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20 Abstract

21 A predictive biomarker can forecast whether a patient benefits from a specific treatment 

22 under study. To establish predictiveness of a biomarker, a statistical interaction between the 

23 biomarker status and the treatment group concerning the clinical outcome needs to be 

24 shown. In clinical trials looking at a binary outcome, linear or logistic regression models may 

25 be used to evaluate the interaction, but the effects in the two models are different and 

26 differently interpreted. Specifically, the effects are estimated as absolute risk reductions 

27 (ARRs) and odds ratios (ORs) in the linear and logistic model, thus measuring the effect on an 

28 additive and multiplicative scale, respectively.

29 We derived the relationship between the effects of the linear and the logistic regression 

30 model allowing for translations between the effect estimates between both models. In 

31 addition, we performed a comprehensive simulation study to compare the power of the two 

32 models under a variety of scenarios in different study designs. In general, the differences in 

33 power to detect interaction were minor, and visible differences were detected in rather 

34 unrealistic scenarios of effect size combinations and were usually in favor of the logistic 

35 model.

36 Based on our results and theoretical considerations, we recommend to 1) estimate logistic 

37 regression models because of their statistical properties, 2) test for interaction effects and 3) 

38 calculate and report both ARRs and ORs from these using the formulae provided.

39

40
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41 Introduction

42 Novel technologies and increased accumulated knowledge on the functional background of 

43 diseases have made the application of biomarkers in clinical studies increasingly popular. 

44 Their use is extremely diverse and includes serving as a tool for diagnosis, for staging the 

45 disease, for forecasting disease prognosis or for monitoring and predicting clinical response 

46 [1]. For many instances, it is most helpful to distinguish between prognostic biomarkers and 

47 predictive biomarkers [2].

48 Prognostic biomarkers can forecast the development of the disease. In a randomized clinical 

49 trial, this would usually be the outcome of the study such as remission. Importantly, this 

50 forecast is independent of the intervention but an overall prognosis. Put differently, patients 

51 with different prognostic biomarker profiles would have a different course of disease, 

52 regardless of the intervention group. For example, the epidermal growth factor receptor 

53 tyrosine kinase status is a prognostic factor for survival in patients with non-small cell lung 

54 cancer [3], irrespective of the treatment. Predictive biomarkers, in contrast, predict the 

55 effect of the intervention itself and therefore serve as companion diagnostic tests [4]. Thus, 

56 patients with different predictive biomarker values would differ in how likely they are to 

57 benefit from the specific therapy under study or to suffer from side effects. For instance, 

58 several studies have shown that eosinophil counts in peripheral blood are predictors for 

59 treatment response to Anti-IL-5 in patients with severe asthma [5-7].

60 Biomarkers are considered in clinical trials using different study designs, and these are 

61 described in detail in the literature [2, 4, 8]. Which design should be used depends, among 

62 other aspects, mostly on what is already known about the biomarker and the overall aim of 

63 the study. If the aim is to prove the predictiveness of a biomarker, all patients regardless of 

64 their biomarker status need to be randomized to the treatment groups. This is integrated in 
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65 the so-called “randomize-all” or “biomarker-stratified” design. Specifically, in the 

66 “randomize-all” design, eligible patients are randomized into the treatment groups before 

67 their biomarker status is assessed (Fig 1A). In the “biomarker-stratified randomization” 

68 design, the biomarker status is assessed first. Then, patients with positive and negative 

69 biomarker status are randomized separately (Fig 1B).

70

71 Fig 1. Trial designs used in the simulation study. (A) In the “randomize-all” design  patients 𝑛

72 are assigned irrespectively of their biomarker status to one the treatment groups based on 

73 the randomization factor . (B) In the “biomarker-stratified randomization” design,  𝛾 𝑛

74 patients are assigned to two randomizations based on their biomarker status.

75

76 If, in contrast, only patients with a positive biomarker status are randomized as in the 

77 “targeted” design, it can only be shown that there is a treatment effect in this group, which 

78 does not rule out that also biomarker negative patients benefit from the intervention, who 

79 were not investigated. Furthermore, for establishing a predictive biomarker the trial needs 

80 to show statistically that the treatment effect depends on the biomarker status, i.e., the 

81 interaction between treatment arm and biomarker status has to be established. However, it 

82 does not suffice to analyze biomarker positive and negative subgroups in separate trials and 

83 report an effect in one but not the other group [9]: Firstly, not finding the therapeutic effect 

84 in one group might be due to a lack of power. For example, in the study by Pant et al. [10] 

85 predictiveness of albumin for the treatment of advanced pancreatic cancer with 

86 bevacizumab was claimed on the finding of a positive effect in patients with normal baseline 

87 albumin but not in others. However, only 26 patients with non-normal serum albumin levels 

88 were included in the study. Hence, the confidence interval of the effect is very wide in this 
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89 subgroup and indeed includes the effect observed in patients with normal serum albumin. 

90 Consequently, it cannot be ruled out that the effect was only not detected in the smaller 

91 group, and no interaction between the treatment and albumin can be observed. A second 

92 reason against claiming predictiveness based on the analysis of subgroups only is that even if 

93 there are effects in both subgroups, predictiveness of the biomarker cannot be excluded, 

94 because the therapeutic effect might be weaker (quantitative interaction) or in the opposite 

95 direction (qualitative interaction) in the second subgroup.

96 In the following, we will describe the statistical methods to evaluate the biomarker-by-

97 treatment interaction that needs to be shown for the predictiveness of a biomarker.

98 Statistical evaluation of biomarker-by-treatment interaction

99 The statistical method of choice to evaluate the biomarker-by-treatment interaction 

100 depends on the data, i.e., the scale of the outcome variable and additional covariables that 

101 are to be included in the model. In the following, we will focus on the simple setting of a 

102 dichotomous outcome without further covariables. As a first approach, a linear regression 

103 framework can be used in which the risk or probability of the dichotomous outcome y (e.g. 

104 therapy success) is modeled as a function of the dichotomous variables treatment , 𝑇

105 biomarker status , and treatment-by-biomarker interaction  with𝐵 𝑇𝐵

106 .𝑃(𝑦 = 1|𝑇,𝐵) = 𝛽0 + 𝛽𝑇𝑇 + 𝛽𝐵𝐵 + 𝛽𝑇𝐵𝑇𝐵

107 Here,  or  if a patient receives the control treatment or the experimental 𝑇 = 0 𝑇 = 1

108 treatment,  or  if a patient is biomarker negative or positive, and  only if a 𝐵 = 0 𝐵 = 1 𝑇𝐵 = 1

109 biomarker positive patient receives the experimental treatment. Through this, the 

110 coefficients  and  can be interpreted as the increase in risk with a change in the 𝛽𝑇 𝛽𝐵

111 treatment group and the biomarker status, respectively. The interpretation of these effect 
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112 estimates as absolute risk reductions (ARRs) is beneficial since it can be directly related to 

113 the number needed to treat (NNT=1/ARR) [11]. The coefficient  indicates whether the 𝛽𝑇𝐵

114 influence of T and B on y is independent, in which case it would equal 0. If it deviates from 0, 

115 there is a statistical interaction between T and B regarding the risk of the outcome on the 

116 additive scale [12].

