1	Evaluating predictive biomarkers for a binary outcome with linear versus logistic regression –
2	Practical recommendations for the choice of the model
3	
4	Damian Gola ^{1,2} , Nicole Heßler ^{1,2} , Markus Schwaninger ^{2,3} , Andreas Ziegler ^{1,2,4} , Inke R.
5	König ^{1,2,4,5*}
6	
7	¹ Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum
8	Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.
9	² German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck,
10	Lübeck, Germany.
11	³ Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität zu
12	Lübeck, Lübeck, Germany
13	⁴ School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal,
14	Pietermaritzburg, South Africa.
15	⁵ Airway Research Center North (ARCN), Member of the German Center for Lung Research
16	(DZL).
17	
18	E-Mail: <u>inke.koenig@imbs.uni-luebeck.de</u> (IRK)
10	

20 Abstract

21	A predictive biomarker can forecast whether a patient benefits from a specific treatment
22	under study. To establish predictiveness of a biomarker, a statistical interaction between the
23	biomarker status and the treatment group concerning the clinical outcome needs to be
24	shown. In clinical trials looking at a binary outcome, linear or logistic regression models may
25	be used to evaluate the interaction, but the effects in the two models are different and
26	differently interpreted. Specifically, the effects are estimated as absolute risk reductions
27	(ARRs) and odds ratios (ORs) in the linear and logistic model, thus measuring the effect on an
28	additive and multiplicative scale, respectively.
29	We derived the relationship between the effects of the linear and the logistic regression
30	model allowing for translations between the effect estimates between both models. In
31	addition, we performed a comprehensive simulation study to compare the power of the two
32	models under a variety of scenarios in different study designs. In general, the differences in
33	power to detect interaction were minor, and visible differences were detected in rather
34	unrealistic scenarios of effect size combinations and were usually in favor of the logistic
35	model.
36	Based on our results and theoretical considerations, we recommend to 1) estimate logistic
37	regression models because of their statistical properties, 2) test for interaction effects and 3)
38	calculate and report both ARRs and ORs from these using the formulae provided.

39

41 Introduction

64

42 Novel technologies and increased accumulated knowledge on the functional background of 43 diseases have made the application of biomarkers in clinical studies increasingly popular. 44 Their use is extremely diverse and includes serving as a tool for diagnosis, for staging the 45 disease, for forecasting disease prognosis or for monitoring and predicting clinical response 46 [1]. For many instances, it is most helpful to distinguish between prognostic biomarkers and 47 predictive biomarkers [2].

48 Prognostic biomarkers can forecast the development of the disease. In a randomized clinical 49 trial, this would usually be the outcome of the study such as remission. Importantly, this 50 forecast is independent of the intervention but an overall prognosis. Put differently, patients 51 with different prognostic biomarker profiles would have a different course of disease, 52 regardless of the intervention group. For example, the epidermal growth factor receptor 53 tyrosine kinase status is a prognostic factor for survival in patients with non-small cell lung 54 cancer [3], irrespective of the treatment. Predictive biomarkers, in contrast, predict the 55 effect of the intervention itself and therefore serve as companion diagnostic tests [4]. Thus, 56 patients with different predictive biomarker values would differ in how likely they are to 57 benefit from the specific therapy under study or to suffer from side effects. For instance, 58 several studies have shown that eosinophil counts in peripheral blood are predictors for 59 treatment response to Anti-IL-5 in patients with severe asthma [5-7]. 60 Biomarkers are considered in clinical trials using different study designs, and these are 61 described in detail in the literature [2, 4, 8]. Which design should be used depends, among 62 other aspects, mostly on what is already known about the biomarker and the overall aim of 63 the study. If the aim is to prove the predictiveness of a biomarker, all patients regardless of

their biomarker status need to be randomized to the treatment groups. This is integrated in

65	the so-called "randomize-all" or "biomarker-stratified" design. Specifically, in the
66	"randomize-all" design, eligible patients are randomized into the treatment groups before
67	their biomarker status is assessed (Fig 1A). In the "biomarker-stratified randomization"
68	design, the biomarker status is assessed first. Then, patients with positive and negative
69	biomarker status are randomized separately (Fig 1B).
70	
71	Fig 1. Trial designs used in the simulation study. (A) In the "randomize-all" design n patients
72	are assigned irrespectively of their biomarker status to one the treatment groups based on
73	the randomization factor $\gamma.$ (B) In the "biomarker-stratified randomization" design, n
74	patients are assigned to two randomizations based on their biomarker status.
75	
76	If, in contrast, only patients with a positive biomarker status are randomized as in the
77	"targeted" design, it can only be shown that there is a treatment effect in this group, which
78	does not rule out that also biomarker negative patients benefit from the intervention, who
79	were not investigated. Furthermore, for establishing a predictive biomarker the trial needs
80	to show statistically that the treatment effect depends on the biomarker status, i.e., the
81	interaction between treatment arm and biomarker status has to be established. However, it
82	does not suffice to analyze biomarker positive and negative subgroups in separate trials and
83	report an effect in one but not the other group [9]: Firstly, not finding the therapeutic effect
84	in one group might be due to a lack of power. For example, in the study by Pant et al. [10]
85	predictiveness of albumin for the treatment of advanced pancreatic cancer with
86	bevacizumab was claimed on the finding of a positive effect in patients with normal baseline
87	albumin but not in others. However, only 26 patients with non-normal serum albumin levels
88	were included in the study. Hence, the confidence interval of the effect is very wide in this

89 subgroup and indeed includes the effect observed in patients with normal serum albumin. 90 Consequently, it cannot be ruled out that the effect was only not detected in the smaller 91 group, and no interaction between the treatment and albumin can be observed. A second 92 reason against claiming predictiveness based on the analysis of subgroups only is that even if 93 there are effects in both subgroups, predictiveness of the biomarker cannot be excluded, 94 because the therapeutic effect might be weaker (quantitative interaction) or in the opposite 95 direction (qualitative interaction) in the second subgroup. 96 In the following, we will describe the statistical methods to evaluate the biomarker-by-97 treatment interaction that needs to be shown for the predictiveness of a biomarker.

98 Statistical evaluation of biomarker-by-treatment interaction

99 The statistical method of choice to evaluate the biomarker-by-treatment interaction

100 depends on the data, i.e., the scale of the outcome variable and additional covariables that

101 are to be included in the model. In the following, we will focus on the simple setting of a

102 dichotomous outcome without further covariables. As a first approach, a linear regression

103 framework can be used in which the risk or probability of the dichotomous outcome y (e.g.

104 therapy success) is modeled as a function of the dichotomous variables treatment T,

105 biomarker status *B*, and treatment-by-biomarker interaction *TB* with

106
$$P(y = 1|T,B) = \beta_0 + \beta_T T + \beta_B B + \beta_{TB} T B$$

Here, T = 0 or T = 1 if a patient receives the control treatment or the experimental treatment, B = 0 or B = 1 if a patient is biomarker negative or positive, and TB = 1 only if a biomarker positive patient receives the experimental treatment. Through this, the coefficients β_T and β_B can be interpreted as the increase in risk with a change in the treatment group and the biomarker status, respectively. The interpretation of these effect

112 estimates as absolute risk reductions (ARRs) is beneficial since it can be directly related to 113 the number needed to treat (NNT=1/ARR) [11]. The coefficient β_{TB} indicates whether the 114 influence of T and B on y is independent, in which case it would equal 0. If it deviates from 0, 115 there is a statistical interaction between T and B regarding the risk of the outcome on the 116 additive scale [12]. 117 However, this model has some statistical disadvantages. For example, the predicted 118 probability might be out of the range of possible values between 0 and 1. The standard 119

120 logistic regression model. Here, the log odds of the outcome y is modeled as a function of T

statistical model for analyzing dichotomous outcome in the life sciences therefore is the

121 and *B* and their interaction *TB* by

122
$$\log_1(P(y=1|T,B)) = b_0 + b_T T + b_B B + b_{TB} T B$$

123 From this, the coefficients b_T and b_B can be exponentiated to be interpreted as the increase 124 in odds of the outcome with a change in the treatment group and the biomarker status, 125 respectively. The coefficient b_{TB} , when exponentiated, then measures the treatment-by-126 biomarker interaction as the odds ratio (OR) on the multiplicative scale. One advantage of 127 this model is that the predicted outcome probability will be guaranteed to lie between 0 and 128 1. Furthermore, the logit link is the natural parameter from the linear exponential family 129 which provides excellent statistical properties.

