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ABSTRACT. Expansive growth is a process by which walled cells found in plants, algae and fungi, use turgor pressure to 

mediate irreversible wall deformation and regulate their shape and volume. The molecular structure of the primary cell 

wall must therefore be able to perform multiple function simultaneously such as providing structural support by a 

combining elastic and irreversible deformation and facilitate the deposition of new material during growth. This is 

accomplished by a network of microfibrils and tethers composed of complex polysaccharides and proteins that are able to 

dynamically mediate the network topology via constant detachment and reattachment events. Global biophysical models 

such as those of Lockhart and Ortega have provided crucial macroscopic understanding of the expansive growth process, 

but they lack the connection to molecular processes that trigger network rearrangements in the wall. In this context, we 

propose a statistical approach that describes the population behavior of tethers that have elastic properties and the ability 

to break and re-form in time. Tether properties such as bond lifetimes and stiffness, are then shown to govern global cell 

wall mechanics such as creep and stress relaxation. The model predictions are compared with experiments of stress 

relaxation and turgor pressure step-up from existing literature, for the growing cells of incised pea (Pisum sativus L.), algae 

Chara corallina and the sporangiophores of the fungus, Phycomyces blakesleeanus. The molecular parameters are 

estimated from fits to experimental measurements combined with the information on the dimensionless number Π𝑝𝑒 that 

is unique to each species. To our knowledge, this research is the first attempt to use a statistical approach to model the cell 

wall during expansive growth and we believe it will provide a better understanding of the cell wall dynamics at a molecular 

level. 

 

1 INTRODUCTION 

Algae, fungi, and plants have cell walls that act as an exoskeleton, providing shape, physical support, and protection from 

the external environment. Walled cells increase their volume and control their shape by a process called expansive growth. 

Expansive growth is central to development, morphogenesis, and sensory (growth and tropic) responses to environmental 

stimuli. During this process, the initial volume of the cell can increase by as much as 10,000 times. Interestingly, the cell 

wall (typically 0.1 – 1.0 m in thickness) must perform two seemingly incompatible functions: (i) provide structural support 

and protection by employing strong and tough composites of complex polysaccharides and proteins and (ii) provide the 

ability to undergo extremely large plastic and elastic deformation under stress without rupturing. Plants, algae and fungi 1,2 

all bring a similar solution to this dilemma; Water is first absorbed by osmosis through the plasma membrane to produce 

an internal turgor pressure (P) that stresses the wall. Biochemical reactions then alter the wall mechanical properties by 

breaking load-bearing bonds and causing a reduction in wall stress (stress relaxation). This further results in a drop in turgor 

pressure and a subsequently increases the water uptake that stretches the wall to increase the cell volume. Concurrently, 

new cell wall material is added to the inner wall to regulate its thickness. When water is not the limiting factor, the rate of 

expansive growth is thus directly related to the rate of wall stress relaxation 3.  

Lockhart 4 derived the first global biophysical model and equations for expansive growth of walled cells, quantifying both 

the relative rates of water uptake and the coupled wall plastic deformation. In this model, the wall is seen as a so-called 

Bingham plastic fluid that can only flow (and permanently deform) once the turgor pressure (P) exceeds a critical value (𝑃𝑐). 

Lockhart’s equations have been used in many subsequent experimental investigations 5–8 that study the relationship 

between expansive growth rate, turgor pressure, and mechanical properties of the cell wall. They have also been used in 

their local form as constitutive equations to model complex growth situations9, including sporangiophore development 10 

and “tip” growth morphogenesis 11. Though Lockhart’s equations for cell wall extension are attractive due to their 

simplicity, their applicability is limited because they do not consider elastic (reversible) wall deformations. Most 

importantly, Lockhart’s equation cannot describe the periodic stress and pressure relaxation that occur in cell walls 1-3,7,12–16  
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during expansive growth. In fact, elastic deformation is required to model wall stress relaxations 13,17 and the instantaneous 

changes in wall deformation after step changes in P 18,19. This issue was later addressed by the Ortega equations15,16 that 

describes the cell wall as a viscoelastic material 17 with a yield stress, commonly known as the Maxwell-Bingham 

viscoelastic model. In general, Ortega’s three equations (also known as the augmented growth equations) supplement 

Lockhart’s two equations with terms for transpiration and elastic deformation rates, and adds a third equation for the rate 

of change of the turgor pressure. Additionally, Ortega’s equations have been extended to include the pressure in the 

apoplasm (cell walls and xylem) of plant tissue and plant organs 18. Many experimental studies on plant cells in tissues, algal 

and fungal cells 3,7,13,19–21 have been successfully described and modeled with Ortega’s equations. Of particular interest is 

the fact that dimensional analysis of Ortega’s equations produces several dimensionless numbers, one of which describes 

the ratio of relative irreversible and reversible wall deformation rates, Πpe 22. This number is central in categorizing 

different cell species in terms of their wall stress relaxation, elastic deformation and expansive growth23,24. These 

biophysical models provide significant insight to understanding the mechanisms behind cell wall growth, but because they 

are macroscopically motivated, they do not provide information on the underlying molecular mechanisms. The growing 

(primary) wall is often envisioned as being composed of rod-like polysaccharide bundles of microfibrils, embedded in an 

amorphous network of polysaccharides and proteins. At the molecular level, the wall mechanical properties are regulated 

by facilitating the breaking of load-bearing bonds within the network, and making new bonds to incorporate new material 

into the wall that is released to the inner surface via exocytosis. Proteins such as expansin and enzymes 25,26 and changes in 

pH 27,28 have been shown to relax the wall stresses presumably by disrupting the load-bearing bonds. It is usually accepted 
29–32 that the wall is able to support mechanical load via the tethers connecting microfibrils, while tether detachment is at 

the origin of wall extension. Experimental observations and results from plant, algal and fungal cells 5,7,10,33,34 have been 

qualitatively explained by this molecular mechanism and provides a molecular interpretation of the Lockhart and the 

Ortega equations. A comprehensive understanding of expansive growth however hinges on bridging the gap between the 

molecular mechanics and macroscopic behaviors. For instance, there is an abundance of literature on the molecular biology 

and biochemistry of plant and fungi cell walls during growth and sensory responses but macroscopic behaviors are 

described by continuum equations that do not have an immediate impact of the underlying molecular physics. A molecular 

scale version of Ortega’s equation would indeed allow researchers to bridge molecular effects, such as the effect of 

enzymatic or protein-driven growth regulation or environmental effects (light, gravity., etc) to macroscopic behavior and 

help explain intricate growth responses. For example, the presence of fibril slippage and reorientation sub-zones in the 

growth zone of the sporangiophores of Phycomyces blakesleeanus can qualitatively explain the observed helical growth 

behavior along the growth zone 35,36, but it has never been shown quantitatively. A molecular scale model can help clarify 

the associated mechanisms. 

The objective of this paper is to address these needs by providing a route to fundamentally understand how the 

organization and dynamics of transient tether-microfibril networks can lead to the emerging growth response of walled 

cells. Here, we construct a theoretical framework that statistically describes the time evolution of a network based on 

molecular processes. The novelty of this work therefore lies in the ability to relate molecular properties, such as tether 

stiffness and bond lifetimes, to global wall mechanics, such as growth and stress relaxation, by a statistical description of 

the population behavior. The article is organized as follows. First the dynamics of molecular tethers and their mechanical 

properties are described, followed by a continuum statistical description of the tether population dynamics. This section is 

then followed by the application of the statistical model to describe global dynamics of the cell wall during steady growth, 

stress relaxation, and extension-growth response to a sudden increase (step-up) in turgor pressure. Previously published 

experiments of stress relaxation and extension-growth after pressure steps obtained from growing cells of incised pea 

stems (Pisum sativus L.), sporangiophores of the fungus P. blakesleeanus, and algal internode cells of Chara corallina are 

compared with model predictions and the importance of Πpe is highlighted. Finally, the roles of the molecular parameters 

of the cell wall are discussed in the context of growth regulation that can offer crucial insights and potential grounds for 

future work. 
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2 A STATISTICAL MODEL OF THE CELL WALL 

2.1. Cell Wall Geometry and Internal Architecture.  

The expansive growth of a walled cell is essentially driven by turgor pressure that causes the wall to expand (deform) in 

response to tensile stresses. The nature of these wall stresses and deformations however depends on the geometry of the 

cell, as well as the molecular, anisotropic structure of its wall and biochemical reactions that modify the mechanical 

properties of the wall. It is therefore not surprising that by combining these elements, plant and fungal cells can display a 

large variety of growth and morphogenetic events (twist, bend, differential growth) during their life time. We are interested 

in the way by which these processes occur at the molecular level and therefore need a more accurate description of the cell 

wall. We consider the primary cell wall to be an anisotropic network of unidirectional and long microfibrils that are 

interconnected by smaller, load bearing tethers as shown in Fig. 1. As the network is subjected to tensile stresses, the stiff 

fibrils undergo very little deformation, while tethers, due to their size and elasticity, are responsible for most of the wall’s 

elastic deformation.  But the role of tethers is not limited to elastic deformations; their dynamics are at the source of 

irreversible deformation and growth. The molecular mechanisms of wall extensions can be generally understood as follows. 