117 However, this model has some statistical disadvantages. For example, the predicted 

118 probability might be out of the range of possible values between 0 and 1. The standard 

119 statistical model for analyzing dichotomous outcome in the life sciences therefore is the 

120 logistic regression model. Here, the log odds of the outcome y is modeled as a function of T 

121 and B and their interaction  by𝑇𝐵

122  .logit(𝑃(𝑦 = 1|𝑇,𝐵)) = 𝑏0 + 𝑏𝑇𝑇 + 𝑏𝐵𝐵 + 𝑏𝑇𝐵𝑇𝐵

123 From this, the coefficients  and  can be exponentiated to be interpreted as the increase 𝑏𝑇 𝑏𝐵

124 in odds of the outcome with a change in the treatment group and the biomarker status, 

125 respectively. The coefficient , when exponentiated, then measures the treatment-by-𝑏𝑇𝐵

126 biomarker interaction as the odds ratio (OR) on the multiplicative scale. One advantage of 

127 this model is that the predicted outcome probability will be guaranteed to lie between 0 and 

128 1. Furthermore, the logit link is the natural parameter from the linear exponential family 

129 which provides excellent statistical properties. 

130 The linear and the logistic models are different, they have different effect sizes. This can be 

131 seen from S1 Appendix in which we have derived the relation between ARRs from the linear 

132 probability model and ORs from the logistic regression model.

133 Concerning the interaction effect, it can be shown that the models lead to different results, 

134 meaning that the evidence for interaction will differ in strength, and that interaction in one 

135 model does not imply interaction in the other. For example, in the study by Bokemeyer et al. 
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136 [13], patients with metastatic colorectal cancer had been randomized to receive FOLFOX-4 

137 with or without cetuximab and were screened for K-ras mutations. A randomize-all design 

138 was used, and, amongst other criteria, the best overall response in both K-ras positive and 

139 negative patients was analyzed separately. We re-analyzed the data presented in the paper 

140 and derived that the relative risk of response from a linear regression model under 

141 cetuximab plus FOLFOX-4 versus FOLFOX-4 only was 1.68 in the wild type and 0.64 in the 

142 mutation group, respectively. The corresponding p-value for the interaction was 0.00019. In 

143 the logistic regression model, the odds ratio of response was 2.60 in the wild type and 0.46 

144 in the mutation group, respectively, with an interaction p-value of 0.00023. Therefore, even 

145 though interaction was established in both models, the p-values differ [13]. 

146 Therefore, given the statistical advantage of the logistic regression model over the linear 

147 probability model, one may question the use of the linear regression model in this setting in 

148 general. However, it has been shown that the statistical problems may not be as large as 

149 anticipated [12, 14] and that, considering the interpretation of the effects, there are indeed 

150 some merits to the linear model. As notional example, we consider the data in Table 1 (left), 

151 showing the risk or probability of an outcome depending on the treatment and biomarker 

152 status. In this example, changing the biomarker status from negative to positive always 

153 increases the risk by 20%, and changing the treatment from control to experimental always 

154 increases the risk by 40%. Thus, there is no additive biomarker by treatment interaction. We 

155 now assume that we wish to select patients who will benefit most from the treatment. If 

156 there were 100 patients each who were biomarker positive and negative, 10 and 30 would 

157 reach a positive outcome, respectively, under control treatment (Fig 2A). Switching to the 

158 experimental treatment instead, the numbers could be increased to 50 and 70, respectively. 

159 This means that in either biomarker group, 20 patients would benefit from the experimental 
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160 treatment, indicating that the biomarker status does not need to be taken into account 

161 when offering the treatment, which is mirrored by the lack of an additive interaction. 

162 Consider now the data in Table 1 (right), where changing the biomarker status from negative 

163 to positive increases the risk by 10% under control but by 30% under the experimental 

164 therapy, and changing the treatment from control to experimental increases the risk by 20% 

165 for biomarker negative and by 40% for biomarker positive patients. Phrased differently, 

166 changing the biomarker status is always associated with doubling the risk, and changing the 

167 therapy regimen with a 3-fold increase. In this case, there is therefore no multiplicative 

168 interaction. Translating these risks into patient numbers who will benefit from the treatment 

169 (Fig 2B) now shows that by switching the treatment from control to experimental would 

170 benefit 20 biomarker-negative but 40 biomarker-positive patients. Given limited resources, 

171 it might therefore be reasonable to offer the experimental treatment preferably to 

172 biomarker positive patients, even though there is no biomarker by treatment interaction on 

173 the multiplicative scale. From a health economic point of view, it can therefore be argued 

174 that interaction on the additive scale, thus use of the linear regression model, should at least 

175 complement the logistic regression model.

176

177 Table 1. Notional risk of outcome.

No additive interaction No multiplicative interaction

Treatment B = 0 B = 1 B = 0 B = 1

T = 0 0.1 0.3 0.1 0.2

T = 1 0.5 0.7 0.3 0.6

178 Notional risk of outcome in biomarker negative (B = 0) and biomarker positive (B = 1) 
179 patients in the control (T = 0) and experimental treatment group (T = 1) in the scenario of no 
180 additive interaction (left) and no multiplicative interaction (right).
181
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182 Fig 2. Number of patients with a positive outcome. Based on a sample size of 100 in every 

183 constellation in the scenario of (A) no additive interaction and (B) no multiplicative 

184 interaction as specified in Table 1. Solid line: biomarker negative, dashed line: biomarker 

185 positive.

186

187 Given that interactions on both scales can occur, are relevant and should be analyzed, we 

188 need to know how powerful the statistical analyses will be. More specifically, if there is an 

189 additive interaction, how likely will this be detected using the “false” model, i.e., the logistic 

190 regression? Vice versa, how likely is it to detect a multiplicative interaction when using the 

191 linear regression? To answer these questions, we performed a simulation study that will be 

192 described in the following.

193 Methods

194 Simulation framework

195 In our simulation we start from a population with individuals affected and unaffected by the 

196 disease under study, which is indicated by the disease status . Additional to the 𝐷 ∈ {1, 0}

197 general probability of developing the disease, the probability might be influenced by having 

198 or having not a certain biomarker status . A random sample  of the diseased 𝐵 ∈ {1,0} 𝑅

199 individuals is recruited to a clinical trial, comparing an experimental treatment with the 

200 control treatment, denoted by . The trial aims to answer the research question 𝑇 ∈ {1,0}

201 whether the biomarker  is predictive, i.e., whether it modifies the probability of treatment 𝐵

202 success .𝑦 ∈ {1,0}

203 Population simulation
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204 We define the prevalence of a dichotomous biomarker  by . Populations are 𝐵 𝑃(𝐵 = 1) = 𝜙

205 simulated by modelling the disease probability by

logit(𝑃(𝐷 = 1│𝐵)) = 𝑏𝐷
0 + 𝑏𝐷

𝐵𝐵 ( 1 )

206 and sampling the disease status  from a Bernoulli distribution with probability 𝐷 𝑃(

207 . Here,  is the baseline  of the disease and  is a prognostic effect (𝐷 = 1│𝐵)) 𝑏𝐷
0 log (𝑜𝑑𝑑𝑠) 𝑏𝐷

𝐵

208 of the biomarker .𝐵

209 Trial designs

210 As illustrated in Fig 1, in the “randomize-all” design  patients are drawn randomly from a 𝑛

211 simulated population. Based on the randomization factor ,  randomly chosen 𝛾 ∈ (0,1) 𝛾𝑛

212 patients receive the biomarker guided treatment ( ) and  randomly chosen 𝑇 = 1 (1 ‒ 𝛾)𝑛

213 patients receive the control treatment ( ). After the assignment to a treatment arm the 𝑇 = 0

214 biomarker status is revealed. Thus, the numbers of biomarker positive (  and biomarker 𝑛 + )

215 negative  patients in each treatment group are determined by the biomarker (𝑛 ‒ )

216 prevalence . In the “biomarker-stratified randomization” design the biomarker status is 𝜙

217 revealed before randomization. This enables to draw  biomarker positive and  𝑛 + 𝑛 ‒

218 biomarker negative,  in total, patients from a simulated population. By 𝑛 = 𝑛 + + 𝑛 ‒

219 specifying  and  , the prevalence of the biomarker under consideration is not reflected 𝑛 ‒ 𝑛 +

220 in this design. In each biomarker stratum, the randomization factors  and 𝛾 + ∈ (0,1) 𝛾 ‒

221  determine the proportion of patients receiving control or biomarker guided ∈ (0,1)

222 treatment.