130 The linear and the logistic models are different, they have different effect sizes. This can be 131 seen from S1 Appendix in which we have derived the relation between ARRs from the linear 132 probability model and ORs from the logistic regression model.

133 Concerning the interaction effect, it can be shown that the models lead to different results,

134 meaning that the evidence for interaction will differ in strength, and that interaction in one

135 model does not imply interaction in the other. For example, in the study by Bokemeyer et al.

136 [13], patients with metastatic colorectal cancer had been randomized to receive FOLFOX-4 137 with or without cetuximab and were screened for *K-ras* mutations. A randomize-all design 138 was used, and, amongst other criteria, the best overall response in both K-ras positive and 139 negative patients was analyzed separately. We re-analyzed the data presented in the paper 140 and derived that the relative risk of response from a linear regression model under 141 cetuximab plus FOLFOX-4 versus FOLFOX-4 only was 1.68 in the wild type and 0.64 in the 142 mutation group, respectively. The corresponding p-value for the interaction was 0.00019. In 143 the logistic regression model, the odds ratio of response was 2.60 in the wild type and 0.46 144 in the mutation group, respectively, with an interaction p-value of 0.00023. Therefore, even 145 though interaction was established in both models, the p-values differ [13]. 146 Therefore, given the statistical advantage of the logistic regression model over the linear 147 probability model, one may question the use of the linear regression model in this setting in 148 general. However, it has been shown that the statistical problems may not be as large as 149 anticipated [12, 14] and that, considering the interpretation of the effects, there are indeed 150 some merits to the linear model. As notional example, we consider the data in Table 1 (left), 151 showing the risk or probability of an outcome depending on the treatment and biomarker 152 status. In this example, changing the biomarker status from negative to positive always 153 increases the risk by 20%, and changing the treatment from control to experimental always 154 increases the risk by 40%. Thus, there is no additive biomarker by treatment interaction. We 155 now assume that we wish to select patients who will benefit most from the treatment. If 156 there were 100 patients each who were biomarker positive and negative, 10 and 30 would 157 reach a positive outcome, respectively, under control treatment (Fig 2A). Switching to the 158 experimental treatment instead, the numbers could be increased to 50 and 70, respectively. 159 This means that in either biomarker group, 20 patients would benefit from the experimental

160	treatment, indicating that the biomarker status does not need to be taken into account
161	when offering the treatment, which is mirrored by the lack of an additive interaction.
162	Consider now the data in Table 1 (right), where changing the biomarker status from negative
163	to positive increases the risk by 10% under control but by 30% under the experimental
164	therapy, and changing the treatment from control to experimental increases the risk by 20%
165	for biomarker negative and by 40% for biomarker positive patients. Phrased differently,
166	changing the biomarker status is always associated with doubling the risk, and changing the
167	therapy regimen with a 3-fold increase. In this case, there is therefore no multiplicative
168	interaction. Translating these risks into patient numbers who will benefit from the treatment
169	(Fig 2B) now shows that by switching the treatment from control to experimental would
170	benefit 20 biomarker-negative but 40 biomarker-positive patients. Given limited resources,
171	it might therefore be reasonable to offer the experimental treatment preferably to
172	biomarker positive patients, even though there is no biomarker by treatment interaction on
173	the multiplicative scale. From a health economic point of view, it can therefore be argued
174	that interaction on the additive scale, thus use of the linear regression model, should at least
175	complement the logistic regression model.

176

177 **Table 1. Notional risk of outcome.**

	No additiv	e interaction	No multiplicative interaction			
Treatment	B = 0	B = 1	B = 0	B = 1		
T = 0	0.1	0.3	0.1	0.2		
T = 1	0.5	0.7	0.3	0.6		

178 Notional risk of outcome in biomarker negative (B = 0) and biomarker positive (B = 1)

180 additive interaction (left) and no multiplicative interaction (right).

¹⁷⁹ patients in the control (T = 0) and experimental treatment group (T = 1) in the scenario of no

182 **Fig 2. Number of patients with a positive outcome.** Based on a sample size of 100 in every

- 183 constellation in the scenario of (A) no additive interaction and (B) no multiplicative
- 184 interaction as specified in Table 1. Solid line: biomarker negative, dashed line: biomarker
- 185 positive.
- 186

Given that interactions on both scales can occur, are relevant and should be analyzed, we need to know how powerful the statistical analyses will be. More specifically, if there is an additive interaction, how likely will this be detected using the "false" model, i.e., the logistic regression? Vice versa, how likely is it to detect a multiplicative interaction when using the linear regression? To answer these questions, we performed a simulation study that will be described in the following.

193 Methods

194 Simulation framework

195 In our simulation we start from a population with individuals affected and unaffected by the 196 disease under study, which is indicated by the disease status $D \in \{1, 0\}$. Additional to the 197 general probability of developing the disease, the probability might be influenced by having 198 or having not a certain biomarker status $B \in \{1,0\}$. A random sample R of the diseased 199 individuals is recruited to a clinical trial, comparing an experimental treatment with the 200 control treatment, denoted by $T \in \{1,0\}$. The trial aims to answer the research question 201 whether the biomarker B is predictive, i.e., whether it modifies the probability of treatment 202 success $y \in \{1,0\}$.

203 Population simulation

204 We define the prevalence of a dichotomous biomarker B by $P(B = 1) = \phi$. Populations are

simulated by modelling the disease probability by

$$logit(P(D = 1 | B)) = b_0^D + b_B^D B$$
(1)

and sampling the disease status *D* from a Bernoulli distribution with probability *P*(

207 (D = 1 | B)). Here, b_0^D is the baseline log (odds) of the disease and b_B^D is a prognostic effect

208 of the biomarker *B*.

209 Trial designs

210 As illustrated in Fig 1, in the "randomize-all" design *n* patients are drawn randomly from a

simulated population. Based on the randomization factor $\gamma \in (0,1)$, γn randomly chosen

212 patients receive the biomarker guided treatment (T = 1) and $(1 - \gamma)n$ randomly chosen

213 patients receive the control treatment (T = 0). After the assignment to a treatment arm the

biomarker status is revealed. Thus, the numbers of biomarker positive (n_+) and biomarker

215 negative (n_{-}) patients in each treatment group are determined by the biomarker

216 prevalence ϕ . In the "biomarker-stratified randomization" design the biomarker status is

217 revealed before randomization. This enables to draw n_+ biomarker positive and n_-

biomarker negative, $n = n_+ + n_-$ in total, patients from a simulated population. By

specifying n_{-} and n_{+} , the prevalence of the biomarker under consideration is not reflected

in this design. In each biomarker stratum, the randomization factors $\gamma_+ \in (0,1)$ and γ_-

221 $\in (0,1)$ determine the proportion of patients receiving control or biomarker guided

222 treatment.