As the wall is subjected to stress (a) tethers first undergo an elastic stretch which is at the origin of the wall’s elasticity, (b) if 

given enough time, these tethers may subsequently detach from a fibril, leading to intermittent events of stress relaxation 

in the wall and (c) detached tethers may finally re-attach to new microfibrils in a force-free configuration (see Fig. 1). This 

last event enables the network to preserve its mechanical integrity over time. The cell wall may therefore be seen as a 

highly dynamic network of tethers that continuously changes its topology during deformation.  

 

 

Figure 1: Left: Schematic of the expanding cylindrical cell wall composed of a dynamic network of microfibrils and 

tethers. Right: Illustration of the expansive growth process of the wall governed by elastic stretching of tethers in the 

attached state (green) with lifetime, 𝑡𝑎 and relaxation due to detachment (yellow) that lasts for the lifetime, 𝑡𝑑. 

 

To focus on this molecular mechanism, we restrict our study to longitudinal growth of the cell wall. It is envisioned that the 

longitudinal growth occurs in the absence of radial expansion of the cylindrical wall structure. Thus, the total tensile force 

in the longitudinal direction of the wall is obtained from balance of forces on the cross-sectional surface of the cylinder as 

𝐹 = 𝑃 𝜋𝑅2, where 𝑃 is the turgor pressure and 𝑅 is the cell radius. Therefore, it is sufficient to model a one-dimensional 

network of tethers connecting transversely oriented microfibrils subjected to the force, 𝐹 (Fig. 1). We note here that the 

orientation of microfibrils need not remain in the transverse as shown in Fig. 1 and have in fact been postulated to reorient 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/346924doi: bioRxiv preprint 

https://doi.org/10.1101/346924
http://creativecommons.org/licenses/by-nc/4.0/


A Statistical Model of Cell Wall Dynamics during Expansive Growth 

4 

to produce helical growth in some cells 35,36. However, for the sake of simplicity we reserve such morphogenetic behavior of 

the cell wall for future investigations. In order to prevent the wall from thinning and rupturing during longitudinal 

expansion, new fibrils and tethers are deposited by the cell, as shown in Fig. 1 (grey microfibrils). Thus, the densities of 

microfibrils and tethers in the surface area of the primary cell wall are assumed to remain approximately constant during 

growth. 

2.2. A Probabilistic View of Cell Wall Mechanics.  

Based on the above mechanisms, it is possible to derive a simple mathematical model of tether dynamics in the context of 

Poisson processes. For this, we consider that a tether can be found in two distinct states: attached and detached. The 

average lifetime of a tether in its attached and detached state can be described by the variables 𝜏𝑎 and 𝜏𝑑 respectively. 

Because the events of detachment and attachment are random in time, they constitute a Poisson process. The average 

values of the lifetimes can be related to average rates of occurrence of each event: the detachment rate, 𝑘𝑑 = 1/〈𝑡𝑎〉, and 

attachment rate, 𝑘𝑎 = 1/〈𝑡𝑑〉, where 〈 . 〉 denotes average. Between times 𝑡 and 𝑡 + 𝛿𝑡, the probability of detachment of 

an attached tether is given by 𝑘𝑑𝛿𝑡, where 𝛿𝑡 is an infinitesimal time interval. Similarly, the probability that a detached 

tether re-attaches to the fibril in this time span is 𝑘𝑎𝛿𝑡. It is then possible to calculate the probabilities of survival in the 

attached (𝑃𝑎) and detached (𝑃𝑑) states that decay with time as 37 

𝑑𝑃𝑎

𝑑𝑡
= −𝑘𝑑𝑃𝑎           and        

𝑑𝑃𝑑

𝑑𝑡
= −𝑘𝑎𝑃𝑑. (1) 

In other words, the longer a tether remains in a particular state, the more likely that it will change states. As permanent 

deformation of the cell wall occurs only after the wall stress is above the yield stress 4, we introduce a critical force, 𝑓𝑐, on 

each tether below which detachment does not occur. Above the critical force, however, the tethers detach at an average 

rate 𝑘𝑑  such that: 

𝑘𝑑(𝑓𝑖) =  { 
 0                   𝑓𝑖 < 𝑓𝑐

𝑘𝑑                  𝑓𝑖 ≥ 𝑓𝑐
 . (2) 

We will see that the above condition necessitates a net yield force on the wall that overcomes the critical force of all 

attached tethers in order to achieve permanent deformation.  

Let us now consider a population of n tethers under the effect of a macroscopic force,  𝐹. In this case, it is possible to 

define the physical state of a tether (indexed by the integer 𝑖 ∈ [1, 𝑛]) by a state variable 𝑠𝑖 that takes the value of 1 when 

it is attached and the value of 0 when detached. It is therefore possible to construct a simple computational algorithm that 

can predict the evolution of this tether population in time by integrating the state variables 𝑠𝑖(𝑡) over time. To understand 

how this process affects the wall mechanics, consider now that the tethers are represented by linear springs of stiffness 𝐾 

that are, when attached, subjected to an elongation 𝛿𝑖, with respect to their rest configuration. The elastic force in tether 𝑖 

is therefore given by Hooke’s law in the form 𝑓𝑖 = 𝐾𝛿𝑖 and the condition of mechanical equilibrium implies that the 

macroscopic force is related to tether forces by: 

𝐹(𝑡) = ∑ 𝐾𝛿𝑖(𝑡)

𝑖=1:𝑁

 (3) 

where we implicitly assumed that tethers act as a parallel assembly of springs. We will see below that if a tether is 

detached, its elongation vanishes, which means that it does not participate in resisting the force F. If the microfibrils are 

now separated at a macroscopic velocity 𝑣(𝑡), the tether elongation is given by 

𝛿𝑖(𝑡) = 𝑠𝑖(𝑡) ∫ 𝑣(𝑡)𝑑𝑡
𝑡

𝑡𝑖

 (4) 

where 𝑡𝑖 is the time at which tether 𝑖 attached to a microfibril and the presence of 𝑠𝑖 enforces that the stretch vanishes for 

a detached tether. When a stretched tether detaches, Eq. 3 therefore predicts a drop in macroscopic force of magnitude 

𝐾𝛿𝑖(𝑡). Thus, as tether detachment contributes to stress relaxation, the reattachment of new tethers causes the network 

to keep its connectivity and an effectively transfer the load between units. We note that tethers detach in a stretched state 

and re-attach in a stress-free state, i.e. 𝛿𝑖(𝑡𝑖) = 0. This "asymmetry" in force during the detachment and attachment 
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events is responsible for permanent microfibril movement and wall deformation. Figure 2 provides an illustration of the 

mechanisms at play as the wall undergoes a deformation at rate 𝑣. We see that random tether attachment and 

detachment events results in changing the stretch distribution (represented by histograms) of the tethers over time. This 

distribution has a direct effect on the force 𝐹 in the network according to Eq. 3. A Monte-Carlo simulation approach was 

constructed based on the above equations. The algorithm described in Appendix A.1 relies on a random sampling method 

and the probability criteria in Eq. 1. Numerical results based on this approach are given in the remainder of this study.  