223 Data simulation
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224 In the present simulation study, treatment success is simulated on both the linear and 

225 logistic scale in both trial designs for varying parameters. The procedure to simulate this 

226 data is as follows: 

227 1. Draw  patients from a population based on formula ( 1 ).𝑛

228 2. Assign patients to treatment arms based on  or  and , depending on the trial 𝛾 𝛾 + 𝛾 ‒

229 design.

230 3. Calculate the treatment success probability  by applying either 𝑃(𝑦 = 1)

𝑃(𝑦 = 1│𝑇, 𝐵) = expit(𝑏0 + 𝑏𝑇𝑇 + 𝑏𝐵𝐵 + 𝑏𝑇𝐵𝑇𝐵) ( 2 )

231 or

𝑃(𝑦 = 1│𝑇,𝐵) = 𝜇 + 𝛽𝑇𝑇 + 𝛽𝐵𝐵 + 𝛽𝑇𝐵𝑇𝐵 ( 3 )

232 for every patient with  , and  and  denote the treatment and expit(𝑐) =
exp (𝑐)

1 + exp (𝑐) 𝑇 𝐵

233 biomarker status, respectively.

234 4. Sample the treatment success from a Bernoulli distribution using the probability from 

235 formula ( 2 ) or ( 3 ).

236 We consider  as prevalence for the biomarker, and we use  and 𝜙 ∈ {0.1, 0.25, 0.5} 𝑏𝐷
0 = 0 𝑏𝐷

𝐵

237  to simulate populations, i.e., there is no prognostic effect of the biomarker. We create = 0

238 study populations of sizes . In case of the “biomarker-stratified 𝑛 ∈ {100, 200, 500, 1000}

239 randomization” trial either half of the study population is biomarker positive and the other 

240 half is biomarker negative; alternatively, the proportion of biomarker positive patients is 

241 determined by the biomarker prevalence in the respective simulated population, i.e. 

242 specifying  explicitly or specifying only , and from this follows . We 𝑛 + = 𝑛 ‒ =
𝑛
2 𝑛 𝑛 + ≈ 𝜙𝑛

243 use  as randomization factors, and in the “biomarker-stratified 𝛾,𝛾 + ,𝛾 ‒ ∈ {0.25, 0.5, 0.75}

244 randomization” trial all combinations of the values of  and  are considered. The effect 𝛾 + 𝛾 ‒
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245 sizes to determine the treatment success probability are the cross-product of a range of 

246 possible values. On the linear scale we use 

247  , 𝛽0 = 0.5

248  ,𝛽𝑇 ∈ {0, 0.1, 0.2, 0.3, 0.4}

249   and𝛽𝐵 ∈ { ‒ 0.4, ‒ 0.3, ‒ 0.2, ‒ 0.1, 0, 0.1, 0.2, 0.3, 0.4}

250  .𝛽𝑇𝐵 ∈ { ‒ 0.4, ‒ 0.3, ‒ 0.2, ‒ 0.1, 0, 0.1, 0.2, 0.3, 0.4}

251 Combinations of effect sizes leading to a probability of therapy success less than 0 or greater 

252 than 1 are excluded, e.g. , , ,  is not valid.𝛽0 = 0.5 𝛽𝑇 = 0 𝛽𝐵 =‒ 0.4 𝛽𝑇𝐵 =‒ 0.4

253 On the logistic scale we use

254  ,𝑏0 = 0

255   corresponding to 𝑏𝑇 ∈ {0, 0.2231, 0.4055, 0.5596, 0.6931} OR

256 ,∈ {1,1.25,1.50,1.75,2}

257   𝑏𝐵 ∈ { ‒ 0.6931, ‒ 0.5596, ‒ 0.4055, ‒ 0.2231, 0, 0.2231, 0.4055, 0.5596, 0.6931}
258 corresponding to 𝑂𝑅 ∈ {0.5, 0.5713, 0.6667, 0.8, 1, 1.25, 1.5, 1.75, 2}

259  𝑏𝑇𝐵
260  ∈ { ‒ 0.6931, ‒ 0.5596, ‒ 0.4055, ‒ 0.2231, 0, 0.2231, 0.4055, 0.5596, 0.6931}

261 corresponding to .𝑂𝑅 ∈ {0.5, 0.5713, 0.6667, 0.8, 1, 1.25, 1.5, 1.75, 2}

262 In total, we use 680 unique effect size combinations for our simulations. Note that effect size 

263 combinations having  or  act as null models for the respective regression 𝛽𝑇𝐵 = 0 𝑏𝑇𝐵 = 0

264 model analysis. 

265 Analyses

266 All simulated data sets are analyzed using both linear and logistic models. Following Kraft et 

267 al. [15], the likelihood ratio-based deviance test between the saturated model 
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logit(𝜋) = 𝑏0 + 𝑏𝑇𝑇 + 𝑏𝐵𝐵 + 𝑏𝑇𝐵𝑇𝐵 ( 4 )

268 or

,𝜋 = 𝜇 + 𝛽𝑇𝑇 + 𝛽𝐵𝐵 + 𝛽𝑇𝐵𝑇𝐵 ( 5 )

269 where and a model considering both main effects of treatment and 𝜋 = 𝑃(𝐷 = 1│𝐵), 

270 biomarker but no interaction effect (restricted deviance test) is calculated. In addition, a 

271 Wald-like test on the null hypotheses  (logistic regression model) or  𝐻0:𝑏𝑇𝐵 = 0 𝐻0:𝛽𝑇𝐵 = 0

272 (linear regression model) in the respective saturated models ( 4 ) and ( 5 ) is performed. To 

273 obtain reliable estimates for the power to detect an interaction between treatment and 

274 biomarker effect, 1000 replicates are run. For each replicate it is noted whether the two-

275 sided p-value of the respective test is less than .𝛼 = 0.05

276 All simulations and analyses are done in R 3.3.1 [16] utilizing the R package batchtools [17]. 

277 The code is available in the supplement (S2 Appendix).

278 Results

279 Table 2 shows the estimated frequency of type I errors of the interaction test, i.e., the 

280 restricted deviance test, in logistic and linear regression models to detect a interaction effect 

281 simulated via the linear (upper part) or logistic (lower part) model. Given are the frequencies 

282 in the “randomize-all” trial design with biomarker prevalence  and randomization 𝜙 = 0.1

283 factor  for some selected effect size combinations with no (  and 𝛾 = 0.5 𝑏𝑇𝐵 = log (1) 𝛽𝑇𝐵