223 Data simulation

- 224 In the present simulation study, treatment success is simulated on both the linear and
- 225 logistic scale in both trial designs for varying parameters. The procedure to simulate this
- data is as follows:
- 1. Draw *n* patients from a population based on formula (1).
- 228 2. Assign patients to treatment arms based on γ or γ_+ and γ_- , depending on the trial
- design.
- 3. Calculate the treatment success probability P(y = 1) by applying either

$$P(y = 1 | T, B) = \exp(b_0 + b_T T + b_B B + b_{TB} T B)$$
⁽²⁾

231

or

$$P(y=1 \mid T,B) = \mu + \beta_T T + \beta_B B + \beta_{TB} TB$$
⁽³⁾

- for every patient with $expit(c) = \frac{exp(c)}{1 + exp(c)}$, and *T* and *B* denote the treatment and
- 233 biomarker status, respectively.

4. Sample the treatment success from a Bernoulli distribution using the probability from
formula (2) or (3).

We consider $\phi \in \{0.1, 0.25, 0.5\}$ as prevalence for the biomarker, and we use $b_0^D = 0$ and b_B^D 236 237 = 0 to simulate populations, i.e., there is no prognostic effect of the biomarker. We create 238 study populations of sizes $n \in \{100, 200, 500, 1000\}$. In case of the "biomarker-stratified 239 randomization" trial either half of the study population is biomarker positive and the other 240 half is biomarker negative; alternatively, the proportion of biomarker positive patients is 241 determined by the biomarker prevalence in the respective simulated population, i.e. specifying $n_{+} = n_{-} = \frac{n}{2}$ explicitly or specifying only *n*, and from this follows $n_{+} \approx \phi n$. We 242 243 use $\gamma, \gamma_+, \gamma_- \in \{0.25, 0.5, 0.75\}$ as randomization factors, and in the "biomarker-stratified" 244 randomization" trial all combinations of the values of γ_+ and γ_- are considered. The effect

245	sizes to determine the treatment success probability are the cross-product of a range of
246	possible values. On the linear scale we use
247	• $\beta_0 = 0.5$,
248	• $\beta_T \in \{0, 0.1, 0.2, 0.3, 0.4\},\$
249	• $\beta_B \in \{-0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4\}$ and
250	• $\beta_{TB} \in \{-0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4\}.$
251	Combinations of effect sizes leading to a probability of therapy success less than 0 or greater
252	than 1 are excluded, e.g. $\beta_0=0.5,$ $\beta_T=0,$ $\beta_B=-0.4,$ $\beta_{TB}=-0.4$ is not valid.
253	On the logistic scale we use
254	• $b_0 = 0$,
255	• $b_T \in \{0, 0.2231, 0.4055, 0.5596, 0.6931\}$ corresponding to OR
256	€ {1,1.25,1.50,1.75,2},
257 258	• $b_B \in \{-0.6931, -0.5596, -0.4055, -0.2231, 0, 0.2231, 0.4055, 0.5596, 0.6931\}$ corresponding to $OR \in \{0.5, 0.5713, 0.6667, 0.8, 1, 1.25, 1.5, 1.75, 2\}$
259 260	• $b_{TB} \in \{-0.6931, -0.5596, -0.4055, -0.2231, 0, 0.2231, 0.4055, 0.5596, 0.6931\}$
261	corresponding to <i>OR</i> ∈ {0.5, 0.5713, 0.6667, 0.8, 1, 1.25, 1.5, 1.75, 2}.
262	In total, we use 680 unique effect size combinations for our simulations. Note that effect size
263	combinations having $eta_{TB}=0$ or $b_{TB}=0$ act as null models for the respective regression
264	model analysis.

265 Analyses

266 All simulated data sets are analyzed using both linear and logistic models. Following Kraft et

al. [15], the likelihood ratio-based deviance test between the saturated model

$$\log_{10}(\hat{\pi}) = \hat{b}_{0} + \hat{b}_{T}T + \hat{b}_{B}B + \hat{b}_{TB}TB$$
(4)

268 or

$$\hat{\pi} = \hat{\mu} + \hat{\beta}_T T + \hat{\beta}_B B + \hat{\beta}_{TB} T B, \tag{5}$$

where $\pi = P(D = 1 \mid B)$, and a model considering both main effects of treatment and 269 270 biomarker but no interaction effect (restricted deviance test) is calculated. In addition, a Wald-like test on the null hypotheses $H_0: b_{TB} = 0$ (logistic regression model) or $H_0: \beta_{TB} = 0$ 271 272 (linear regression model) in the respective saturated models (4) and (5) is performed. To 273 obtain reliable estimates for the power to detect an interaction between treatment and 274 biomarker effect, 1000 replicates are run. For each replicate it is noted whether the two-275 sided p-value of the respective test is less than $\alpha = 0.05$. 276 All simulations and analyses are done in R 3.3.1 [16] utilizing the R package batchtools [17]. 277 The code is available in the supplement (S2 Appendix).

278 Results

279 Table 2 shows the estimated frequency of type I errors of the interaction test, i.e., the 280 restricted deviance test, in logistic and linear regression models to detect a interaction effect 281 simulated via the linear (upper part) or logistic (lower part) model. Given are the frequencies 282 in the "randomize-all" trial design with biomarker prevalence $\phi = 0.1$ and randomization factor $\gamma = 0.5$ for some selected effect size combinations with no ($b_{TB} = \log (1)$ and β_{TB} 283 = 0), moderate ($b_{TB} = \log (1.5)$ or $b_{TB} = \log (\frac{2}{3})$ and $\beta = \pm 0.2$) and strong ($b_{TB} = \log (0.5)$ 284 or $b_{TB} = \log (2)$ and $\beta = \pm 0.4$) effects. The effect sizes are given on both the linear and 285 286 logistic scale for sample sizes n = 200 and n = 500, sorted by the biomarker main effects 287 (Table 2). Other scenarios meeting these restrictions but not displayed are redundant such 288 that the effects β_T , β_B , b_T or b_B have opposite signs or are permuted.

289

290 Table 2. Estimated type I error frequency at the nominal two-sided 0.05 test-level in the

291 "randomize-all" design.

							n = 2	200	n = 5	500
Scen	β_T	eta_B	β_{TB}	b⊤	b _B	\mathbf{b}_{TB}	logistic	linear	logistic	linear
1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.060	0.046	0.057	0.053
2	0.0000	-0.1000	0.0000	0.0000	-0.4055	0.0000	0.054	0.040	0.053	0.046
3	0.0000	-0.2000	0.0000	0.0000	-0.8473	0.0000	0.064	0.026	0.058	0.038
4	0.0000	-0.4000	0.0000	0.0000	-2.1972	0.0000	0.043	0.004	0.086	0.006
5	0.4000	-0.4000	0.0000	2.1972	-2.1972	0.0000	0.039	0.045	0.068	0.051
6	0.0000	-0.1667	0.0000	0.0000	-0.6931	0.0000	0.062	0.029	0.048	0.035
7	0.1667	-0.1667	0.0000	0.6931	-0.6931	0.0000	0.062	0.044	0.052	0.050

Frequency estimates are based on the likelihood ratio-based restricted deviance test in the "randomize-all" trial design with biomarker prevalence $\phi = 0.1$ and randomization factor $\gamma = 0.5$. $\beta_0 = 0.5$ and $b_0 = 0$. Scen = Number of scenario with respective effect size combination β_T , β_B , β_{TB} or b_T , b_B , b_{TB} . Logistic and linear refer to the type I error frequency in the logistic and linear regression model, respectively.