 

 
 

Figure 2: Illustration of stretch, detachment and attachment of tethers and the change in the tether population 

behavior depicted with histograms and approximated with the continuous distribution function 𝜙(𝛿, 𝑡) when the size 

of the population is large. The total number of attached tethers 𝑁𝑎 and wall force 𝐹 are obtained from 𝜙 and its 

evolution. 

 

2.3. Statistical Mechanics of Large Tether Populations. 

The probabilistic approach provides a comprehensive tool to study how a finite number of tethers and their behaviors 

affect a small portion of the wall mechanics. However, when the population becomes large, this approach becomes 

excessively costly, while at the same time, seem to converge towards more predictable and continuous trends. The 

mechanical response of large networks can instead be described by continuum mechanics, which may eventually take the 

form of macroscopic models such as the Ortega equations. We here propose to build a bridge between the scale of a few 

tethers to the full population using statistical mechanics, for which a framework in similar transient networks was 

previously discussed 38,39.  

The transition between discrete and continuum is accomplished via the introduction of a stretch distribution function 

𝜙(𝛿, 𝑡) where 𝛿 is a continuous random variable representing the tether elongation. The distribution function is so defined 

that, the quantity, 𝜙(𝛿, 𝑡)𝑑𝛿, denotes the number of attached tethers with an elongation value in the interval 𝛿 and 𝛿 +

𝑑𝛿, at any given time 𝑡. Its integral over all elongations 𝛿 (denoted here as the configuration space) then gives the total 

number of attached tethers, 𝑁𝑎(𝑡). The total force, 𝐹(𝑡), due to the tethers on the fibrils is now given by an integral form 

of Eq. 3. These conditions are expressed mathematically by  
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𝑁𝑎(𝑡) =  ∫ 𝜙(𝛿, 𝑡)𝑑𝛿 (5a) 

𝐹(𝑡) = ∫ 𝜙(𝛿, 𝑡) 𝐾𝛿 𝑑𝛿 (5b) 

As the tether population is dynamic, the function 𝜙(𝛿, 𝑡) evolves in time due to: (a) the macroscopic deformation of the 

network that causes attached tethers to elongate at rate 𝑣 = 𝛿̇, and (b) the random detachment and attachment of tethers 

at rates 𝑘𝑑 and 𝑘𝑎, respectively. Let us decompose the rate of change of 𝜙(𝛿, 𝑡) into  

𝜕𝜙(𝛿, 𝑡)

𝜕𝑡
=

𝜕𝜙(𝛿, 𝑡)

𝜕𝑡
 |

𝑎𝑡
+ 

𝜕𝜙(𝛿, 𝑡)

𝜕𝑡
 |

𝑣=0
 (6) 

The first term in Eq. 6 denotes the evolution in 𝜙(𝛿, 𝑡) due to a purely elastic wall deformation when the population of 

attached tethers (subscript 𝑎𝑡) remains unchanged, i.e. there are no attachments and detachments (𝑘𝑎 = 𝑘𝑑 = 0). The 

second term denotes the change in tether distribution due to tether kinetics when the wall is not growing, i.e. the 

microfibrils are fixed in position and 𝑣 = 0.  

To compute the first term, let us consider a population of attached tethers in an arbitrary range of tether elongation, Ω∗, 

that neither attach or detach. Due to macroscopic deformation of the network, all attached tethers in this population are 

stretched, thereby shifting the elongation range, Ω∗ (see illustration in Fig. 2). However, if we follow the state of this tether 

population during deformation, the number of attached tethers remains constant in time as there are no attachments or 

detachments. Mathematically, this can be described using the “material” time derivative (denoted by 𝐷 (. )/𝐷𝑡) as  

𝐷

𝐷𝑡
∫ 𝜙(𝛿, 𝑡)𝑑𝛿

 

Ω∗
= ∫ (

𝜕𝜙(𝛿, 𝑡)

𝜕𝑡
 |

𝑎𝑡
+ 𝛿̇

𝜕𝜙(𝛿, 𝑡)

𝜕𝛿
)

 

Ω∗
 𝑑𝛿 = 0. (7) 

where the integration of 𝜙(𝛿, 𝑡) in the range, Ω∗, gives the number of attached tethers in that range. As the above equation 

holds true for any arbitrary range, Ω∗, it can be localized to give  

𝜕𝜙(𝛿, 𝑡)

𝜕𝑡
 |

𝑎𝑡
= −𝑣

𝜕𝜙(𝛿, 𝑡)

𝜕𝛿
 (8) 

To compute the second evolution term of Eq. 6 at 𝑣 = 0, we first assume that the effective rate of detachment of tethers 

with elongation, 𝛿, is proportional to 𝜙(𝛿, 𝑡). Furthermore, we assume that re-attachment of detached tethers occurs at a 

stress-free configuration that is described by the probability density function, 𝑝0(𝛿). The evolution equation is thus given by 

𝜕𝜙(𝛿, 𝑡)

𝜕𝑡
 |

𝑣=0
= −𝑘𝑑𝜙(𝛿, 𝑡) + 𝑘𝑎(𝑁 − 𝑁𝑎) 𝑝0(𝛿) (9) 

where N is the total number of tethers in the network and 𝑁 − 𝑁𝑎 is the number of detached tethers at any time 𝑡. 

Combining Eqs. 6,8 and 9, we get the evolution of 𝜙(𝛿, 𝑡) as 

𝜕𝜙(𝛿, 𝑡)

𝜕𝑡
= −𝑣

𝜕𝜙(𝛿, 𝑡)

𝜕𝛿
− 𝑘𝑑𝜙(𝛿, 𝑡) + 𝑘𝑎(𝑁 − 𝑁𝑎) 𝑝0(𝛿). (10) 

Thus, the Eqs. 5 and 10 provide the general mathematical framework needed to relate the tether population behavior to 

the macroscopic wall force, 𝐹(𝑡), and growth rate, 𝑣(𝑡).  

In this paper, we assume for simplicity that the rates 𝑘𝑎 and 𝑘𝑑 are constants in time. While 𝑘𝑎 is also independent of 

tether elongation, 𝑘𝑑 follows the rule described in Eq. 2 for a critical tether elongation, 𝛿𝑐 = 𝑓𝑐/𝐾. We also assume that 

the probability density, 𝑝0(𝛿), is a Dirac delta function centered at 𝛿 = 0, so that attachment always occurs at a stress-

free state.  By calculating the time rate of total network force, 𝐹̇, using Eqs. 5 and 10, we can obtain a macroscopic 

evolution equation (see Appendix B.1) given by 

𝐹̇ + 𝑘𝑑  (𝐹 − 𝐹𝑐) = 𝐾𝑁𝑎𝑣(𝑡) (11a) 

𝐹𝑐 = ∫ 𝜙
𝛿𝑐

0

(𝛿, 𝑡) 𝐾𝛿 𝑑𝛿 (11b) 
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where 𝐹𝑐 is the overall force from the “static” (non-detaching) tether population with elongation below 𝛿𝑐. The creep 

velocity 𝑣(𝑡) is equivalent to the longitudinal growth rate of the cell wall driven by the wall force 𝐹 and is governed by the 

molecular parameters, 𝑘𝑑, 𝑘𝑎, 𝐾, and 𝑓𝑐.   

To illustrate the statistical mechanics model with the discrete and continuum approaches, let us consider the case when a 

constant force, 𝐹, is applied to the network. If the force is large enough to induce a tether force 𝑓 that is larger than its 

critical value 𝑓𝑐, permanent deformation ensues as a result of tether detachment. For given values of the molecular 

parameters 𝑘𝑑, 𝑘𝑎, 𝐾, and 𝑓𝑐, (see Fig. 3 caption) Monte Carlo simulations predict an approximately constant rate of 

change of separation distance between microfibrils, i.e. wall length. The fluctuations in the wall length arise due to discrete 

events of tether detachment and attachment in a population size of 𝑁 = 100. The fluctuations are observed to reduce with 

increase in population size to 𝑁 = 1000 and 𝑁 = 10,000. The histograms shown in Fig. 3 correspond to the tether 

elongation of the attached population after it reaches an approximately steady state in time. This steady state, however, is 

an outcome of a dynamic equilibrium of deformation, detachment and re-attachment of tethers. In the case of a large 

population size where the continuum assumption is justified, steady state implies that the distribution function, 𝜙(𝛿, 𝑡) 

remains constant in time, i.e. 𝜕𝜙/𝜕𝑡 = 0. The evolution Eq. 10 can then be solved analytically (see Appendix B.2) to give:  

𝜙(𝛿) =  {
𝜙𝑠                                        𝛿 < 𝛿𝑐

𝜙𝑠 𝑒−𝑘𝑑(𝛿−𝛿𝑐)/𝑣𝑠                 𝛿 ≥ 𝛿𝑐
 (12) 

where 𝜙𝑠 = 𝑘𝑎(𝑁 − 𝑁𝑎)/𝑣𝑔 is constant in time. The steady state growth rate or creep velocity 𝑣𝑔, is given by Eq. 11a, 

where 𝐹̇  = 0 as the wall force is constant. The estimation of the wall deformation (irreversible) and the population 

distribution of tether elongation from the continuum approach are smooth and good approximations of large tether 

populations as demonstrated in Fig. 3.  