284 ), moderate (  or  and ) and strong (  = 0 𝑏𝑇𝐵 = log (1.5) 𝑏𝑇𝐵 = log (
2
3) 𝛽 =± 0.2 𝑏𝑇𝐵 = log (0.5)

285 or  and ) effects. The effect sizes are given on both the linear and 𝑏𝑇𝐵 = log (2) 𝛽 =± 0.4

286 logistic scale for sample sizes  and , sorted by the biomarker main effects 𝑛 = 200 𝑛 = 500

287 (Table 2). Other scenarios meeting these restrictions but not displayed are redundant such 

288 that the effects , ,  or  have opposite signs or are permuted.𝛽𝑇 𝛽𝐵 𝑏𝑇 𝑏𝐵
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289

290 Table 2. Estimated type I error frequency at the nominal two-sided 0.05 test-level in the 

291 “randomize-all” design.

       n = 200 n = 500

Scen 𝛽𝑇 𝛽𝐵 𝛽𝑇𝐵 bT bB bTB logistic linear logistic linear

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.060 0.046 0.057 0.053

2 0.0000 -0.1000 0.0000 0.0000 -0.4055 0.0000 0.054 0.040 0.053 0.046

3 0.0000 -0.2000 0.0000 0.0000 -0.8473 0.0000 0.064 0.026 0.058 0.038

4 0.0000 -0.4000 0.0000 0.0000 -2.1972 0.0000 0.043 0.004 0.086 0.006

5 0.4000 -0.4000 0.0000 2.1972 -2.1972 0.0000 0.039 0.045 0.068 0.051

6 0.0000 -0.1667 0.0000 0.0000 -0.6931 0.0000 0.062 0.029 0.048 0.035

7 0.1667 -0.1667 0.0000 0.6931 -0.6931 0.0000 0.062 0.044 0.052 0.050

292 Frequency estimates are based on the likelihood ratio-based restricted deviance test in the 

293 “randomize-all” trial design with biomarker prevalence  and randomization factor 𝜙 = 0.1

294 .  and  Scen = Number of scenario with respective effect size 𝛾 = 0.5 𝛽0 = 0.5 𝑏0 = 0.

295 combination , ,  or bT, bB, bTB. Logistic and linear refer to the type I error frequency in 𝛽𝑇 𝛽𝐵 𝛽𝑇𝐵

296 the logistic and linear regression model, respectively.

297

298 Table 2 shows that the frequency of type I errors for the restricted deviance test in both 

299 regression models mainly is near to , as expected, and thus in line with the specified 0.05

300 significance level of α . However, in some scenarios the linear and logistic model = 0.05

301 deviate from the specified significance level. Based on Bradley’s liberal criterion of 

302 robustness [18], the type I error frequency should be between 0.025 and 0.075. Both the 

303 logistic and the linear model fail to fall into this range in scenario 4, which is characterized by 

304 a single strong main effect. The total number and percentage of scenarios violating Bradley’s 
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305 criterion in the “randomize-all” design is shown in Table 3. In total, 54 times (5% of all 

306 scenarios) the logistic model has a type I error outside Bradley’s bounds, whereas the linear 

307 model violates this criterion 123 times (11% of all scenarios). Comparing the numbers per 

308 model and criterion bound, it is of special interest that the logistic model tends to violate the 

309 upper bound (liberal) whereas the linear model tends to violate the lower bound 

310 (conservative).

311

312 Table 3. Number of scenarios in which type I error frequencies deviate from Bradley’s 

313 criterion [18] in the “randomize-all” design.

n = 100 n = 200 n = 500 n = 1000 Σ

> 0.075 23 (8%) 22 (8%) 5 (2%) 2 (1%) 52 (5%)

< 0.025 0 (0%) 2 (1%) 0 (0%) 0 (0%) 0 (0%)logistic

Σ 23 (8%) 24 (8%) 5 (2%) 2 (1%) 54 (5%)

> 0.075 5 (2%) 6 (2%) 5 (2%) 5 (2%) 21 (2%)

< 0.025 32 (11%) 25 (9%) 23 (8%) 22 (8%) 102 (9%)linear

Σ 37 (13%) 31 (11%) 28 (10%) 27 (9%) 123 (11%)

314 Based on the likelihood ratio-based restricted deviance test in the “biomarker-stratified” 

315 trial design. All 1152 scenarios with  are considered.𝛽𝑇𝐵 = 𝑏𝑇𝐵 = 0

316

317 We next look at the power of the restricted deviance test to detect an interaction effect 

318 simulated via the linear (Table 4, upper part) or logistic (Table 4, lower part) model in the 

319 same setting, i.e., the “randomize-all” trial design with the same effect specifications as 

320 before. Results are sorted by the interaction effects.

321
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322 Table 4. Estimated power at the nominal two-sided 0.05 test-level in the “randomize-all” 

323 design.

       n = 200 n = 500

Scen 𝛽𝑇 𝛽𝐵 𝛽𝑇𝐵 bT bB bTB logistic linear logistic linear

8 0.2000 -0.4000 0.0000 0.8473 -2.1972 0.5026 0.077 0.015 0.108 0.017

9 0.0000 -0.1000 0.1000 0.0000 -0.4055 0.4055 0.084 0.065 0.107 0.102

10 0.0000 0.0000 -0.1000 0.0000 0.0000 -0.4055 0.080 0.064 0.105 0.100

11 0.1000 -0.1000 -0.1000 0.4055 -0.4055 -0.4055 0.086 0.072 0.105 0.100

12 0.1000 -0.1667 -0.1000 0.4055 -0.6931 -0.4055 0.085 0.062 0.103 0.097

13 0.1667 -0.1667 -0.1000 0.6931 -0.6931 -0.4055 0.076 0.059 0.113 0.115

14 0.0000 -0.4000 0.2000 0.0000 -2.1972 1.3499 0.218 0.084 0.423 0.239

15 0.0000 0.0000 -0.2000 0.0000 0.0000 -0.8473 0.144 0.113 0.282 0.258

16 0.0000 -0.2000 -0.2000 0.0000 -0.8473 -1.3499 0.204 0.071 0.436 0.227

17 0.2000 -0.4000 -0.2000 0.8473 -2.1972 -0.8473 0.077 0.054 0.156 0.223

18 0.4000 -0.4000 -0.2000 2.1972 -2.1972 -0.8473 0.088 0.148 0.160 0.376

19 0.0000 -0.2000 0.4000 0.0000 -0.8473 1.6946 0.437 0.401 0.770 0.764

20 0.0000 -0.4000 0.4000 0.0000 -2.1972 2.1972 0.556 0.404 0.881 0.799

21 0.2000 -0.4000 0.4000 0.8473 -2.1972 2.1972 0.513 0.396 0.876 0.827

22 0.1000 0.1000 -0.0077 0.4055 0.4055 0.0000 0.067 0.038 0.052 0.040

23 0.1000 0.1667 -0.0167 0.4055 0.6931 0.0000 0.070 0.040 0.063 0.042

24 0.1667 0.1667 -0.0333 0.6931 0.6931 0.0000 0.063 0.035 0.059 0.036

25 0.1000 -0.1667 -0.0048 0.4055 -0.6931 0.0000 0.065 0.050 0.059 0.050

26 0.1000 0.1000 0.0714 0.4055 0.4055 0.4055 0.095 0.042 0.096 0.056

27 0.1000 0.1667 0.0515 0.4055 0.6931 0.4055 0.080 0.030 0.107 0.042

28 0.1667 0.1667 0.0238 0.6931 0.6931 0.4055 0.073 0.028 0.096 0.026

29 0.0000 -0.1667 0.0952 0.0000 -0.6931 0.4055 0.090 0.061 0.102 0.090
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30 0.1000 -0.1667 0.0961 0.4055 -0.6931 0.4055 0.089 0.068 0.100 0.092