297

Table 2 shows that the frequency of type I errors for the restricted deviance test in both regression models mainly is near to 0.05, as expected, and thus in line with the specified significance level of $\alpha = 0.05$. However, in some scenarios the linear and logistic model deviate from the specified significance level. Based on Bradley's liberal criterion of robustness [18], the type I error frequency should be between 0.025 and 0.075. Both the logistic and the linear model fail to fall into this range in scenario 4, which is characterized by a single strong main effect. The total number and percentage of scenarios violating Bradley's 305 criterion in the "randomize-all" design is shown in Table 3. In total, 54 times (5% of all
306 scenarios) the logistic model has a type I error outside Bradley's bounds, whereas the linear
307 model violates this criterion 123 times (11% of all scenarios). Comparing the numbers per
308 model and criterion bound, it is of special interest that the logistic model tends to violate the
309 upper bound (liberal) whereas the linear model tends to violate the lower bound
310 (conservative).

311

312 Table 3. Number of scenarios in which type I error frequencies deviate from Bradley's

313 criterion [18] in the "randomize-all" design.

		n = 100	n = 200	n = 500	n = 1000	Σ
	> 0.075	23 (8%)	22 (8%)	5 (2%)	2 (1%)	52 (5%)
logistic	< 0.025	0 (0%)	2 (1%)	0 (0%)	0 (0%)	0 (0%)
	Σ	23 (8%)	24 (8%)	5 (2%)	2 (1%)	54 (5%)
	> 0.075	5 (2%)	6 (2%)	5 (2%)	5 (2%)	21 (2%)
linear	< 0.025	32 (11%)	25 (9%)	23 (8%)	22 (8%)	102 (9%)
	Σ	37 (13%)	31 (11%)	28 (10%)	27 (9%)	123 (11%)

314 Based on the likelihood ratio-based restricted deviance test in the "biomarker-stratified"

315 trial design. All 1152 scenarios with $\beta_{TB} = b_{TB} = 0$ are considered.

316

317 We next look at the power of the restricted deviance test to detect an interaction effect

318 simulated via the linear (Table 4, upper part) or logistic (Table 4, lower part) model in the

319 same setting, i.e., the "randomize-all" trial design with the same effect specifications as

320 before. Results are sorted by the interaction effects.

322 Table 4. Estimated power at the nominal two-sided 0.05 test-level in the "randomize-all"

323 design.

							n = 200		n = 500	
Scen	β_T	β_B	β_{TB}	b_{T}	b _B	b_{TB}	logistic	linear	logistic	linear
8	0.2000	-0.4000	0.0000	0.8473	-2.1972	0.5026	0.077	0.015	0.108	0.017
9	0.0000	-0.1000	0.1000	0.0000	-0.4055	0.4055	0.084	0.065	0.107	0.102
10	0.0000	0.0000	-0.1000	0.0000	0.0000	-0.4055	0.080	0.064	0.105	0.100
11	0.1000	-0.1000	-0.1000	0.4055	-0.4055	-0.4055	0.086	0.072	0.105	0.100
12	0.1000	-0.1667	-0.1000	0.4055	-0.6931	-0.4055	0.085	0.062	0.103	0.097
13	0.1667	-0.1667	-0.1000	0.6931	-0.6931	-0.4055	0.076	0.059	0.113	0.115
14	0.0000	-0.4000	0.2000	0.0000	-2.1972	1.3499	0.218	0.084	0.423	0.239
15	0.0000	0.0000	-0.2000	0.0000	0.0000	-0.8473	0.144	0.113	0.282	0.258
16	0.0000	-0.2000	-0.2000	0.0000	-0.8473	-1.3499	0.204	0.071	0.436	0.227
17	0.2000	-0.4000	-0.2000	0.8473	-2.1972	-0.8473	0.077	0.054	0.156	0.223
18	0.4000	-0.4000	-0.2000	2.1972	-2.1972	-0.8473	0.088	0.148	0.160	0.376
19	0.0000	-0.2000	0.4000	0.0000	-0.8473	1.6946	0.437	0.401	0.770	0.764
20	0.0000	-0.4000	0.4000	0.0000	-2.1972	2.1972	0.556	0.404	0.881	0.799
21	0.2000	-0.4000	0.4000	0.8473	-2.1972	2.1972	0.513	0.396	0.876	0.827
22	0.1000	0.1000	-0.0077	0.4055	0.4055	0.0000	0.067	0.038	0.052	0.040
23	0.1000	0.1667	-0.0167	0.4055	0.6931	0.0000	0.070	0.040	0.063	0.042
24	0.1667	0.1667	-0.0333	0.6931	0.6931	0.0000	0.063	0.035	0.059	0.036
25	0.1000	-0.1667	-0.0048	0.4055	-0.6931	0.0000	0.065	0.050	0.059	0.050
26	0.1000	0.1000	0.0714	0.4055	0.4055	0.4055	0.095	0.042	0.096	0.056
27	0.1000	0.1667	0.0515	0.4055	0.6931	0.4055	0.080	0.030	0.107	0.042
28	0.1667	0.1667	0.0238	0.6931	0.6931	0.4055	0.073	0.028	0.096	0.026
29	0.0000	-0.1667	0.0952	0.0000	-0.6931	0.4055	0.090	0.061	0.102	0.090

30	0.1000	-0.1667	0.0961	0.4055	-0.6931	0.4055	0.089	0.068	0.100	0.092
31	0.0000	-0.1000	-0.0923	0.0000	-0.4055	-0.4055	0.080	0.044	0.093	0.082
32	0.0000	-0.1667	-0.0833	0.0000	-0.6931	-0.4055	0.081	0.037	0.108	0.067
33	0.1667	0.1667	-0.1061	0.6931	0.6931	-0.4055	0.089	0.074	0.088	0.097
34	0.1000	0.1000	0.1182	0.4055	0.4055	0.6931	0.126	0.048	0.181	0.095
35	0.1000	0.1667	0.0905	0.4055	0.6931	0.6931	0.106	0.036	0.168	0.058
36	0.1667	0.1667	0.0556	0.6931	0.6931	0.6931	0.098	0.030	0.174	0.027
37	0.0000	-0.1000	0.1714	0.0000	-0.4055	0.6931	0.132	0.110	0.235	0.227
38	0.0000	-0.1667	0.1667	0.0000	-0.6931	0.6931	0.141	0.108	0.207	0.194
39	0.1000	-0.1667	0.1667	0.4055	-0.6931	0.6931	0.141	0.113	0.196	0.184
40	0.0000	0.0000	-0.1667	0.0000	0.0000	-0.6931	0.123	0.097	0.202	0.191
41	0.0000	-0.1000	-0.1500	0.0000	-0.4055	-0.6931	0.112	0.065	0.184	0.145
42	0.0000	-0.1667	-0.1333	0.0000	-0.6931	-0.6931	0.116	0.049	0.196	0.121
43	0.1000	-0.1000	-0.1667	0.4055	-0.4055	-0.6931	0.127	0.107	0.211	0.203
44	0.1000	-0.1667	-0.1606	0.4055	-0.6931	-0.6931	0.124	0.096	0.197	0.183
45	0.1667	-0.1667	-0.1667	0.6931	-0.6931	-0.6931	0.122	0.108	0.202	0.211
46	0.1000	0.1000	-0.1706	0.4055	0.4055	-0.6931	0.139	0.123	0.190	0.188
47	0.0000	0.0000	-0.4000	0.0000	0.0000	-2.1972	0.512	0.355	0.881	0.803
48	0.4000	-0.4000	-0.4000	2.1972	-2.1972	-2.1972	0.283	0.533	0.564	0.963

324 Power estimates are based on the likelihood ratio-based restricted deviance test in the

325 "randomize-all" trial design with biomarker prevalence $\phi = 0.1$ and randomization factor

326 $\gamma = 0.5$. $\beta_0 = 0.5$ and $b_0 = 0$. Scen = Number of scenario with respective effect size

327 combination β_T , β_B , β_{TB} or b_T , b_B , b_{TB} . Logistic and linear refer to the power in the logistic and

328 linear regression model, respectively.