Figure 3: Comparison of predictions from discrete Monte Carlo simulation and the continuum models for increasing 

sizes of tether population, 𝑁 = 100, 1000 𝑎𝑛𝑑 10000. Top: Growth of network length in time for a constant 

force, 𝐹 = 1000 μN. Bottom: Distribution function of tether elongations, 𝜙(𝛿, 𝑡), normalized to the population size, N 
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at steady-state. The molecular parameters used for all simulations are 𝑘𝑎 = 10 h−1, 𝑘𝑑 = 2 h−1, 𝑁𝐾 = 5 Nm−1 and 

𝑁𝑓𝑐 = 1500 μN. 

 

3 INVESTIGATING GLOBAL WALL MECHANICS 

Interestingly, Eq. 11a has a very similar form as Ortega’s growth equation (AGE) that describes the rate of change of the cell 

volume as a function of turgor pressure, 𝑃. For a cell wall with negligible radial expansion, the cross-sectional area of the 

cell, 𝐴0 = 𝜋𝑅2, remains constant and Ortega’s equation can be written as  

1

𝑙

𝑑𝑙

𝑑𝑡
=  

𝜙

𝐴0
 (𝐹 − 𝐹𝑐) + 

1

𝐴0𝜖

𝑑𝐹

𝑑𝑡
 (13) 

where 𝑙 is the length of the cell wall, 𝜖 is the volumetric elastic modulus and the wall extensibility 𝜙 governs irreversible 

deformation. Comparing Eqs. 11a and 13, we find that the bulk wall properties in the Ortega equation are related to the 

molecular parameters as 𝜖 = (𝐾𝑁𝑎𝑙/𝐴0) and 𝜙 = (𝑘𝑑𝐴0/𝐾𝑁𝑎𝑙). Therefore, rewriting Eq. 11a to have a similar form as Eq. 

13, we obtain the molecular version of the Ortega equation as 

1

𝑙

𝑑𝑙

𝑑𝑡
=  

𝑘𝑑

𝑙𝐾𝑁𝑎
 (𝐹 − 𝐹𝑐) + 

1

𝑙𝐾𝑁𝑎

𝑑𝐹

𝑑𝑡
 (14) 

The stress relaxation time for the Ortega model (Maxwell-Bingham fluid)17 can be obtained as  𝑡𝑅 = 1/(𝜖𝜙) = 1/𝑘𝑑, while 

the average relative growth rate of the wall is given by 𝑣s = 𝑣/𝑙. The viscoelastic nature of the cell wall may then be 

characterized by the dimensionless Πpe number 23,24 defined as 

Πpe =
𝑒̇𝑝 

𝑒̇𝑒
= (

𝜀𝜙 

𝑣s
) = (

𝑘𝑑

𝑣s
) (15) 

that describes the ratio of the relative plastic (𝑒̇𝑝) and elastic (𝑒̇𝑒) deformation rates of a viscoelastic cell wall.  Recent 

studies have shown that this number may be a crucial descriptor of the chemo-rheology of the cell wall during expansive 

growth. The magnitude of Πpe was found to remain largely invariant for a given species while being distinctly different from 

other species. This could be representative of distinct wall loosening mechanisms. For instance, cells of higher plant cells 

such as the pea stem, P. sativus L. (Πpe = 32), loosen their walls by disrupting the hydrogen bonds between microfibrils 

using the protein, expansin 40. In the algal internode cells of C. corallina (Πpe = 564), calcium bridges are broken and re-

formed between pectin polymers to loosen the wall 32,41, while the mechanism of loosening is still largely unknown for the 

sporangiophores of P. blakesleeanus (Πpe = 1865) 27,42. However, the Πpe values were found to be significantly different 

for these species by orders of magnitude. Furthermore, it has been shown that using a single approximately invariant value 

of Πpe for a given species, one can determine variations in growth rate, 𝑣𝑠, when the wall dynamics is altered by growth 

conditions. For example, different growth rates were correctly predicted for the cells of pea stems (i) “incised and growing 

in water”, and (ii) added with growth hormone IAAA, by using the same Πpe value. The sporangiophores of P. blakesleeanus 

in growth stages I and IV show different growth rates but have approximately the same Πpe values. Given the importance of 

Πpe, it is noteworthy that Eq. 15 provides a direct link to the molecular average bond detachment rate, k𝑑, which can 

provide crucial insight into wall loosening mechanisms of different species given their molecular timescale. In the following 

section, we investigate the expansive growth behavior of three species of walled cells with distinct Πpe values to estimate 

the varying molecular time scales corresponding to different wall loosening mechanisms.  

In a recent review of mathematical models of expansive growth of cells with walls 1, it was recommended that all future 

global and local mathematical models should be able to reproduce the experimental results of in vivo stress relaxation and 

in vivo creep experiments in order to provide evidence that the model obeys the underlying physics and constitutive 

relationship measured experimentally. Thus, we investigate three types of mechanical behavior of the cell wall namely (a) 

steady growth or creep (irreversible deformation) where the wall force and creep velocities are constants, (b) stress 

relaxation when the wall length is held constant, and (c) a sudden step-up in wall force that produces a purely elastic 

(reversible) deformation followed by an increase in steady growth rate. These mechanical behaviors correspond to 
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experiments conducted for plant, algal and fungal cells. Using the newly introduced statistical model of the cell wall, we 

now compare the model’s results with the experimental results from three distinct species of walled cells including P. 

sativus L. and P. blakesleeanus, and C. corallina. Using the equations derived for the global wall mechanics in section 2, the 

tether properties 𝑘𝑑, 𝑘𝑎, 𝐾, and 𝑓𝑐 are fitted to match experimental measurements. In the final part of this section, we 

present the mapping between molecular parameters of our statistical model and global wall mechanics that provide 

insights into regulation of the wall during growth. 

3.1   Steady Growth (creep) and Stress Relaxation 

During steady growth, the rate of irreversible wall deformation remains approximately constant in time if the turgor 

pressure does not change7. This condition is discussed at the end of section 2.2 with the statistical model where a constant 

wall force, 𝐹 = 𝑃𝐴0, is applied to a population of tethers in the cell wall network. The solution to the continuum model for 

such a state is given in Eqs. 11 and 12, where a steady creep velocity, 𝑣𝑔, can be estimated from 𝐹̇  = 0. 

Figure 4: Illustration of the steady growth or creep (red panel) and stress relaxation (green panel) with Monte Carlo discrete 

simulations and the continuum model shown along with histograms and continuous distribution function 𝜙. The population 

size for the Monte-Carlo simulations is 𝑁 = 100. The molecular parameters used for all simulations are 𝑘𝑎 = 10 h−1, 

𝑘𝑑 = 2 h−1, 𝑁𝐾 = 5 Nm−1 and 𝑁𝑓𝑐 = 1500 μN. 

 

The ability of the cell wall to loosen or relax is a crucial feature that allows for expansive growth. To quantify this behavior, 

let us now consider the cell wall growing at a rate, 𝑣𝑔 , to be suddenly arrested from further growth at time, 𝑡 = 𝑡∗, i.e. 