31 0.0000 -0.1000 -0.0923 0.0000 -0.4055 -0.4055 0.080 0.044 0.093 0.082

32 0.0000 -0.1667 -0.0833 0.0000 -0.6931 -0.4055 0.081 0.037 0.108 0.067

33 0.1667 0.1667 -0.1061 0.6931 0.6931 -0.4055 0.089 0.074 0.088 0.097

34 0.1000 0.1000 0.1182 0.4055 0.4055 0.6931 0.126 0.048 0.181 0.095

35 0.1000 0.1667 0.0905 0.4055 0.6931 0.6931 0.106 0.036 0.168 0.058

36 0.1667 0.1667 0.0556 0.6931 0.6931 0.6931 0.098 0.030 0.174 0.027

37 0.0000 -0.1000 0.1714 0.0000 -0.4055 0.6931 0.132 0.110 0.235 0.227

38 0.0000 -0.1667 0.1667 0.0000 -0.6931 0.6931 0.141 0.108 0.207 0.194

39 0.1000 -0.1667 0.1667 0.4055 -0.6931 0.6931 0.141 0.113 0.196 0.184

40 0.0000 0.0000 -0.1667 0.0000 0.0000 -0.6931 0.123 0.097 0.202 0.191

41 0.0000 -0.1000 -0.1500 0.0000 -0.4055 -0.6931 0.112 0.065 0.184 0.145

42 0.0000 -0.1667 -0.1333 0.0000 -0.6931 -0.6931 0.116 0.049 0.196 0.121

43 0.1000 -0.1000 -0.1667 0.4055 -0.4055 -0.6931 0.127 0.107 0.211 0.203

44 0.1000 -0.1667 -0.1606 0.4055 -0.6931 -0.6931 0.124 0.096 0.197 0.183

45 0.1667 -0.1667 -0.1667 0.6931 -0.6931 -0.6931 0.122 0.108 0.202 0.211

46 0.1000 0.1000 -0.1706 0.4055 0.4055 -0.6931 0.139 0.123 0.190 0.188

47 0.0000 0.0000 -0.4000 0.0000 0.0000 -2.1972 0.512 0.355 0.881 0.803

48 0.4000 -0.4000 -0.4000 2.1972 -2.1972 -2.1972 0.283 0.533 0.564 0.963

324 Power estimates are based on the likelihood ratio-based restricted deviance test in the 

325 “randomize-all” trial design with biomarker prevalence  and randomization factor 𝜙 = 0.1

326 .  and . Scen = Number of scenario with respective effect size 𝛾 = 0.5 𝛽0 = 0.5 𝑏0 = 0

327 combination , ,  or bT, bB, bTB. Logistic and linear refer to the power in the logistic and 𝛽𝑇 𝛽𝐵 𝛽𝑇𝐵

328 linear regression model, respectively.

329
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330 In some effect size combinations, an interaction effect is present only on one scale. In 

331 scenario 8 an interaction effect is present only on the logistic scale. The interaction effect 

332 size is rather small compared to the other effect sizes simulated, namely , 𝑏𝑇𝐵 = 0.5026

333 rendering an odds ratio of . Correspondingly, the power in the logistic regression 1.6530

334 model to detect the interaction effect is very low at 0.077 (n=200) or 0.108 (n=500). 

335 Conversely, scenarios 22 to 25 (Table 4, lower part) reflect the situation of no interaction 

336 effect on the logistic scale but only on the linear scale. As in scenario 8 on the logistic scale, 

337 the interaction effect sizes are rather small on the linear scale and the power in the linear 

338 regression model is very low at 0.035 – 0.05 (n=200) or 0.036 – 0.05 (n=500).

339 The biggest differences in terms of power between the logistic and linear regression models 

340 can be seen if the interaction effect sizes are most extreme and either no or main effects 

341 with opposite signs are present. For example, in scenario 48, the restricted deviance test in 

342 the linear regression model achieves a power of , whereas the restricted deviance test 0.533

343 in the logistic regression model achieves a power of  for sample size . This 0.283 𝑛 = 200

344 scenario is characterized by a strong negative predictive effect of the biomarker, a positive 

345 treatment effect and a strong negative interaction as illustrated in Fig 3A. In other scenarios, 

346 the deviance test in the logistic regression model achieves a higher power than in the linear 

347 regression model, for example, in scenarios 14, 16, and 20. Here the difference is between 

348  and , which is illustrated in Fig 3B for scenario 20. These are described by no ~0.13 ~0.15

349 treatment effects and a negative predictive effect of the biomarker with an additional 

350 interaction effect. For all other effect size combinations the differences in terms of power 

351 are negligible.

352 S1 and S2 Tables list the corresponding type I error frequency and estimated power for the 

353 same effect size combinations as Tables 2 and 4 in the “biomarker-stratified” trial design 
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354 with biomarker prevalence , randomization factors ,  and  𝜙 = 0.1 𝛾 + = 𝛾 ‒ = 0.5 𝑛 + 𝑛 ‒

355 determined by the prevalence of the biomarker . As the same sample sizes are eventually 𝜙

356 available in the four groups, the estimated frequencies are very similar to those observed in 

357 the “randomize-all” trial design. Interestingly, the total number of scenarios violating 

358 Bradley’s liberal criterion of robustness in the “biomarker-stratified” design with sample 

359 sizes determined by the prevalence of the biomarker (Table 5) is much higher than in the 

360 “randomize-all” design (Table 3). Both regression models violate the criterion in about 9% of 

361 the scenarios with  (logistic 317 times, linear 309 times). Again, the logistic 𝛽𝑇𝐵 = 𝑏𝑇𝐵 = 0

362 model tends to be liberal, violating the upper criterion bound, whereas the linear model 

363 tends to be conservative, violating the lower criterion bound.

364

365 Fig 3. Illustration of scenarios with notable power differences between regression models. 

366 Number of patients with a positive outcome. Based on a sample size of 100 in every 

367 constellation in (A) scenario 48 characterized by a strong negative predictive effect of the 

368 biomarker, a positive treatment effect and a strong negative interaction and in (B) scenario 

369 20 characterized by no treatment effects and a negative predictive effect of the biomarker 

370 with an additional interaction effect.

371

372 Table 5. Number of scenarios in which type I error frequencies deviate from Bradley’s 

373 criterion [18] in the “biomarker-stratified” design.

n = 100 n = 200 n = 500 n = 1000 Σ

> 0.075 171 (20%) 109 (13%) 17 (2%) 11 (1%) 308 (9%)

< 0.025 2 (0%) 7 (1%) 0 (0%) 0 (0%) 9 (0%)logistic

Σ 173 (20%) 116 (13%) 17 (2%) 11 (1%) 317 (9%)
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> 0.075 13 (2%) 14 (2%) 14 (2%) 14 (2%) 55 (2%)

< 0.025 72 (8%) 63 (7%) 61 (7%) 58 (7%) 254 (7%)linear

Σ 85 (10%) 77 (9%) 75 (9%) 72 (8%) 309 (9%)

374 Based on the likelihood ratio-based restricted deviance test in the “biomarker-stratified” 

375 trial design with  and  determined by . All 3456 scenarios with  are 𝑛 + 𝑛 ‒ 𝜙 𝛽𝑇𝐵 = 𝑏𝑇𝐵 = 0

376 considered.