330 In some effect size combinations, an interaction effect is present only on one scale. In 331 scenario 8 an interaction effect is present only on the logistic scale. The interaction effect 332 size is rather small compared to the other effect sizes simulated, namely $b_{TB} = 0.5026$, 333 rendering an odds ratio of 1.6530. Correspondingly, the power in the logistic regression 334 model to detect the interaction effect is very low at 0.077 (n=200) or 0.108 (n=500). 335 Conversely, scenarios 22 to 25 (Table 4, lower part) reflect the situation of no interaction 336 effect on the logistic scale but only on the linear scale. As in scenario 8 on the logistic scale, 337 the interaction effect sizes are rather small on the linear scale and the power in the linear 338 regression model is very low at 0.035 – 0.05 (n=200) or 0.036 – 0.05 (n=500). 339 The biggest differences in terms of power between the logistic and linear regression models 340 can be seen if the interaction effect sizes are most extreme and either no or main effects 341 with opposite signs are present. For example, in scenario 48, the restricted deviance test in 342 the linear regression model achieves a power of 0.533, whereas the restricted deviance test 343 in the logistic regression model achieves a power of 0.283 for sample size n = 200. This 344 scenario is characterized by a strong negative predictive effect of the biomarker, a positive 345 treatment effect and a strong negative interaction as illustrated in Fig 3A. In other scenarios, 346 the deviance test in the logistic regression model achieves a higher power than in the linear 347 regression model, for example, in scenarios 14, 16, and 20. Here the difference is between 348 ~ 0.13 and ~ 0.15 , which is illustrated in Fig 3B for scenario 20. These are described by no 349 treatment effects and a negative predictive effect of the biomarker with an additional 350 interaction effect. For all other effect size combinations the differences in terms of power 351 are negligible. 352 S1 and S2 Tables list the corresponding type I error frequency and estimated power for the

353 same effect size combinations as Tables 2 and 4 in the "biomarker-stratified" trial design

354 with biomarker prevalence $\phi = 0.1$, randomization factors $\gamma_{+} = \gamma_{-} = 0.5$, n_{+} and n_{-} determined by the prevalence of the biomarker ϕ . As the same sample sizes are eventually 355 356 available in the four groups, the estimated frequencies are very similar to those observed in 357 the "randomize-all" trial design. Interestingly, the total number of scenarios violating 358 Bradley's liberal criterion of robustness in the "biomarker-stratified" design with sample 359 sizes determined by the prevalence of the biomarker (Table 5) is much higher than in the 360 "randomize-all" design (Table 3). Both regression models violate the criterion in about 9% of 361 the scenarios with $\beta_{TB} = b_{TB} = 0$ (logistic 317 times, linear 309 times). Again, the logistic 362 model tends to be liberal, violating the upper criterion bound, whereas the linear model 363 tends to be conservative, violating the lower criterion bound. 364 365 Fig 3. Illustration of scenarios with notable power differences between regression models. 366 Number of patients with a positive outcome. Based on a sample size of 100 in every 367 constellation in (A) scenario 48 characterized by a strong negative predictive effect of the 368 biomarker, a positive treatment effect and a strong negative interaction and in (B) scenario 369 20 characterized by no treatment effects and a negative predictive effect of the biomarker 370 with an additional interaction effect.

371

372 Table 5. Number of scenarios in which type I error frequencies deviate from Bradley's

373 criterion [18] in the "biomarker-stratified" design.

		n = 100	n = 200	n = 500	n = 1000	Σ
	> 0.075	171 (20%)	109 (13%)	17 (2%)	11 (1%)	308 (9%)
logistic	< 0.025	2 (0%)	7 (1%)	0 (0%)	0 (0%)	9 (0%)
	Σ	173 (20%)	116 (13%)	17 (2%)	11 (1%)	317 (9%)

	> 0.075	13 (2%)	14 (2%)	14 (2%)	14 (2%)	55 (2%)
linear	< 0.025	72 (8%)	63 (7%)	61 (7%)	58 (7%)	254 (7%)
	Σ	85 (10%)	77 (9%)	75 (9%)	72 (8%)	309 (9%)

Based on the likelihood ratio-based restricted deviance test in the "biomarker-stratified" trial design with n_+ and n_- determined by ϕ . All 3456 scenarios with $\beta_{TB} = b_{TB} = 0$ are considered. Finally, Tables 6, 7 and 8 list the corresponding type I error frequency, scenarios in which the type I error frequencies deviate from Bradley's criterion, and estimated power for the same

380 effect size combinations with randomization factors $\gamma_{+} = \gamma_{-} = 0.5$ and fixed proportions of biomarker positive and biomarker negative patients $(n_{+} = n_{-} = \frac{n}{2})$. It is therefore 381 382 assumed that out of a larger patients' group with biomarker information, only a specified 383 number is selected and included in the trial, so that there is an equal number of biomarker 384 positive and negative cases. In this situation, the estimated type I error is very close to the 385 expected 0.05 in all scenarios with no interaction effect (Table 6), even in scenario 4. 386 Remarkably, in this trial design, the lowest numbers of scenarios violating Bradley's criterion 387 of robustness is observed (Table 7). The logistic model violates the criterion 36 times and the 388 linear model 81 times, both about 1% of all scenarios with $\beta_{TB} = b_{TB} = 0$ and n_+ , n_- fixed

389 at $\frac{n}{2}$. Unexpectedly, in this setting the linear model also tends to be liberal.

390

Table 6. Estimated type I error frequency at the nominal two-sided 0.05 test-level in the
"biomarker-stratified" design with fixed proportion of biomarker positive and negative
patients.

							n = 3	200	n = 5	500
Scen	β_T	β_B	β_{TB}	b _T	b _B	b_{TB}	logistic	linear	logistic	linear
1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.054	0.054	0.054	0.054
2	0.0000	-0.1000	0.0000	0.0000	-0.4055	0.0000	0.061	0.059	0.045	0.045
3	0.0000	-0.2000	0.0000	0.0000	-0.8473	0.0000	0.049	0.046	0.044	0.045
4	0.0000	-0.4000	0.0000	0.0000	-2.1972	0.0000	0.055	0.047	0.051	0.050
5	0.4000	-0.4000	0.0000	2.1972	-2.1972	0.0000	0.060	0.055	0.056	0.049
6	0.0000	-0.1667	0.0000	0.0000	-0.6931	0.0000	0.046	0.047	0.044	0.041
7	0.1667	-0.1667	0.0000	0.6931	-0.6931	0.0000	0.053	0.045	0.044	0.045

Frequency estimates are based on the likelihood ratio-based restricted deviance test in the "biomarker-stratified" trial design with biomarker prevalence $\phi = 0.1$, randomization factors $\gamma_{+} = \gamma_{-} = 0.5$ and $n_{+} = n_{-} = \frac{n}{2}$. $\beta_{0} = 0.5$ and $b_{0} = 0$. Scen = Number of scenario with respective effect size combination β_{T} , β_{B} , β_{TB} or b_{T} , b_{B} , b_{TB} . Logistic and linear refer to the type l error frequency in the logistic and linear regression model, respectively. 399

400 Table 7. Number of scenarios in which type I error frequencies deviate from Bradley's

401 criterion [18] in the "biomarker-stratified" design.

		n = 100	n = 200	n = 500	n = 1000	Σ
	> 0.075	27 (3%)	9 (1%)	0 (0%)	0 (0%)	36 (1%)
logistic	< 0.025	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
	Σ	27 (3%)	9 (1%)	0 (0%)	0 (0%)	36 (1%)
	> 0.075	18 (2%)	15 (2%)	6 (1%)	18 (2%)	57 (2%)
linear	< 0.025	9 (1%)	9 (1%)	3 (0%)	3 (0%)	24 (1%)
	Σ	27 (3%)	24 (3%)	9 (1%)	21 (2%)	81 (2%)

Based on the likelihood ratio-based restricted deviance test in the "biomarker-stratified" trial design with $n_{+} = n_{-} = \frac{n}{2}$. All 3456 scenarios with $\beta_{TB} = b_{TB} = 0$ are considered. Similar as in the previous designs, if an interaction effect is present only on one scale, it is hard to detect, resulting in a low power. In general, however, the pattern of the estimated power is very similar to before, with an overall higher power due to balanced sample sizes.