𝑣(𝑡 > 𝑡∗) = 0. The microfibrils stop moving while the detachment and attachment of tethers continue. Since tethers below 

the threshold force 𝑓𝑐, cannot detach (Eq. 2), they remain intact with the stretch that was imposed at 𝑡∗. The rest of the 

attached tether population undergo the detachment process and re-attach in the stress-free state, 𝛿 = 0.  The histogram in 

Fig. 4 from Monte Carlo simulations shows that at long times, all the tethers with elongation 𝛿 > 𝛿𝑐 have detached and 

reattached at 𝛿 = 0. In the continuum limit, the distribution function 𝜙(𝛿, 𝑡) is obtained from Eq. 11a by substituting 𝑣 = 0 

(see Appendix B.3 for detailed proof). For 𝑡 > 𝑡∗, the distribution function in the region below the threshold elongation, 𝛿𝑐, 

remains unaffected from steady growth in Eq. 12, i.e. 𝜙(𝛿 < 𝛿𝑐 , 𝑡) = 𝜙𝑠, while the other part decays exponentially to zero 

at rate 𝑘𝑑. This process causes the total wall force 𝐹, to reduce with time, thus resulting in stress relaxation as seen from 
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the Monte Carlo simulations and the continuum model in Fig. 4. By substituting 𝑣(𝑡 > 𝑡∗) = 0 in the continuum model (Eq. 

11a), we obtain 

𝐹(𝑡 > 𝑡∗) = 𝐹𝑐 + (𝐹(𝑡∗) − 𝐹𝑐) 𝑒−𝑘𝑑 (𝑡−𝑡∗) (16) 

that predicts an exponential stress relaxation rate with a stress relaxation time, 𝑡𝑅 = 1/𝑘𝑑. The halftime of exponential 

decay, i.e. the time taken for the wall force to relax to half of its initial value, can be calculated from Eq. 16 as, 

𝑡1/2 = ln 2 /𝑘𝑑. The half time is often useful in quantifying relaxation in experimental measurements and provides a 

time scale that can be compared for different species.  It may further be noted that the wall force approaches the 

constant value 𝐹𝑐, at long times (i.e. 𝑡 → ∞) given in Eq. 11b as the sum of all tether forces below the threshold 𝑓𝑐 that 

remain attached. 

 

3.2 Steady Growth and Step-up in Turgor Pressure  

An alternative method for measuring the mechanical properties of the wall is through turgor pressure manipulation. These 

tests are typically performed on growing cells where the turgor pressure is increased suddenly (stepped-up) with a pressure 

probe. The steady growth rate on the other hand may be used to estimate the plastic or viscous properties of the cell wall 

(such as the extensibility 𝜙 of the Ortega equation, Eq. 13). Depending on the cell species, a more or less pronounced 

elastic response can be observed during pressure step-up; measuring this elastic deformation thus provides an interesting 

method by which one can estimate the elastic properties of the wall (the elastic modulus 𝜖 from the Ortega equation, Eq. 

13). Let us therefore consider the condition of a sudden increase in turgor pressure during which the wall force is increased 

from 𝐹 at time 𝑡 = 𝑡∗ to 𝐹 + ∆𝐹 at time 𝑡 = 𝑡∗ + 𝑑𝑡. The time period 𝑑𝑡 is here taken to be extremely short compared to 

the average lifetime 1/𝑘𝑑 and so that tether detachment and attachment do not take place and the wall deformation 

remains purely elastic. Since the wall stiffness corresponds to the combined effective value of all attached tethers, 

𝐾𝑁𝑎(𝑡∗), at the time of the pressure step-up, the elastic elongation in wall length ∆𝑙 can be easily determined as:  

∆𝑙 =
∆𝐹

𝐾𝑁𝑎
 . (17) 

  

Figure 5: Left: Illustration of the network elasticity during a pressure step-up. Right: Illustration of the steady growth or 

creep (red panel) and step-up (green panel) with Monte Carlo discrete simulations and the continuum model shown along 
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with histograms and continuous distribution function 𝜙. The population size for the Monte-Carlo simulations is 𝑁 = 500. 

The molecular parameters used for all simulations are 𝑘𝑎 = 2.2 h−1, 𝑘𝑑 = 3 h−1, 𝑁𝐾 = 115 Nm−1 and 𝑁𝑓𝑐 = 8000 μN. 

 

The elastic elongation ∆𝑙 is also the change in the length of each individual tether in the population that remains attached 

at 𝑡 = 𝑡∗. This can be observed from the distribution function, 𝜙(𝑡∗), obtained from discrete Monte-Carlo simulations and 

the continuum model as show in Fig. 5 for a test case with given molecular parameters (see Fig. 5 caption). Compared to 

the distribution function at a time 𝑡1 < 𝑡∗, the step-up in wall force shifts the distribution function to the right by an 

amount equal to ∆𝑙.  

 

3.3 Comparison with Experimental Measurements 

An advantage of the presented approach is that it enables to estimate molecular quantities, such as kinetics and mechanical 

properties based on macroscopic experiments. We here engage in such a study based on experimental measurements of 

the steady growth and stress relaxation in incised pea stem (P. sativus L.) 13 and the fungal cell, P. blakesleeanus in growth 

stage IVb 7. Stress relaxation experiments are conducted by removing the cell from its water supply and preventing its 

transpiration. The removal from water involves incision from the tissue or direct removal from the mycelium. The pressure 

decay is then measured with a pressure probe to determine the stress relaxation characteristics including the rate and final 

pressure value after decay 𝑃𝑐. The turgor pressure decay for P. sativus L. and P. blakesleeanus are shown in Fig. 6 where the 

latter relaxes significantly faster than the former. The molecular parameter 𝑘𝑑 is determined from the measured half time, 

𝑡1/2, while 𝑘𝑎, 𝐾 and 𝑓𝑐 are fitted with the growth rate before relaxation, 𝑣𝑔, and the critical pressure, 𝑃𝑐, with good 

agreement (Fig. 6). Since the wall areas of P. sativus L. (𝑅 = 23.5 μm and 𝑙 = 3.5 mm) and P. blakesleeanus IVb (𝑅 = 75 μm 

and 𝑙 = 30 mm) vary in orders of magnitude, tether stiffness and threshold force are normalized to the wall area. In other 

words, the fitted tether properties are reported as 𝑛𝐾 and 𝑛𝑓𝑐 respectively (see Table 1), where 𝑛 is the number of tethers 

per unit wall area. The fitted values of parameters, 𝑘𝑎, 𝑛𝐾 and 𝑛𝑓𝑐, based on measurements of 𝑣𝑔 and 𝑃𝑐, are found to be 

non-unique. For instance, the same value of 𝑃𝑐 can be reached by either considering many attached tethers (𝑁𝑎) with a 

small force threshold (𝑓𝑐) or considering fewer attached tethers with a high force threshold. This implies that a wide range 

of values of 𝑘𝑎 and 𝑛𝑓𝑐 is possible as they determine the value of 𝑁𝑎 and 𝑃𝑐. The values of threshold force, 𝑛𝑓𝑐, are 

significantly higher for cells of pea stems than the sporangiophores of P. blakesleeanus and which could explain the 

difference in the values of 𝑃𝑐. Comparison of the tether stiffness, 𝑛𝐾, remains inconclusive as a wide range of values are 

possible for P. blakesleeanus (Table 1). The values of Π𝑝𝑒 can be calculated for both species based on the values of 𝑘𝑑 fitted 

with the above experiments and are found to be 33.7 and 1030 for pea and the sporangiophores respectively. These 

numbers are in good agreement with values reported in literature 23 which are 32 ± 6 and 1246. The in vivo stress 

relaxation test of steady growing cells, therefore, provides a method to determine certain molecular properties (such as 𝑘𝑑) 

with good accuracy while other properties (such as 𝐾 and 𝑓𝑐 ) can only be estimated with low accuracy. We note that the 

estimation of the attachment rate 𝑘𝑎 has the highest uncertainty in fitting with this test.  

 

Table 1: Fitted tether properties for model prediction of stress relaxation and step-up experiments 

a n is the number density of tethers per area in the cell wall.  