377

378 Finally, Tables 6, 7 and 8 list the corresponding type I error frequency, scenarios in which the 

379 type I error frequencies deviate from Bradley’s criterion, and estimated power for the same 

380 effect size combinations with randomization factors  and fixed proportions of 𝛾 + = 𝛾 ‒ = 0.5

381 biomarker positive and biomarker negative patients ( . It is therefore 𝑛 + = 𝑛 ‒ = 𝑛
2)

382 assumed that out of a larger patients’ group with biomarker information, only a specified 

383 number is selected and included in the trial, so that there is an equal number of biomarker 

384 positive and negative cases. In this situation, the estimated type I error is very close to the 

385 expected  in all scenarios with no interaction effect (Table 6), even in scenario 4. 0.05

386 Remarkably, in this trial design, the lowest numbers of scenarios violating Bradley’s criterion 

387 of robustness is observed (Table 7). The logistic model violates the criterion 36 times and the 

388 linear model 81 times, both about 1% of all scenarios with  and  fixed 𝛽𝑇𝐵 = 𝑏𝑇𝐵 = 0 𝑛 + , 𝑛 ‒

389 at . Unexpectedly, in this setting the linear model also tends to be liberal.
𝑛
2

390

391 Table 6. Estimated type I error frequency at the nominal two-sided 0.05 test-level in the 

392 “biomarker-stratified” design with fixed proportion of biomarker positive and negative 

393 patients.
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       n = 200 n = 500

Scen 𝛽𝑇 𝛽𝐵 𝛽𝑇𝐵 bT bB bTB logistic linear logistic linear

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.054 0.054 0.054 0.054

2 0.0000 -0.1000 0.0000 0.0000 -0.4055 0.0000 0.061 0.059 0.045 0.045

3 0.0000 -0.2000 0.0000 0.0000 -0.8473 0.0000 0.049 0.046 0.044 0.045

4 0.0000 -0.4000 0.0000 0.0000 -2.1972 0.0000 0.055 0.047 0.051 0.050

5 0.4000 -0.4000 0.0000 2.1972 -2.1972 0.0000 0.060 0.055 0.056 0.049

6 0.0000 -0.1667 0.0000 0.0000 -0.6931 0.0000 0.046 0.047 0.044 0.041

7 0.1667 -0.1667 0.0000 0.6931 -0.6931 0.0000 0.053 0.045 0.044 0.045

394 Frequency estimates are based on the likelihood ratio-based restricted deviance test in the 

395 “biomarker-stratified” trial design with biomarker prevalence , randomization factors 𝜙 = 0.1

396  and .  and . Scen = Number of scenario with 𝛾 + = 𝛾 ‒ = 0.5 𝑛 + = 𝑛 ‒ =
𝑛
2 𝛽0 = 0.5 𝑏0 = 0

397 respective effect size combination , ,  or bT, bB, bTB. Logistic and linear refer to the type 𝛽𝑇 𝛽𝐵 𝛽𝑇𝐵

398 I error frequency in the logistic and linear regression model, respectively. 

399

400 Table 7. Number of scenarios in which type I error frequencies deviate from Bradley’s 

401 criterion [18] in the “biomarker-stratified” design.

n = 100 n = 200 n = 500 n = 1000 Σ

> 0.075 27 (3%) 9 (1%) 0 (0%) 0 (0%) 36 (1%)

< 0.025 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)logistic

Σ 27 (3%) 9 (1%) 0 (0%) 0 (0%) 36 (1%)

> 0.075 18 (2%) 15 (2%) 6 (1%) 18 (2%) 57 (2%)

< 0.025 9 (1%) 9 (1%) 3 (0%) 3 (0%) 24 (1%)linear

Σ 27 (3%) 24 (3%) 9 (1%) 21 (2%) 81 (2%)
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402 Based on the likelihood ratio-based restricted deviance test in the “biomarker-stratified” 

403 trial design with . All 3456 scenarios with  are considered.𝑛 + = 𝑛 ‒ =
𝑛
2 𝛽𝑇𝐵 = 𝑏𝑇𝐵 = 0

404

405 Similar as in the previous designs, if an interaction effect is present only on one scale, it is 

406 hard to detect, resulting in a low power. In general, however, the pattern of the estimated 

407 power is very similar to before, with an overall higher power due to balanced sample sizes.

408

409 Table 8. Estimated power at the nominal two-sided 0.05 test-level in the “biomarker-

410 stratified” design with fixed proportion of biomarker positive and negative patients.

       n = 200 n = 500

Scen 𝛽𝑇 𝛽𝐵 𝛽𝑇𝐵 bT bB bTB logistic linear logistic linear

8 0.2000 -0.4000 0.0000 0.8473 -2.1972 0.5026 0.132 0.047 0.188 0.038

9 0.0000 -0.1000 0.1000 0.0000 -0.4055 0.4055 0.112 0.111 0.210 0.210

10 0.0000 0.0000 -0.1000 0.0000 0.0000 -0.4055 0.130 0.129 0.202 0.199

11 0.1000 -0.1000 -0.1000 0.4055 -0.4055 -0.4055 0.108 0.110 0.210 0.209

12 0.1000 -0.1667 -0.1000 0.4055 -0.6931 -0.4055 0.112 0.114 0.200 0.210

13 0.1667 -0.1667 -0.1000 0.6931 -0.6931 -0.4055 0.111 0.116 0.210 0.218

14 0.0000 -0.4000 0.2000 0.0000 -2.1972 1.3499 0.537 0.354 0.896 0.709

15 0.0000 0.0000 -0.2000 0.0000 0.0000 -0.8473 0.342 0.328 0.657 0.636

16 0.0000 -0.2000 -0.2000 0.0000 -0.8473 -1.3499 0.539 0.361 0.900 0.694

17 0.2000 -0.4000 -0.2000 0.8473 -2.1972 -0.8473 0.194 0.431 0.402 0.806

18 0.4000 -0.4000 -0.2000 2.1972 -2.1972 -0.8473 0.195 0.448 0.398 0.815

19 0.0000 -0.2000 0.4000 0.0000 -0.8473 1.6946 0.831 0.831 0.996 0.996

20 0.0000 -0.4000 0.4000 0.0000 -2.1972 2.1972 0.945 0.869 0.998 0.995
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21 0.2000 -0.4000 0.4000 0.8473 -2.1972 2.1972 0.924 0.914 1.000 0.999

