scenario we observed for the majority of protein 

interactomes considered in this study. On the other hand, in networks with high average 

degree (around 28) and low clustering coefficient (around 0.17), it is clear from the plots in 

Fig. 3 (right panels) that L2 methods are better than L3, and this result is in accordance with 

what we found on the network of Menche et al. [16]. Hence, with these experiments on 

synthetic networks we could reproduce and justify the results obtained (by 10% removal and 

re-prediction evaluation) for both the Menche et al. [16] and the other protein interactomes. 

The open issue, which we leave for investigation in future studies, is to understand why GO-

evaluation offers a result that is conceptually opposite to the one obtained by 10% removal 
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and re-prediction evaluation. In particular, why on protein interactomes with low average 

degree, GO-evaluation points out CH2-L2 as the best method for prediction of new 

interactions and on the contrary on the Menche et al. [16] network, which has a significantly 

higher average degree than the previous ones, GO-evaluation suggests that CH2-L3 is the best 

method? Altogether, we can conclude that L3 methods seem to provide a promising principle 

to overcome the conceptual limitations of L2 ones on protein interactomes. In the majority 

of the cases we confirm the impressive performance of L3 methods reported by Kovács et al. 

[1] for topological prediction of protein interactions in tests based on 10% random removal 

and re-prediction of links. However, we also support with experimental evidences an 

important new finding that is the improvement provided by Cannistraci-Hebb network 

automata modelling (in particular the model CH2-L3), that significantly outperforms the 

previous RA-L3 modelling provided by Kovács et al. [1]. 

 

Food webs 

The second important finding of this study is that food webs seem a network class on which 

the result provided by L3 methods is indisputably the best (Suppl. Table 10), with CH2-L3 that 

again significantly outperforms RA-L3 also on the 10% removal and re-prediction evaluations 

performed on this networks (Fig. 4). The motivation for this new finding in respect to the 

study of Kovács et al. [1] that was restricted to protein interactomes is provided hereafter. In 

food webs two species that are at the same trophic level have a low likelihood to be predator 

of each other, regardless of the fact that they share many predators and/or preys. This means 

that the common neighbours, and therefore a principle based on L2 trophic pattern, is not 

the prevalent one on food webs. Instead, two species that are at different trophic levels are 

more likely to interact, in particular when the trophic levels are adjacent. Since L3 paths tend 

to have the seed nodes in different trophic levels (Suppl. Fig. 9), a principle based on L3 trophic 

pattern is much more valid for food webs. For further details on this subject please refer to 

the detailed explanation provided in Suppl. Information. 

 

Trade networks 

The third important finding of this study is that also world international trade networks - for 

which it is known that the common neighbours principle is not effective [19] - follow a 

principle of self-organization according to which L3 is offering better link prediction 
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performance than L2 (Fig. 5 and Suppl. Table 12). Since these networks are quite dense, link 

prediction is generally higher for all the methods, however also in the world trade networks 

CH2-L3 significantly outperforms RA-L3. 

 

Mixed real networks 

The fourth important result is that considering a plethora of mixed real networks of different 

nature (25 in total) the L2 principle seems the most common in comparison to L3, in fact L2 

methods and in particular CH2-L2 is outperforming all the other methods in this wide 

evaluation analysis of mixed real networks.  

 

Discussion 

We confirm that L3 methods seem to provide a significant improvement in respect to L2 

methods for prediction of protein interactions, however network topology prediction 

evaluation and GO performance evaluation are in disagreement about which is the best 

principle between L2 and L3. This implies that further studies should investigate the reason 

of this disagreement. On the contrary, food webs are a class of networks on which it seems 

clear that L3 is a key rule of self-organization to reproduce the network topology. The same 

can be also confirmed for world trade networks, here the improvement is still significant but 

of smaller entity than on food webs, because these kinds of networks are very dense, 

therefore all the link predictors offer by default a good link prediction performance. 

Furthermore, according to our experimental evidences, the most important finding is that the 

local community paradigm theory and the derived Cannistraci-Hebb network automata 

provide a significant modelling and performance improvement on resource allocation 

network automata both in L2 and L3, when applied to diverse types of complex networks such 

as the ones investigated in this article. 

 

Methods 

The link prediction evaluation based on 10% removal and re-prediction of the original 

network links is explained in the figure legend of each computational experiment. Whereas, 

for the gene ontology evaluation we refer to these articles that contain the details about the 

procedure to follow [3], [20]. 
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Hardware and software 

MATLAB code has been used for all the simulations, carried out partly on a workstation under 

Windows 8.1 Pro with 512 GB of RAM and 2 Intel(R) Xenon(R) CPU E5-2687W v3 processors 