P. sativus L. (P. s), P. blakesleeanus IVb (P. b), C. corallina (C. c) 

Tether Property 
Stress Relaxation Creep (Before step-up) Creep (After step-up) 

P. s P. b C. c P. b C. c P. b 

Detachment Rate, 𝑘𝑑 ( h−1) 2.25 10.3 1.25 91 − 166 4.8 131

− 239 Attachment Rate, 𝑘𝑎 ( h−1) 0.55 − ∞ 0.2 − ∞ 0.7 − ∞ 10 − ∞ 2.3 − ∞ 11 − ∞ 
a Stiffness, 𝑛𝐾 (μN 𝑚⁄ )μm−2 

 

10 − 21 8 − 65 23 − 29 8 − 65 23 − 29 8 − 65 

a Threshold, 𝑛𝑓𝑐  (nN)μm−2 

 

2 − 6 0.2 − 0.8 1.6 − 2.1 0.3 − 1.4 1.6 − 2.1 0.3 − 1.4 
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Figure 5: Left: Comparison of experimental measurements and model estimation of pressure relaxation of pea stem, P. 

sativus L. 13 and fungus, P. blakesleeanus 7. Note that the magnitudes of 𝛱𝑝𝑒 and 𝑘𝑑 are different for P. sativus L. and P. 

blakesleeanus for the stress relaxations. Right: Comparison of experimental measurements and model estimation of steady 

growth before and after pressure step-up in the algal cells C. corallina 19 and fungus, P. blakesleeanus IVb 7. . Note that the 

magnitudes of 𝛱𝑝𝑒 and 𝑘𝑑 are different for C. corallina and P. blakesleeanus. 

 

Molecular parameters for the algal cells, C. corallina and the sporangiophores of P. blakesleeanus in stage IV (Table 1) are 

then estimated using both in vivo creep and pressure step-up response. For this, we proceed in two steps. First, we estimate 

𝑓𝑐, 𝑘𝑑, and 𝑘𝑎 by matching the critical turgor pressure 𝑃𝑐, available from other experiments 7,19,20 and the steady growth rate 

𝑣𝑔. Second, we estimate the tether stiffness 𝐾 using the elastic response of C. corallina from Eq. 17. We note here that the 

elastic response due to step up is measurable in C. corallina while this is not the case with P. blakesleeanus (see Fig. 6) 

where the elastic deformation is negligible. However, based on independent measurements of the elastic modulus 44, 

𝜀 = 60.9 ± 5.1 (SE)MPa, the range of possible values for tether stiffness, 𝐾, is shown in Table 1.  As in the case of stress 

relaxation, we find that in vivo creep measurements also lead to non-unique fits for model parameters. Fortunately, with 

previously reported 23 values of Π𝑝𝑒 = 1865 ± 583, it is possible to confine the range of values of 𝑘𝑑 using Eq. 15 to that 

reported in Table 1.   

Despite the above difficulties, distinct differences can still be observed between the two cell types in the magnitudes of 

molecular parameters. First, we note that growth of the C. corallina cells is significantly slower than P. blakesleeanus; this is 

reflected in the estimated values for tether dynamics (𝑘𝑎 and 𝑘𝑑) that are higher by an order of magnitude in P. 

blakesleeanus. Second, the critical pressure 𝑃𝑐 is reported from previous experiments to be higher in C. corallina (𝑃𝑐 =0.35 

MPa 20) than P. blakesleeanus (𝑃𝑐 = 0.085 MPa 7). Accordingly, the critical force for dissociation, 𝑓𝑐, of tethers is found to be 

higher for C. corallina. Based on our fitted parameters, we show that the model prediction of the elastic response due to 
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pressure step-up is significantly smaller (inset in Fig. 6) in P. blakesleeanus. Though the absolute value of the predicted 

elastic response (∆𝑙 = 3 𝜇𝑚) is comparable to that measured for C. corallina (∆𝑙 = 3.5 𝜇𝑚), the relative value to the length 

of the cell, 𝑙, is more significant in the latter than the former.  

 

Finally, we note that the creep rate after pressure step-up in both cell types is estimated by the model with a higher value 

of 𝑘𝑑 (See Table 1). This estimate is obtained using Eq. 15 from which the steady growth rate is given by 𝑣𝑔/𝑙 = Πpe𝑘𝑑, 

where Πpe is approximately constant for a given species irrespective of growth rate 23. The higher estimate of 𝑘𝑑 could 

indicate the possibility of a nonlinear relationship between wall force and creep rate that is not currently addressed in our 

model. It is likely that the tether dissociation rate, 𝑘𝑑, is amplified by force making the creep rate higher when the wall 

stress is increased due to turgor pressure. This may be investigated in future work with the proposed statistical model 

where 𝑘𝑑 in Eq. 2 may be modified to include a force-dependence, and more specifically, an increase in dissociation rate 

with tether force. 

 

3.4 Tuning Tether Dynamics to Regulate Wall Mechanics 

Having compared the model’s extension and turgor pressure behavior against relevant experimental results and obtaining 

good agreement, we now propose to examine how the proposed statistical approach may help better understand the effect 

of the molecular scale on growth dynamics. We particularly focus on four key parameters, namely 𝑘𝑑, 𝑘𝑎, 𝐾, and 𝑓𝑐.  

 

Figure 7: (a) The relationship between the ratio of tether detachment and attachment rates, 𝑘𝑑 and 𝑘𝑎, and tether threshold 

force, 𝑓𝑐 with the fraction of tethers, 𝑁𝑎/𝑁, and the fraction of wall yield force, 𝐹𝑐/𝐹, and (b) Summary of the roles of the 

four tether properties, 𝑘𝑑, 𝑘𝑎, 𝐾and 𝑓𝑐 on the growth rate, relaxation half time and the reversible deformations.  

 

For this, let us consider the steady growth (at rate 𝑣𝑔) of a cell wall under a constant turgor pressure 𝑃. From Eq. 11a, the 

contributions of tether stiffness, 𝐾 and detachment rate, 𝑘𝑑, to the growth rate are apparent. However, the dependence of 

𝑁𝑎 and 𝐹𝑐 on the other tether properties is not straightforward. Based on a parametric analysis of the solutions to the 

continuum model from Eqs. 11-12 (see Appendix B.2), we find that the ratio of attached tethers in the total population, 

𝑁𝑎/𝑁, is inversely correlated to the ratio, 𝑘𝑑/𝑘𝑎 (Fig. 7a). In other words, most tethers are attached to the fibrils at steady 

state when 𝑘𝑎  is more dominant than 𝑘𝑑  and vice-versa. Interestingly, the wall yield force 𝐹𝑐 is also inversely correlated to 
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𝑘𝑑/𝑘𝑎. This implies that for a given wall force or turgor pressure, altering the tether dynamics, i.e. raising or lowering 

𝑘𝑑/𝑘𝑎, has a compound effect on the growth rate, 𝑣𝑔, by affecting both 𝑁𝑎 and 𝐹𝑐. The distribution function for steady 

growth, 𝜙(𝛿, 𝑡), further shows that when the ratio 𝑘𝑑/𝑘𝑎 is high, both 𝑁𝑎 and 𝑁𝑠 (number of tethers below the critical 

force) are low. This explains the reduction in wall yield stress, 𝐹𝑐 at large values of 𝑘𝑑/𝑘𝑎 though the threshold force 𝑓𝑐 

remains unchanged. Alternately, if the critical force of each tether, 𝑓𝑐, is increased, it is predicted that, at steady state, there 

exists a high fraction of attached tethers and hence a high wall yield force, 𝐹𝑐 (Fig. 7a). It is worth noting that from the plots 

in Fig. 7a, each combination of values of 𝑁𝑎 and 𝐹𝑐 can be obtained by many different values of 𝑘𝑑/𝑘𝑎 and 𝑓𝑐. This explains 

the problem of non-unique fitting parameters noted in the previous sections for experimental measurements of steady 

growth.   

The roles of the four tether properties in the steady growth rate or irreversible deformation are thus summarized 

qualitatively in Fig. 7b. While increasing 𝑘𝑑 causes faster growth, increasing the other three parameters hinders growth by 

slowing down the wall deformation rate for a given turgor pressure. The effect on reversible deformations, (e.g. during a 

turgor pressure step-up experiment) follows the same trend as irreversible deformations. This indicates that for a given wall 

force, the irreversible deformation or growth rate cannot be regulated to be fast without making the wall “soft” (either soft 

or few attached tethers) and vice-versa. The half time of relaxation, on the other hand, is governed only by the detachment 

rate, 𝑘𝑑, and is independent of all other parameters, which do not play a role in dissipating energy. Importantly, 𝑘𝑑 can be 

determined for each walled cell if the magnitudes of Πpe and 𝑣s are known for that cell (see Eq. 15). 