22 0.1000 0.1000 -0.0077 0.4055 0.4055 0.0000 0.037 0.037 0.055 0.050

23 0.1000 0.1667 -0.0167 0.4055 0.6931 0.0000 0.045 0.041 0.049 0.054

24 0.1667 0.1667 -0.0333 0.6931 0.6931 0.0000 0.041 0.048 0.041 0.055

25 0.1000 -0.1667 -0.0048 0.4055 -0.6931 0.0000 0.053 0.048 0.038 0.039

26 0.1000 0.1000 0.0714 0.4055 0.4055 0.4055 0.094 0.066 0.213 0.145

27 0.1000 0.1667 0.0515 0.4055 0.6931 0.4055 0.092 0.060 0.181 0.089

28 0.1667 0.1667 0.0238 0.6931 0.6931 0.4055 0.088 0.041 0.175 0.057

29 0.0000 -0.1667 0.0952 0.0000 -0.6931 0.4055 0.107 0.107 0.202 0.193

30 0.1000 -0.1667 0.0961 0.4055 -0.6931 0.4055 0.110 0.105 0.204 0.200

31 0.0000 -0.1000 -0.0923 0.0000 -0.4055 -0.4055 0.125 0.116 0.187 0.169

32 0.0000 -0.1667 -0.0833 0.0000 -0.6931 -0.4055 0.118 0.109 0.182 0.147

33 0.1667 0.1667 -0.1061 0.6931 0.6931 -0.4055 0.101 0.123 0.186 0.241

34 0.1000 0.1000 0.1182 0.4055 0.4055 0.6931 0.205 0.135 0.442 0.305

35 0.1000 0.1667 0.0905 0.4055 0.6931 0.6931 0.179 0.103 0.401 0.195

36 0.1667 0.1667 0.0556 0.6931 0.6931 0.6931 0.154 0.057 0.366 0.107

37 0.0000 -0.1000 0.1714 0.0000 -0.4055 0.6931 0.235 0.236 0.520 0.520

38 0.0000 -0.1667 0.1667 0.0000 -0.6931 0.6931 0.235 0.228 0.491 0.482

39 0.1000 -0.1667 0.1667 0.4055 -0.6931 0.6931 0.216 0.212 0.505 0.505

40 0.0000 0.0000 -0.1667 0.0000 0.0000 -0.6931 0.249 0.244 0.498 0.483

41 0.0000 -0.1000 -0.1500 0.0000 -0.4055 -0.6931 0.235 0.213 0.476 0.419

42 0.0000 -0.1667 -0.1333 0.0000 -0.6931 -0.6931 0.212 0.179 0.427 0.339

43 0.1000 -0.1000 -0.1667 0.4055 -0.4055 -0.6931 0.231 0.227 0.474 0.475

44 0.1000 -0.1667 -0.1606 0.4055 -0.6931 -0.6931 0.216 0.216 0.467 0.473

45 0.1667 -0.1667 -0.1667 0.6931 -0.6931 -0.6931 0.228 0.237 0.451 0.482
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46 0.1000 0.1000 -0.1706 0.4055 0.4055 -0.6931 0.249 0.247 0.488 0.488

47 0.0000 0.0000 -0.4000 0.0000 0.0000 -2.1972 0.939 0.871 1.000 0.998

48 0.4000 -0.4000 -0.4000 2.1972 -2.1972 -2.1972 0.718 0.972 0.979 1.000

411 Power estimates are based on the likelihood ratio-based restricted deviance test in the 

412 “biomarker-stratified” trial design with biomarker prevalence , randomization factors 𝜙 = 0.1

413  and .  and . Scen = Number of scenario with 𝛾 + = 𝛾 ‒ = 0.5 𝑛 + = 𝑛 ‒ =
𝑛
2 𝛽0 = 0.5 𝑏0 = 0

414 respective effect size combination , ,  or bT, bB, bTB. Logistic and linear refer to the 𝛽𝑇 𝛽𝐵 𝛽𝑇𝐵

415 power in the logistic and linear regression model, respectively. 

416

417 For an overview, Table 9 shows a comparison of the estimated power across the considered 

418 scenarios. Here, the number of scenarios is given in which the power in the linear and 

419 logistic regression model is comparable (less than 3% difference), in which one of the models 

420 is slightly better (difference between 3% and 10%), and in which one of the models is better 

421 (difference greater than 10%). These numbers are given for all considered scenarios and only 

422 for scenarios without extreme effect constellations. For the vast majority of scenarios, the 

423 difference in estimated power of the linear and logistic model is irrelevant, i.e., the 

424 difference is less than 3%, and differences are smaller with larger sample sizes. If relevant 

425 power differences are observed, this is usually in favor of the logistic model. Interestingly, 

426 this pattern remains the same when scenarios with extreme effect combinations are not 

427 considered.

428

429 Table 9. Power comparison for restricted deviance test.
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Randomize-All Biomarker-

Stratified

Biomarker-

Stratified*

n=200 n=500 n=200 n=500 n=200 n=500

logistic >> linear 24 

(4.0%)

6 

(1.0%)

23 

(3.8%)

4 

(0.7%)

2 

(0.3%)

2 

(0.3%)

all scenarios 

(599)

logistic > linear 232 

(38.7%)

78 

(13.0%)

184 

(30.7%)

77 

(12.9%)

34 

(5.7%)

13 

(2.2%)

logistic = linear 332 

(55.4%)

499 

(83.3%)

379 

(63.3%)

503 

(84.0%)

550 

(91.8%)

576 

(96.2%)

logistic < linear 11 

(1.8%)

16 

(2.7%)

13 

(2.2%)

15 

(2.5%)

12 

(2.0%)

8 

(1.3%)

logistic << linear 0 

(0%)

0 

(0%)

0 

(0%)

0 

(0%)

1 

(0.2%)

0 

(0%)

logistic >> linear 24 

(4.5%)

6 

(1.1%)

23 

(4.3%)

4 

(0.7%)

2 

(0.4%)

2 

(0.4%)

excluding most 

extreme scenarios 

(535) logistic > linear 212 

(39.3%)

75 

(13.9%)

164 

(30.4%)

75 

(13.9%)

32 

(5.9%)

13 

(2.4%)

logistic = linear 297 

(55.1%)

450 

(83.5%)

343 

(63.6%)

453 

(84.0%)

498 

(92.4%)

516 

(95.7%)

logistic < linear 6 

(1.1%)

8 

(1.5%)

9 

(1.7%)

7 

(1.3%)

6 

(1.1%)

8 

(1.5%)

logistic << linear 0 

(0%)

0 

(0%)

0 

(0%)

0 

(0%)

1 

(0.2%)

0 

(0%)

excluding extreme 

scenarios 

logistic >> linear 24 

(4.7%)

6 

(1.2%)

23 

(4.5%)

4 

(0.8%)

2 

(0.4%)

2 

(0.4%)
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(515) logistic > linear 206 

(40.0%)

74 

(14.4%)

157 

(30.5%)

74 

(14.4%)

32 

(6.2%)

13 

(2.5%)

logistic = linear 282 

(54.8%)

428 

(83.1%)

331 

(64.3%)

431 

(83.7%)

474 

(92.0%)

492 

(95.5%)

logistic < linear 3 

(0.6%)

7 

(1.4%)

4 

(0.8%)

6 

(1.2%)

6 

(1.2%)

8 

(1.6%)

logistic << linear 0 

(0%)

0 

(0%)

0 

(0%)

0 

(0%)

1 

(0.2%)

0 

(0%)

430 Power estimates are based on the likelihood ratio-based restricted deviance test. Biomarker 

431 prevalence , randomization factors .  and . 𝜙 = 0.1 𝛾 = 𝛾 + = 𝛾 ‒ = 0.5 𝛽0 = 0.5 𝑏0 = 0

432 “Biomarker Stratified*” is with  .𝑛 + = 𝑛 ‒ = 𝑛
2

433 All = All scenarios with both  and .𝑏𝑇𝐵 ≠ 0 𝛽𝑇𝐵 ≠ 0

434 Excluding most extreme scenarios = All scenarios with both  and  and 𝑏𝑇𝐵 ≠ 0 𝛽𝑇𝐵 ≠ 0

435 excluding scenarios with 2 or 3 linear regression parameters .≥± 0.4

436 Excluding extreme scenarios = All scenarios with both  and  and excluding 𝑏𝑇𝐵 ≠ 0 𝛽𝑇𝐵 ≠ 0

437 scenarios with 2 or 3 linear regression parameters .≥± 0.3

438 “>>” indicates power difference . “>” indicates  power difference . “=” > 10%𝑝 > 3%𝑝

439 indicates power difference .≤ 3%𝑝

440

441 The above results were obtained from using the likelihood-based restricted deviance test for 

442 interaction. Using a Wald-like test instead produces the same results in the linear model, but 

443 lower type I and type II errors in the logistic model. The number of scenarios in which the 

444 type I error frequencies deviate from Bradley’s criterion in the Wald-like test are shown in S3 

445 to S5 Tables. In addition, we presented only a limited selection of the simulation results, but 
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446 the preceding descriptions are also valid for the other simulation settings, and a compilation 

447 of all results can be found in S6 Table (note that the numbers of the effect size combinations 

448 in S6 Table are not the same as in Tables 2, 4, 6, 8). 