408

409 Table 8. Estimated power at the nominal two-sided 0.05 test-level in the "biomarker-

410 stratified" design with fixed proportion of biomarker positive and negative patients.

							n = 2	00	n = 5	00
Scen	β_T	β_B	β_{TB}	b⊤	b _B	b _{TB}	logistic	linear	logistic	linear
8	0.2000	-0.4000	0.0000	0.8473	-2.1972	0.5026	0.132	0.047	0.188	0.038
9	0.0000	-0.1000	0.1000	0.0000	-0.4055	0.4055	0.112	0.111	0.210	0.210
10	0.0000	0.0000	-0.1000	0.0000	0.0000	-0.4055	0.130	0.129	0.202	0.199
11	0.1000	-0.1000	-0.1000	0.4055	-0.4055	-0.4055	0.108	0.110	0.210	0.209
12	0.1000	-0.1667	-0.1000	0.4055	-0.6931	-0.4055	0.112	0.114	0.200	0.210
13	0.1667	-0.1667	-0.1000	0.6931	-0.6931	-0.4055	0.111	0.116	0.210	0.218
14	0.0000	-0.4000	0.2000	0.0000	-2.1972	1.3499	0.537	0.354	0.896	0.709
15	0.0000	0.0000	-0.2000	0.0000	0.0000	-0.8473	0.342	0.328	0.657	0.636
16	0.0000	-0.2000	-0.2000	0.0000	-0.8473	-1.3499	0.539	0.361	0.900	0.694
17	0.2000	-0.4000	-0.2000	0.8473	-2.1972	-0.8473	0.194	0.431	0.402	0.806
18	0.4000	-0.4000	-0.2000	2.1972	-2.1972	-0.8473	0.195	0.448	0.398	0.815
19	0.0000	-0.2000	0.4000	0.0000	-0.8473	1.6946	0.831	0.831	0.996	0.996
20	0.0000	-0.4000	0.4000	0.0000	-2.1972	2.1972	0.945	0.869	0.998	0.995

21	0.2000	-0.4000	0.4000	0.8473	-2.1972	2.1972	0.924	0.914	1.000	0.999
22	0.1000	0.1000	-0.0077	0.4055	0.4055	0.0000	0.037	0.037	0.055	0.050
23	0.1000	0.1667	-0.0167	0.4055	0.6931	0.0000	0.045	0.041	0.049	0.054
24	0.1667	0.1667	-0.0333	0.6931	0.6931	0.0000	0.041	0.048	0.041	0.055
25	0.1000	-0.1667	-0.0048	0.4055	-0.6931	0.0000	0.053	0.048	0.038	0.039
26	0.1000	0.1000	0.0714	0.4055	0.4055	0.4055	0.094	0.066	0.213	0.145
27	0.1000	0.1667	0.0515	0.4055	0.6931	0.4055	0.092	0.060	0.181	0.089
28	0.1667	0.1667	0.0238	0.6931	0.6931	0.4055	0.088	0.041	0.175	0.057
29	0.0000	-0.1667	0.0952	0.0000	-0.6931	0.4055	0.107	0.107	0.202	0.193
30	0.1000	-0.1667	0.0961	0.4055	-0.6931	0.4055	0.110	0.105	0.204	0.200
31	0.0000	-0.1000	-0.0923	0.0000	-0.4055	-0.4055	0.125	0.116	0.187	0.169
32	0.0000	-0.1667	-0.0833	0.0000	-0.6931	-0.4055	0.118	0.109	0.182	0.147
33	0.1667	0.1667	-0.1061	0.6931	0.6931	-0.4055	0.101	0.123	0.186	0.241
34	0.1000	0.1000	0.1182	0.4055	0.4055	0.6931	0.205	0.135	0.442	0.305
35	0.1000	0.1667	0.0905	0.4055	0.6931	0.6931	0.179	0.103	0.401	0.195
36	0.1667	0.1667	0.0556	0.6931	0.6931	0.6931	0.154	0.057	0.366	0.107
37	0.0000	-0.1000	0.1714	0.0000	-0.4055	0.6931	0.235	0.236	0.520	0.520
38	0.0000	-0.1667	0.1667	0.0000	-0.6931	0.6931	0.235	0.228	0.491	0.482
39	0.1000	-0.1667	0.1667	0.4055	-0.6931	0.6931	0.216	0.212	0.505	0.505
40	0.0000	0.0000	-0.1667	0.0000	0.0000	-0.6931	0.249	0.244	0.498	0.483
41	0.0000	-0.1000	-0.1500	0.0000	-0.4055	-0.6931	0.235	0.213	0.476	0.419
42	0.0000	-0.1667	-0.1333	0.0000	-0.6931	-0.6931	0.212	0.179	0.427	0.339
43	0.1000	-0.1000	-0.1667	0.4055	-0.4055	-0.6931	0.231	0.227	0.474	0.475
44	0.1000	-0.1667	-0.1606	0.4055	-0.6931	-0.6931	0.216	0.216	0.467	0.473
45	0.1667	-0.1667	-0.1667	0.6931	-0.6931	-0.6931	0.228	0.237	0.451	0.482

	46	0.1000	0.1000	-0.1706	0.4055	0.4055	-0.6931	0.249	0.247	0.488	0.488
	47	0.0000	0.0000	-0.4000	0.0000	0.0000	-2.1972	0.939	0.871	1.000	0.998
	48	0.4000	-0.4000	-0.4000	2.1972	-2.1972	-2.1972	0.718	0.972	0.979	1.000
411	Power es	timates	are base	d on the	likelihoo	d ratio-b	ased rest	ricted dev	viance te	est in the	
412	"biomark	ker-strati	fied" tria	l design	with bior	narker p	revalence	$\phi = 0.1$, random	nization fa	octors
413	$\gamma_{+} = \gamma_{-}$	= 0.5 a	nd $n_+ =$	$n_{-}=\frac{n}{2}.$	$\beta_0 = 0.5$	and b_0 =	= 0. Scen	= Numbe	er of scei	nario witł	ı
414	respectiv	e effect :	size com	bination	$\beta_T, \beta_B, \beta_T$	<i>TB</i> or b _T , b	_B , b _{TB} . Log	istic and	linear re	fer to the	2
415	power in	the logis	tic and li	near reg	ression n	nodel, re	spectivel	/ .			
416											
417	For an ov	verview,	Table 9 s	hows a c	ompariso	on of the	estimate	d power	across tł	ne consido	ered
418	scenarios	s. Here, t	he numb	er of sce	narios is	given in	which the	e power i	n the lin	ear and	
419	logistic re	egressior	n model i	s compai	able (les	s than 39	% differer	nce), in w	hich one	of the m	odels
420	is slightly	better (differenc	e betwe	en 3% an	d 10%), a	and in wh	ich one c	of the mo	odels is be	etter
421	(differen	ce greate	er than 10	0%). The	se numbe	ers are g	iven for a	ll conside	ered scer	narios and	lonly
422	for scena	rios with	out extr	eme effe	ct conste	ellations.	For the v	ast majoi	rity of sc	enarios, t	he
423	differenc	e in estir	nated po	wer of tl	ne linear	and logis	stic mode	l is irrelev	vant, i.e.	, the	
424	differenc	e is less t	than 3%,	and diffe	erences a	are small	er with la	rger sam	ple sizes	. If releva	nt
425	power di	fference	s are obs	erved, th	iis is usua	ally in fav	vor of the	logistic n	nodel. In	teresting	ly,
426	this patte	ern rema	ins the sa	ame whe	n scenar	ios with	extreme (effect cor	nbinatio	ns are no	t
427	consider	ed.									
428											