 

4 DISCUSSION AND FUTURE RESEARCH 

Here, we developed a local numerical-mathematical model that explicitly employs the same mechanism used by cell walls 

to manipulate their mechanical properties, i.e. by breaking load-bearing (stress-bearing) molecular bonds and remaking 

bonds without stress (zero load). More specifically, we introduced a probabilistic model to describe the dynamics of the 

tethered network of microfibrils in the cell wall during expansive growth. In this framework, the irreversible wall 

deformation is explained by the intermittent detachment and re-attachment of elastic tethers, while reversible 

deformations originate from their elastic elongation. A statistical mechanics was then used to describe the time evolution of 

the stretch distribution of a population of tethers that could then be used to estimate the evolution in wall forces. Based on 

this approach, a statistically based growth equation was derived, which provides a molecular interpretation of the 

established Ortega equation that describes the expansive growth of the cell wall. The extension rate and turgor pressure 

behavior produced by the statistical model was compared to experimental results from in vivo stress relaxation and creep 

with pressure steps of three different cell types, namely pea stem (P. sativus L.), algal internode cells (C. corallina) and 

sporangiophores of P. blakesleeanus, with good agreement.  

It is shown that the statistical model’s extension behavior as a function of applied force is dependent predominately on the 

magnitude and behavior of four variables; 𝑘𝑑, 𝑘𝑎, 𝐾, and 𝑓𝑐. Modeling the force (turgor pressure) and extension (growth) 

behavior for any walled cell requires fitting the magnitude (and behavior) of these four variables. A section is devoted to 

explaining how fitting these variables to produce the desired force-extension behavior are non-unique and guidelines are 

provided. In general, it is found that the magnitude of two of the variables (𝑘𝑑 and 𝑓𝑐) can be obtained from the results of in 

vivo stress relaxation experiments and the magnitude of 𝐾 can be estimated from the magnitude of the volumetric elastic 

modulus. An important finding is that the dimensionless number Πpe is related to 𝑘𝑑 and 𝑣s: Πpe = (𝑘𝑑 𝑣𝑠⁄ ) (Eq. 15). This 

relationship allows us to calculate the magnitude of 𝑘𝑑 when Πpe and 𝑣s are known. A good fit is obtained for the turgor 

pressure step-up experiments by maintaining a constant value for Πpe and thus changing 𝑘𝑑 when 𝑣s changes. The principle 

of keeping Πpe constant for a single cell is consistent with the experimental findings that Πpe is approximately constant for 

any one species of walled cell but different for other species23. 

The proposed statistical model has the potential to unlock avenues of research that relate the magnitudes of 𝑘𝑑 and 𝑘𝑎 

with specific enzymes and proteins that are found to loosen walls in different species of walled cells. If similar research 

identifies the magnitudes of 𝐾 for tethers used in cell walls, and bond strength, 𝑓𝑐, for load bearing bonds, then it is 
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envisioned that a statistical model using this platform can be used to conduct parametric studies to identify which 

combination of enzymes, proteins, tethers, and molecular bonds are used to obtain the force-extension behavior observed 

in vivo. Accurate estimation of these molecular properties will enable a better understanding of the wall regulation 

mechanisms that cells use under different growth conditions and stimuli responses to light, gravity, stretch, etc. 45–47 

Furthermore, the framework of this model is powerful as it is based on simple rules to describe the dynamics of tether 

behavior and when applied to a population of tethers, it can predict the growth phenotype of different cells. Thus, the 

model offers ripe ground for the investigation and discovery of new mechanisms in cell morphogenesis during growth, such 

as helical growth in P. blakesleeanus 35,48 and apical tip growth seen in pollen tubes, root hairs, and algal rhizoids2,49–51.  
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APPENDIX A 

A.1 Methodology for Monte-Carlo Simulations 

An assembly of springs are modelled to undergo deformation, attachment and detachment based on probabilities defined 

in Eq. 1. As the attachment and detachment events are assumed to follow a Poisson process 52, a better way to describe 

them is through the probability that a state (attached or detached) changes in a time interval 𝑑𝑡. Therefore, the probability 

that an attached tether becomes detached in time 𝑑𝑡 is given by 𝑘𝑑𝑑𝑡. Similarly, the probability that a detached tether 

becomes reattached in time 𝑑𝑡 is given by 𝑘𝑎𝑑𝑡. The algorithm for the simulating the dynamics of the tether network by 

the discrete approach (Monte-Carlo) is summarized in the steps below.  

Input: Number of tethers {𝑁}, Molecular parameters {𝑘𝑎, 𝑘𝑑 , 𝐾, 𝑓𝑐}  

Output: Deformation speed {𝑣(𝑡)} (creep), Wall force {𝐹(𝑡)} (stress relaxation) 

Algorithm: 

1. Initialize tether state, 𝑠𝑖 (0 when detached and 1 when attached), and tether elongation 𝛿𝑖 = 𝐹(0)/ ∑(𝐾𝑠𝑖), 𝑖 = 1: 𝑁. 
2. Start time loop with 𝜏 = 1 to 𝜏𝑚𝑎𝑥 with time step 𝑑𝑡 

2.1 Start attached tether population loop, 𝑗 = 1: 𝑁𝑎 
    - Sample a random number, 𝑟𝑗, between 0 and 1.   

    -  if  𝑟𝑗 < 𝑘𝑑𝑑𝑡 

          - Assign 𝑠𝑗 = 0  

          - Store force lost due to detachment, 𝑓𝑗
𝑙 = 𝐾𝛿𝑗            

        End attached tether population loop 

2.2 Start detached tether population loop, 𝑘 = 1: 𝑁 − 𝑁𝑎 

- Sample a random number, 𝑟𝑘, between 0 and 1.   

    -  if  𝑟𝑘 < 𝑘𝑎𝑑𝑡 

          - Assign 𝑠𝑘 = 1  

          - Assign 𝛿𝑘 = 0  

          End detached tether population loop 

      2.3 Compute updated force from the network, 𝐹(𝜏) = ∑ 𝐾𝛿𝑖(𝜏)𝑖=1:𝑁  

      2.4 Compute change in deformation of the wall, ∆𝑥 = ∑ 𝑓𝑗
𝑙 /𝐾𝑁𝑎 

      2.5 Update overall deformation of the wall, 𝑥(𝜏) = 𝑥(𝜏 − 1) + ∆𝑥 
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3. End time loop 

 

APPENDIX B  

B.1 Derivation of the Macroscopic Force-Velocity Equation 

The relationship between velocity and force in Eq. 11a is derived from the integral equation for force given in Eq. 5b by 

differentiating w.r.t time as  

𝐹̇ =
𝑑

𝑑𝑡
∫ 𝜙(𝛿, 𝑡) 𝐾𝛿 𝑑𝛿

∞

0

 

= ∫
𝜕𝜙(𝛿, 𝑡)

𝜕𝑡
 𝐾𝛿 𝑑𝛿

∞

0

 

(B1) 

Using the evolution equation Eq. 10, we can re-write the rate of change of force as  

𝐹̇ = ∫ (−𝑣
𝜕𝜙(𝛿, 𝑡)

𝜕𝛿
− 𝑘𝑑(𝛿)𝜙(𝛿, 𝑡) + 𝑘𝑎(𝑁 − 𝑁𝑎) 𝑝0(𝛿))  𝐾𝛿 𝑑𝛿

∞

0

 

                     = ∫ (−𝑣
𝜕𝜙(𝛿, 𝑡)

𝜕𝛿
− 𝑘𝑑(𝛿)𝜙(𝛿, 𝑡))  𝐾𝛿 𝑑𝛿

∞

0

+ ∫ 𝑘𝑎(𝑁 − 𝑁𝑎)𝐾𝛿 𝑝0(𝛿)  𝑑𝛿

∞

0

 

= ∫ (−𝑣
𝜕𝜙(𝛿, 𝑡)