449 Discussion and conclusions
450 The predictiveness of a biomarker can be evaluated via the treatment-by-biomarker 

451 interaction in linear or logistic regression models for a binary outcome, and we have derived 

452 the relationship between the effects of the linear model and the logistic model (S1 

453 Appendix). The translation between ORs from the logistic and AARs from the linear model 

454 might be useful, since the ARRs can in turn be used to calculate the NNT which is helpful for 

455 the clinical interpretation. In a comprehensive simulation study, we compared the power of 

456 the linear and logistic regression models to detect the predictiveness of a biomarker under a 

457 variety of scenarios in the randomize-all and the biomarker-stratified design. In general, we 

458 found that the differences in power to detect interaction were minor. Visible differences in 

459 power were detected in rather unrealistic scenarios of effect size combinations and were 

460 usually in favor of the logistic model. If the number of biomarker-positive and biomarker-

461 negative patients in the biomarker-stratified design was guided by the prevalence of the 

462 biomarker, we did not find notable differences compared to the randomize-all design. 

463 However, if equal subgroups of biomarker-positive and biomarker-negative patients could 

464 be selected in the biomarker-stratified design, the power was decidedly greater owing to the 

465 balanced samples sizes.

466 Different baseline probabilities were not considered in our simulations. These could have 

467 impact on the power of both regression models and the power differences as well, especially 

468 if they are close to 0 and 1. However, we assume that these values only play a minor role in 

469 applications.
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470 For choosing between the logistic and the linear model for a clinical trial that aims at 

471 showing predictiveness of a biomarker one should therefore consider the following factors:

472 1. The linear regression model has statistical disadvantages. For example, the predicted 

473 probability might be out of the 0-1-range of possible values. Furthermore, the model 

474 fit is rather poor if the predicted probabilities are close to 0 or 1. In the logistic 

475 regression model, the error terms follow a binomial distribution, and statistical 

476 properties are generally good for a binary outcome [19].

477 2. As expected, the type I error frequency was adequate in both models, unless the 

478 scenarios were extreme, where the linear model was sometimes conservative.

479 3. Power was comparable, again unless the effect size combinations were highly 

480 unusual. If there were differences, the logistic model usually had higher power than 

481 the linear probability model.

482 4. The effects from the linear model can be interpreted in a more straightforward way, 

483 which was also pointed out be Hellevik [14] in the case of main effects, and ARR and 

484 OR can be translated into each other.

485 Thus, the choice of the appropriate regression model should always be driven by the 

486 primary aim of a study [19] and is influenced by two different currents, the statistical 

487 properties and the ease of interpretation. From the statistical viewpoint one should favor 

488 the most sparse model. Following this, one could estimate both models and select the one 

489 with the least number of non-zero estimates. However, our simulations have shown that it 

490 is hard to find effect size combinations with non-zero effects on only one scale. Thus, from a 

491 practical point of view one should favor the logistic regression model, and inference based 

492 on the logistic regression model estimates should be theoretically more valid than inference 

493 based on linear regression model estimates. Consequently, the logistic model should be 
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494 used if the presence of an interaction effect is to be tested. Concerning the interpretation 

495 regarding the treatment effect in different groups, the linear model seems recommendable. 

496 With our results in mind, it therefore seems recommendable to estimate logistic regression 

497 models because of their statistical properties, test for interaction effects and calculate and 

498 report both ARRs and ORs from these using the formulae provided in the appendix.

499
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548 Supporting information

549 S1 Appendix. Relation between absolute risk reductions from linear probability models 

550 and odds ratios from logistic regression models.

551 S2 Appendix. Simulation code. Refer to included README for further information.

552 S1 Table. Estimated type I error frequency at the nominal two-sided 0.05 test-level in the 

553 “biomarker-stratified” design with biomarker prevalence 0.1. Frequency estimates are 

554 based on the likelihood ratio-based restricted deviance test in the “biomarker-stratified” 

555 trial design with biomarker prevalence , randomization factors  and 𝜙 = 0.1 𝛾 + = 𝛾 ‒ = 0.5

556  and  are determined by .  and . Scen = Number of scenario with 𝑛 + 𝑛 ‒ 𝜙 𝛽0 = 0.5 𝑏0 = 0

557 respective effect size combination , ,  or bT, bB, bTB. Logistic and linear refer to the type 𝛽𝑇 𝛽𝐵 𝛽𝑇𝐵

558 I error frequency in the logistic and linear regression model, respectively.

559 S2 Table. Estimated power at the nominal two-sided 0.05 test-level in the “biomarker-

560 stratified” design with biomarker prevalence 0.1. Power estimates are based on the 

561 likelihood ratio-based restricted deviance test in the “biomarker-stratified” trial design with 

562 biomarker prevalence , randomization factors  and  and  are 𝜙 = 0.1 𝛾 + = 𝛾 ‒ = 0.5 𝑛 + 𝑛 ‒

563 determined by .  and . Scen = Number of scenario with respective effect size 𝜙 𝛽0 = 0.5 𝑏0 = 0
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564 combination , ,  or bT, bB, bTB. Logistic and linear refer to the power in the logistic and 𝛽𝑇 𝛽𝐵 𝛽𝑇𝐵

565 linear regression model, respectively. 

566 S3 Table. Number of scenarios in which type I error frequencies deviate from Bradley’s 

567 criterion [18] in the “randomize-all” design. Based on the Wald-test in the “biomarker-

568 stratified” trial design. All 1152 scenarios with  are considered.𝛽𝑇𝐵 = 𝑏𝑇𝐵 = 0

569 S4 Table. Number of scenarios in which type I error frequencies deviate from Bradley’s 

570 criterion [18] in the “biomarker-stratified” design. Based on the Wald-test in the 

571 “biomarker-stratified” trial design with  and  determined by . All 3456 scenarios with 𝑛 + 𝑛 ‒ 𝜙

572  are considered.𝛽𝑇𝐵 = 𝑏𝑇𝐵 = 0

573 S5 Table. Number of scenarios in which type I error frequencies deviate from Bradley’s 

574 criterion [18] in the “biomarker-stratified” design. Based on the Wald-test in the 

575 “biomarker-stratified” trial design with . All 3456 scenarios with  𝑛 + = 𝑛 ‒ =
𝑛
2 𝛽𝑇𝐵 = 𝑏𝑇𝐵 = 0

576 are considered.

577 S6 Table. Compilation of all simulation results. The numbers of the effect size combinations 

578 are not the same as in Tables 2, 4, 6, 8.
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