429 **Table 9. Power comparison for restricted deviance test.**

		Randor	nize-All	Bioma	arker-	Bioma	arker-
				Strat	ified	Strati	fied*
		n=200	n=500	n=200	n=500	n=200	n=500
all scenarios	logistic >> linear	24	6	23	4	2	2
(599)		(4.0%)	(1.0%)	(3.8%)	(0.7%)	(0.3%)	(0.3%)
	logistic > linear	232	78	184	77	34	13
		(38.7%)	(13.0%)	(30.7%)	(12.9%)	(5.7%)	(2.2%)
	logistic = linear	332	499	379	503	550	576
		(55.4%)	(83.3%)	(63.3%)	(84.0%)	(91.8%)	(96.2%)
	logistic < linear	11	16	13	15	12	8
		(1.8%)	(2.7%)	(2.2%)	(2.5%)	(2.0%)	(1.3%)
	logistic << linear	0	0	0	0	1	0
		(0%)	(0%)	(0%)	(0%)	(0.2%)	(0%)
excluding most	logistic >> linear	24	6	23	4	2	2
extreme scenarios		(4.5%)	(1.1%)	(4.3%)	(0.7%)	(0.4%)	(0.4%)
(535)	logistic > linear	212	75	164	75	32	13
		(39.3%)	(13.9%)	(30.4%)	(13.9%)	(5.9%)	(2.4%)
	logistic = linear	297	450	343	453	498	516
		(55.1%)	(83.5%)	(63.6%)	(84.0%)	(92.4%)	(95.7%)
	logistic < linear	6	8	9	7	6	8
		(1.1%)	(1.5%)	(1.7%)	(1.3%)	(1.1%)	(1.5%)
	logistic << linear	0	0	0	0	1	0
		(0%)	(0%)	(0%)	(0%)	(0.2%)	(0%)
excluding extreme	logistic >> linear	24	6	23	4	2	2
scenarios		(4.7%)	(1.2%)	(4.5%)	(0.8%)	(0.4%)	(0.4%)

(515)	logistic > linear	206	74	157	74	32	13	
		(40.0%)	(14.4%)	(30.5%)	(14.4%)	(6.2%)	(2.5%)	
	logistic = linear	282	428	331	431	474	492	
		(54.8%)	(83.1%)	(64.3%)	(83.7%)	(92.0%)	(95.5%)	
	logistic < linear	3	7	4	6	6	8	
		(0.6%)	(1.4%)	(0.8%)	(1.2%)	(1.2%)	(1.6%)	
	logistic << linear	0	0	0	0	1	0	
		(0%)	(0%)	(0%)	(0%)	(0.2%)	(0%)	

430 Power estimates are based on the likelihood ratio-based restricted deviance test. Biomarker

431 prevalence
$$\phi = 0.1$$
, randomization factors $\gamma = \gamma_+ = \gamma_- = 0.5$. $\beta_0 = 0.5$ and $b_0 = 0.5$

432 "Biomarker Stratified*" is with
$$n_{+} = n_{-} = \frac{n}{2}$$
.

433 All = All scenarios with both
$$b_{TB} \neq 0$$
 and $\beta_{TB} \neq 0$.

434 Excluding most extreme scenarios = All scenarios with both $b_{TB} \neq 0$ and $\beta_{TB} \neq 0$ and

435 excluding scenarios with 2 or 3 linear regression parameters $\geq \pm 0.4$.

436 Excluding extreme scenarios = All scenarios with both $b_{TB} \neq 0$ and $\beta_{TB} \neq 0$ and excluding

437 scenarios with 2 or 3 linear regression parameters $\geq \pm 0.3$.

438 ">>" indicates power difference > 10%p. ">" indicates power difference > 3%p. "="

439 indicates power difference $\leq 3\% p$.

440

The above results were obtained from using the likelihood-based restricted deviance test for interaction. Using a Wald-like test instead produces the same results in the linear model, but lower type I and type II errors in the logistic model. The number of scenarios in which the type I error frequencies deviate from Bradley's criterion in the Wald-like test are shown in S3 to S5 Tables. In addition, we presented only a limited selection of the simulation results, but

the preceding descriptions are also valid for the other simulation settings, and a compilation
of all results can be found in S6 Table (note that the numbers of the effect size combinations
in S6 Table are not the same as in Tables 2, 4, 6, 8).

449 **Discussion and conclusions**

450 The predictiveness of a biomarker can be evaluated via the treatment-by-biomarker 451 interaction in linear or logistic regression models for a binary outcome, and we have derived 452 the relationship between the effects of the linear model and the logistic model (S1 453 Appendix). The translation between ORs from the logistic and AARs from the linear model 454 might be useful, since the ARRs can in turn be used to calculate the NNT which is helpful for 455 the clinical interpretation. In a comprehensive simulation study, we compared the power of 456 the linear and logistic regression models to detect the predictiveness of a biomarker under a 457 variety of scenarios in the randomize-all and the biomarker-stratified design. In general, we 458 found that the differences in power to detect interaction were minor. Visible differences in 459 power were detected in rather unrealistic scenarios of effect size combinations and were 460 usually in favor of the logistic model. If the number of biomarker-positive and biomarker-461 negative patients in the biomarker-stratified design was guided by the prevalence of the 462 biomarker, we did not find notable differences compared to the randomize-all design. 463 However, if equal subgroups of biomarker-positive and biomarker-negative patients could 464 be selected in the biomarker-stratified design, the power was decidedly greater owing to the 465 balanced samples sizes. 466 Different baseline probabilities were not considered in our simulations. These could have

impact on the power of both regression models and the power differences as well, especially
if they are close to 0 and 1. However, we assume that these values only play a minor role in
applications.

470	For choosing between the logistic and the linear model for a clinical trial that aims at
471	showing predictiveness of a biomarker one should therefore consider the following factors:
472	1. The linear regression model has statistical disadvantages. For example, the predicted
473	probability might be out of the 0-1-range of possible values. Furthermore, the model
474	fit is rather poor if the predicted probabilities are close to 0 or 1. In the logistic
475	regression model, the error terms follow a binomial distribution, and statistical
476	properties are generally good for a binary outcome [19].
477	2. As expected, the type I error frequency was adequate in both models, unless the
478	scenarios were extreme, where the linear model was sometimes conservative.
479	3. Power was comparable, again unless the effect size combinations were highly
480	unusual. If there were differences, the logistic model usually had higher power than
481	the linear probability model.
482	4. The effects from the linear model can be interpreted in a more straightforward way,
483	which was also pointed out be Hellevik [14] in the case of main effects, and ARR and
484	OR can be translated into each other.
485	Thus, the choice of the appropriate regression model should always be driven by the
486	primary aim of a study [19] and is influenced by two different currents, the statistical
487	properties and the ease of interpretation. From the statistical viewpoint one should favor
488	the most sparse model. Following this, one could estimate both models and select the one
489	with the least number of non-zero estimates. However, our simulations have shown that it
490	is hard to find effect size combinations with non-zero effects on only one scale. Thus, from a
491	practical point of view one should favor the logistic regression model, and inference based
492	on the logistic regression model estimates should be theoretically more valid than inference
493	based on linear regression model estimates. Consequently, the logistic model should be