𝜕𝛿
− 𝑘𝑑(𝛿)𝜙(𝛿, 𝑡))  𝐾𝛿 𝑑𝛿

∞

0

                                      

(B2) 

where using the property of Dirac delta function, 𝑝0(𝛿), the integral of the attachment term vanishes. Further, using 

integration by parts for the first term in the integrand, we get 

𝐹̇  =
 0  

−𝑣𝐾𝜙𝛿
 

|

0

∞

+ ∫ 𝑣𝜙𝐾𝑑𝛿

∞

0

− ∫ 𝑘𝑑(𝛿)𝜙(𝛿, 𝑡) 𝐾𝛿 𝑑𝛿

∞

0

 

                     =  𝑣𝐾𝑁𝑎 − ∫ 𝑘𝑑𝜙(𝛿, 𝑡) 𝐾𝛿 𝑑𝛿

∞

𝛿𝑐

                                                     

(B3) 

where Eq. 5a is used for the first integral term and Eq. 2 is used for the second integral term to simplify it into two different 

domains namely, (0, 𝛿𝑐) and (𝛿𝑐 , ∞), such that 𝑘𝑑(𝛿) = 0 in the first domain. The boundary term vanishes as a result of 

the condition that limδ→∞ 𝜙(𝛿)𝛿 = 0, assuming an Gaussian decay of 𝜙(𝛿) to zero at large 𝛿 values. Rewriting the second 

term of Eq. B3 using Eq. 5b, we obtain  

𝐹̇ =  𝑣𝐾𝑁𝑎 − 𝑘𝑑 (∫ 𝜙(𝛿, 𝑡) 𝐾𝛿 𝑑𝛿

∞

0

− ∫ 𝜙(𝛿, 𝑡) 𝐾𝛿 𝑑𝛿

𝛿𝑐

0

) 

    =  𝑣𝐾𝑁𝑎 − 𝑘𝑑(𝐹 − 𝐹𝑐)                                                            

(B4) 

where the critical wall force, 𝐹𝑐, is given in Eq. 11b.  

B.2 Derivation of the Steady State Creep Solution 

Let us consider evolution equation of the tether stretch distribution, Eq. 10. The last term, 𝑘𝑎(𝑁 − 𝑁𝑎) 𝑝0(𝛿), that 

corresponds to the tether re-attachment always contributes to the distribution function at 𝛿 = 0, as 𝑝0(𝛿) is assumed to 

be a Dirac delta function. Therefore, this term can be re-formulated as a source boundary condition at 𝛿 = 0 for 𝜙. Let the 

number of attached tethers at the stress-free configuration, 𝛿 = 0, be denoted by 𝑁0. The time rate of change of 𝑁0 is 

governed solely by attachment events and therefore can be written as  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/346924doi: bioRxiv preprint 

https://doi.org/10.1101/346924
http://creativecommons.org/licenses/by-nc/4.0/


A Statistical Model of Cell Wall Dynamics during Expansive Growth 

17 

 
𝑑𝑁0

𝑑𝑡
= 𝑘𝑎(𝑁 − 𝑁𝑎). (B5) 

Now, using 𝑑𝑁0 = 𝜙(0, 𝑡) 𝑑𝛿, and the definition of constant velocity of microfibrils, 𝑣𝑔 = 𝑑𝛿/𝑑𝑡, the above equation gives  

𝜙(0, 𝑡) =
𝑘𝑎

𝑣𝑔

(𝑁 − 𝑁𝑎). (B6) 

With the above boundary condition at 𝛿 = 0, the evolution equation, Eq. 10 reduces to  

𝜕𝜙(𝛿, 𝑡)

𝜕𝑡
=  {

 −𝑣𝑔

𝜕𝜙(𝛿, 𝑡)

𝜕𝛿
                                        𝛿 < 𝛿𝑐

−𝑣𝑔

𝜕𝜙(𝛿, 𝑡)

𝜕𝛿
− 𝑘𝑑𝜙(𝛿, 𝑡)                 𝛿 ≥ 𝛿𝑐 .

 (B7) 

At steady state creep, 𝜕𝜙/𝜕𝑡 =  0. Using Eqs. B6-B7, 𝜙(𝛿, 𝑡) can then be found by solving the PDE analytically in each 

domain, 𝛿 < 𝛿𝑐 and  𝛿 ≥ 𝛿𝑐, with the condition that the function 𝜙(𝛿, 𝑡) is continuous at 𝛿 = 𝛿𝑐. The solution is shown in 

Eq. 12.  

Using the solution in Eq. 12, the number of tethers below the threshold elongation (𝛿𝑐), denoted by 𝑁𝑐, and the critical 

wall force, 𝐹𝑐, are now given by  

𝑁𝑐 = ∫ 𝜙𝑠

𝛿𝑐

0

 𝑑𝛿 = 𝜙𝑠𝛿𝑐 (B8) 

𝐹𝑐 = ∫ 𝜙𝑠 𝐾𝛿 𝑑𝛿
𝛿𝑐

0

=
1

2
𝑁𝑐𝑓𝑐 (B9) 

where 𝜙
𝑠

= 𝑘𝑎(𝑁 − 𝑁𝑎)/𝑣𝑔. The number 𝑁𝑐 can also be obtained by integrating the evolution equation, Eq. 10, across all 

values of 𝛿 from 0 to ∞,  to give  

𝑑𝑁𝑎

𝑑𝑡
= −𝑘𝑑(𝑁𝑎 − 𝑁𝑐) + 𝑘𝑎(𝑁 − 𝑁𝑎) = 0 (B10) 

at steady-state creep.  

Therefore, solving the algebraic equations in Eq. B8-B10 along with Eq. 11a with 𝐹̇ = 0, gives the following expression for 

the fraction of attached tethers, 𝑁𝑎/𝑁, and critical wall force, 𝐹𝑐, as 

𝑁𝑎

𝑁
=

1 + 𝐴 − √𝐴2 − (𝑘𝑑 𝑘𝑎⁄ )2 + 𝐵

1 + (𝑘𝑑 𝑘𝑎⁄ )2
 (B11) 

𝐹𝑐

𝐹
=

𝑁𝑓𝑐

2𝐹
(

𝑁𝑎

𝑁
−

𝑘𝑎

𝑘𝑑
(1 −

𝑁𝑎

𝑁
)) (B12) 

where the terms 𝐴 = (𝐹 𝑁𝑓𝑐⁄ )(𝑘𝑑 𝑘𝑎⁄ + (𝑘𝑑 𝑘𝑎⁄ )2), and 𝐵 = (2 𝐹 𝑁𝑓𝑐⁄ )((𝑘𝑑 𝑘𝑎⁄ )2 − (𝑘𝑑 𝑘𝑎⁄ )3).  

 

B.3 Derivation of the Distribution Function during Stress Relaxation  

When a network undergoing steady creep at velocity, 𝑣𝑔, is suddenly stopped from further elongation at time, 𝑡 = 𝑡∗, the 

evolution equation of the distribution function Eq. B7 is modified for time 𝑡 > 𝑡∗ as  

𝜕𝜙(𝛿, 𝑡)

𝜕𝑡
=  {

 0                                        𝛿 < 𝛿𝑐

−𝑘𝑑𝜙(𝛿, 𝑡)                        𝛿 ≥ 𝛿𝑐 .
 (B13) 

where the initial condition is given by  

𝜙(𝛿, 𝑡∗) =  {
𝜙𝑠                                        𝛿 < 𝛿𝑐

𝜙𝑠 𝑒−𝑘𝑑(𝛿−𝛿𝑐)/𝑣𝑠                 𝛿 ≥ 𝛿𝑐.
 (B14) 

Eq. B13 shows that the distribution function does not change with time for tethers with elongation 𝛿 < 𝛿𝑐. The above 

equations B13-B14 are solved analytically to give  
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𝜙(𝛿, 𝑡 > 𝑡∗) =  {
𝜙𝑠                                                           𝛿 < 𝛿𝑐

𝜙𝑠 𝑒−𝑘𝑑(𝛿−𝛿𝑐)/𝑣𝑠 𝑒−𝑘𝑑(𝑡−𝑡∗)                 𝛿 ≥ 𝛿𝑐.
  (B14) 

that describes an exponential decay of the distribution function with rate 𝑘𝑑.  
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