with 3.10 GHz, and partly in the ZIH-Cluster Taurus of the TU Dresden. 
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Figure 1. Cannistraci-Hebb epitopological rationale. 
The figure shows an explanatory example for the topological link prediction performed using the L2 or L3 
Cannistraci-Hebb epitopological rationale. The two black nodes represent the seed nodes whose non-observed 
interaction should be scored with a likelihood. The white nodes are the L2 or L3 common-neighbours (CNs) of 
the seed nodes, further neighbours are not shown for simplicity. The cohort of common-neighbours and the iLCL 
form the local-community. The different types of links are reported with different colours: non-LCL (green), 
external-LCL (red), internal-LCL (white). The set of L2 and L3 paths related to the given examples of local 
communities are shown. At the bottom, the mathematical description of the L2 and L3 methods considered in 
this study are reported. Notation: 𝑢, 𝑣 are the seed nodes; 𝑧 is the intermediate node in the L2 paths; 𝑠, 𝑡 are 
the intermediate nodes in the L3 paths. 
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Figure 2. Precision curve evaluation for PPI networks: L3-based methods. 
For each PPI network, 10% of links have been randomly removed (10 repetitions) and the algorithms have been 
executed in order to assign likelihood scores to the non-observed links in these reduced networks. In order to 
evaluate the performance, the links are ranked by likelihood scores and the precision is computed as the 
percentage of removed links among the top-r in the ranking, for each r from 1 up to 100 at steps of 1. The plots 
report for each network the precision curve (averaged over the 10 repetitions) for the L3-based link prediction 
methods RA-L3 and CH2-L3. For each network, a red or black arrow is reported on the top-right of the subplot 
in order to indicate respectively if the average area under precision curve (AUP) is higher or lower for CH2-L3 
with respect to RA-L3. A permutation test for the mean AUP has been computed, and an asterisk is reported 
next to the arrow in case of statistical difference (p-value ≤ 0.05). Error bars are not shown because negligible. 
The networks are ordered (top-down, left-right) by increasing p-value and, in case of tie, by decreasing absolute 
difference of mean AUP between the two methods. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 18, 2018. ; https://doi.org/10.1101/346916doi: bioRxiv preprint 

https://doi.org/10.1101/346916
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Figure 3. AUP evaluation for nPSO networks. 
Synthetic networks have been generated using the nPSO model with parameters N = 1000, m = [6, 10, 14], T = 
[0.1, 0.3, 0.5, 0.7, 0.9], γ = 3 and angular coordinates sampled according to a Gaussian mixture distribution with 
equal proportions and components C = [5, 10].  For each combination of parameters, 100 networks have been 
generated. For each network 10% of links have been randomly removed and the algorithms have been executed 
in order to assign likelihood scores to the non-observed links in these reduced networks. In order to evaluate 
the performance, the links are ranked by likelihood scores and the area under precision curve (AUP) is computed 
for the top-r removed links in the ranking, where r is the total number of links removed. The plots report for 
each parameter combination the mean AUP and standard error over the random repetitions. 
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Figure 4. Precision curve evaluation for food webs: L3-based methods. 
For each food web, 10% of links have been randomly removed (100 repetitions) and the algorithms have been 
executed in order to assign likelihood scores to the non-observed links in these reduced networks. In order to 
evaluate the performance, the links are ranked by likelihood scores and the precision is computed as the 
percentage of removed links among the top-r in the ranking, for each r from 1 up to the total number of links 
removed, at steps of 1. The plots report for each network the precision curve (averaged over the 100 repetitions) 
for the L3-based link prediction methods RA-L3 and CH2-L3. For a matter of space, only 15 selected networks 
are shown (the largest networks, avoiding redundancy of geographical location). For each network, a red or 
black arrow is reported on the top-right of the subplot in order to indicate respectively if the average area under 
precision curve (AUP) is higher or lower for CH2-L3 with respect to RA-L3. A permutation test for the mean AUP 
has been computed, and an asterisk is reported next to the arrow in case of statistical difference (p-value ≤ 0.05). 
Error bars are not shown because negligible. The networks are ordered (top-down, left-right) by increasing p-
value and, in case of tie, by decreasing absolute difference of mean AUP between the two methods. 
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Figure 5. Evaluation for world trade networks and summary evaluation for real networks. 
(A) For each world trade network, 10% of links have been randomly removed (100 repetitions) and the 
algorithms have been executed in order to assign likelihood scores to the non-observed links in these reduced 
networks. In order to evaluate the performance, the links are ranked by likelihood scores and the precision is 
computed as the percentage of removed links among the top-r in the ranking, for each r from 1 up to the total 
number of links removed, at steps of 1. The plots report for each network the precision curve (averaged over 
the 100 repetitions) for the L3-based link prediction methods RA-L3 and CH2-L3. For each network, a red or black 
arrow is reported on the top-right of the subplot in order to indicate respectively if the average area under 
precision curve (AUP) is higher or lower for CH2-L3 with respect to RA-L3. A permutation test for the mean AUP 
has been computed, and an asterisk is reported next to the arrow in case of statistical difference (p-value ≤ 0.05). 
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Error bars are not shown because negligible. The networks are ordered by increasing p-value and, in case of tie, 
by decreasing absolute difference of mean AUP between the two methods. (B) The same procedure described 
in (A) has been applied to the Gleditsch 2002 networks available for each year from 1948 to 2000. Note that the 
networks in (A) are related to the last year for which information is available. The plot reports for each year the 
AUP (averaged over the 100 repetitions) for the link prediction methods CH2-L3 and CH2-L2. The red arrow and 
the asterisk have the same meaning as in (A). (C) Each barplot reports the mean AUP and standard error 
computed over all the networks and repetitions. Note that for the PPI networks the repetitions are 10 (due to 
the higher computational time required) and the AUP is computed for the top-100 removed links, whereas for 
the other networks (food webs, world trade networks and mixed real networks) the repetitions are 100 and the 
AUP is computed for the top-r removed links in the ranking, where r is the total number of links removed. The 
percentage of improvement of each CH2-method with respect to the corresponding RA-method is reported. 
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