494	us	ed if the presence of an interaction effect is to be tested. Concerning the interpretation
495	re	garding the treatment effect in different groups, the linear model seems recommendable.
496	W	ith our results in mind, it therefore seems recommendable to estimate logistic regression
497	m	odels because of their statistical properties, test for interaction effects and calculate and
498	re	port both ARRs and ORs from these using the formulae provided in the appendix.
499		
500	Ref	ferences
501	1.	Biomarkers and surrogate endpoints: preferred definitions and conceptual framework.
502		Clin Pharmacol Ther. 2001;69(3):89-95.
503	2.	Buyse M, Michiels S, Sargent DJ, Grothey A, Matheson A, de Gramont A. Integrating
504		biomarkers in clinical trials. Expert Rev Mol Diagn. 2011;11(2):171-82.
505	3.	Riley RD, Hayden JA, Steyerberg EW, Moons KG, Abrams K, Kyzas PA, et al. Prognosis
506		Research Strategy (PROGRESS) 2: prognostic factor research. PLoS Med.
507		2013;10(2):e1001380.
508	4.	Ziegler A, Koch A, Krockenberger K, Grosshennig A. Personalized medicine using DNA
509		biomarkers: a review. Hum Genet. 2012;131(10):1627-38.
510	5.	Bjermer L, Lemiere C, Maspero J, Weiss S, Zangrilli J, Germinaro M. Reslizumab for
511		inadequately controlled asthma with elevated blood eosinophil levels: A randomized
512		phase 3 study. Chest. 2016;150(4):789-98.
513	6.	Corren J, Weinstein S, Janka L, Zangrilli J, Garin M. Phase 3 study of reslizumab in
514		patients with poorly controlled asthma: effects across a broad range of eosinophil
515		counts. Chest. 2016;150(4):799-810.
516	7.	FitzGerald JM, Bleecker ER, Nair P, Korn S, Ohta K, Lommatzsch M, et al. Benralizumab,
517		an anti-interleukin-5 receptor alpha monoclonal antibody, as add-on treatment for

- 518 patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised,
- 519 double-blind, placebo-controlled phase 3 trial. Lancet. 2016.
- 520 8. Wang SJ, O'Neill RT, Hung HM. Approaches to evaluation of treatment effect in
- 521 randomized clinical trials with genomic subset. Pharm Stat. 2007;6(3):227-44.
- 522 9. Brookes ST, Whitely E, Egger M, Smith GD, Mulheran PA, Peters TJ. Subgroup analyses in
- 523 randomized trials: risks of subgroup-specific analyses; power and sample size for the
- 524 interaction test. J Clin Epidemiol. 2004;57(3):229-36.
- 525 10. Pant S, Martin LK, Geyer S, Wei L, Van Loon K, Sommovilla N, et al. Baseline serum
- 526 albumin is a predictive biomarker for patients with advanced pancreatic cancer treated
- 527 with bevacizumab: a pooled analysis of 7 prospective trials of gemcitabine-based
- 528 therapy with or without bevacizumab. Cancer. 2014;120(12):1780-6.
- 529 11. Elferink A, Van Zwieten-Boot B. Analysis based on number needed to treat shows

530 differences between drugs studied. Brit Med J. 1997;314:603.

- 531 12. vanderWeele T, Knol M. A tutorial on interaction. Epidemiol Methods. 2014;3(1):33-72.
- 532 13. Bokemeyer C, Bondarenko I, Hartmann JT, de Braud F, Schuch G, Zubel A, et al. Efficacy
- 533 according to biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for
- 534 metastatic colorectal cancer: the OPUS study. Ann Oncol. 2011;22(7):1535-46.
- 535 14. Hellevik O. Linear versus logistic regression when the dependent variable is a
- 536 dichotomy. Qual Quant. 2009;43:59-74.
- 537 15. Kraft P, Yen YC, Stram DO, Morrison J, Gauderman WJ. Exploiting gene-environment
- 538 interaction to detect genetic associations. Human Heredity. 2007;63(2):111-9.
- 539 16. R Core Team. R: A Language and environment for statistical computing. Vienna, Austria.
- 540 https://www.R-project.org/. R Foundation for Statistical Computing; 2016.

- 541 17. Lang M, Bischl B, Surmann D. batchtools: Tools for R to work on batch systems. J Open
- 542 Source Softw. 2017;2(10).
- 543 18. Bradley JV. Robustness? Br J Math Stat Psychol. 1978;31:144-52.
- 544 19. Ganzach Y, Saporta I, Weber Y. Interaction in linear versus logistic models: a substantive
- 545 illustration using the relationship between motivation, ability, and performance. Organ
- 546 Res Meth. 2000;3(3):237-53.
- 547
- 548 Supporting information
- 549 S1 Appendix. Relation between absolute risk reductions from linear probability models
- and odds ratios from logistic regression models.
- 551 **S2 Appendix. Simulation code.** Refer to included README for further information.
- 552 S1 Table. Estimated type I error frequency at the nominal two-sided 0.05 test-level in the
- 553 **"biomarker-stratified" design with biomarker prevalence 0.1.** Frequency estimates are
- 554 based on the likelihood ratio-based restricted deviance test in the "biomarker-stratified"
- trial design with biomarker prevalence $\phi = 0.1$, randomization factors $\gamma_{+} = \gamma_{-} = 0.5$ and
- 556 n_+ and n_- are determined by ϕ . $\beta_0 = 0.5$ and $b_0 = 0$. Scen = Number of scenario with
- respective effect size combination β_T , β_B , β_{TB} or b_T , b_B , b_{TB} . Logistic and linear refer to the type
- 558 I error frequency in the logistic and linear regression model, respectively.
- 559 S2 Table. Estimated power at the nominal two-sided 0.05 test-level in the "biomarker-
- 560 stratified" design with biomarker prevalence 0.1. Power estimates are based on the
- 561 likelihood ratio-based restricted deviance test in the "biomarker-stratified" trial design with
- biomarker prevalence $\phi = 0.1$, randomization factors $\gamma_{+} = \gamma_{-} = 0.5$ and n_{+} and n_{-} are
- 563 determined by ϕ . $\beta_0 = 0.5$ and $b_0 = 0$. Scen = Number of scenario with respective effect size

- 564 combination β_T , β_B , β_{TB} or b_T , b_B , b_{TB} . Logistic and linear refer to the power in the logistic and
- 565 linear regression model, respectively.
- 566 S3 Table. Number of scenarios in which type I error frequencies deviate from Bradley's
- 567 criterion [18] in the "randomize-all" design. Based on the Wald-test in the "biomarker-
- 568 stratified" trial design. All 1152 scenarios with $\beta_{TB} = b_{TB} = 0$ are considered.
- 569 S4 Table. Number of scenarios in which type I error frequencies deviate from Bradley's
- 570 criterion [18] in the "biomarker-stratified" design. Based on the Wald-test in the
- 571 "biomarker-stratified" trial design with n_+ and n_- determined by ϕ . All 3456 scenarios with
- 572 $\beta_{TB} = b_{TB} = 0$ are considered.
- 573 S5 Table. Number of scenarios in which type I error frequencies deviate from Bradley's
- 574 criterion [18] in the "biomarker-stratified" design. Based on the Wald-test in the
- 575 "biomarker-stratified" trial design with $n_{+} = n_{-} = \frac{n}{2}$. All 3456 scenarios with $\beta_{TB} = b_{TB} = 0$
- 576 are considered.
- 577 **S6 Table. Compilation of all simulation results.** The numbers of the effect size combinations
- 578 are not the same as in Tables 2, 4, 6, 8.





