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Abstract: 62 

A major aspect of our daily lives is the need to acquire, store and prepare our food. Storage and 63 
preparation can have drastic effects on the compositional chemistry of our foods, but we have a 64 
limited understanding of the temporal nature of processes such as storage, spoilage, 65 
fermentation and brewing on the chemistry of the foods we eat. Here, we performed a temporal 66 
analysis of the chemical changes in foods during common household preparations using 67 
untargeted mass spectrometry and novel data analysis approaches. Common treatments of 68 
foods such as home fermentation of yogurt, brewing of tea, spoilage of meats and ripening of 69 
tomatoes altered the chemical makeup through time, through both chemical and biological 70 
processes. For example, brewing tea altered its composition by increasing the diversity of 71 
molecules, but this change was halted after 4 min of brewing. The results indicate that this is 72 
largely due to differential extraction of the material from the tea and not modification of the 73 
molecules during the brewing process. This is in contrast to the preparation of yogurt from milk, 74 
spoilage of meat and the ripening of tomatoes where biological transformations directly altered 75 
the foods molecular composition. Comprehensive assessment of chemical changes using 76 
multivariate statistics showed the varied impacts of the different food treatments, while analysis 77 
of individual chemical changes show specific alterations of chemical families in the different food 78 
types. The methods developed here represent novel approaches to studying the changes in 79 
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food chemistry that can reveal global alterations in chemical profiles and specific 80 
transformations at the chemical level. 81 

Introduction:  82 

We consume a variety of foods and beverages during any given day, such as fruits, vegetables, 83 
dairy products and meats. Food is stored and processed in many different ways before 84 
consumption, yet we know very little about the molecular impacts of such “normal” food 85 
treatments before we consume them. There is a significant interest and awareness in the 86 
population about the molecular contents of food. Consistent with this interest, there are >37,000 87 
articles in Pubmed using the terms “food” and “mass spectrometry” but only ~250 when using 88 
the search terms “food”, “untargeted”, and “mass spectrometry” or “metabolomics”. Although as 89 
many as 25,000 food molecules are known, the majority of food mass spectrometry studies 90 
focus on the detection of insecticides, pesticides and toxins or particular compound classes 91 
such as polyphenols to which healthy properties are attributed (Casida & Durkin, 2017, Giorio et 92 
al., 2017, Scalbert et al., 2014) and are used to compare different food supplements such as the 93 
coffee leaves (Souard, et al., 2018). As a consequence, much of the work is done by targeted 94 
methods and/or GC-MS for untargeted methods. Nevertheless, the importance of mass 95 
spectrometry as the most sensitive and selective tool currently available to decipher our food is 96 
is only expected to grow (Yoshimura, Goto-Inoue, Moriyama, & Zaima, 2016) in areas such as 97 
food monitoring during processing (Marshall et al., 2017), especially as the cost per data volume 98 
of mass spectrometry has decreased by two orders of magnitude in the past 15 years and is 99 
expected to continue to go down (Aksenov et al., 2017). An untargeted approach using LC-100 
MS/MS has not been as widely used to analyze food types and effects of storage and 101 
processing and never in conjunction with emerging untargeted mass spectrometry analysis 102 
approaches such as mass spectral molecular networking to assess changes based on 103 
processing. 104 
 Mass spectral molecular networking enables a broad overview of the molecular 105 
information, that can be inferred from the MS/MS data (Watrous et al., 2012). For example, 106 
molecular networking has been used in food analysis to study Siberian ginseng (Ge, Zhu, 107 
Yoshimatsu, & Komatsu 2017) and enabled the characterization of large number of triterpene 108 
saponins (Ge, Zhu, Yoshimatsu, & Komatsu 2017). In molecular networking, all identical MS/MS 109 
spectra are merged giving a list of unique MS/MS spectra (Watrous et al., 2012). These are 110 
then subjected to spectral alignment allowing for spectral matching with offsets based on the 111 
parent mass differences. In addition, the MS/MS spectra are putatively annotated against 112 
reference spectra within the Global Natural Product Social Molecular Networking (GNPS) 113 
platform (Yang et al., 2013, Wang et al., 2016). Matches against the reference libraries 114 
constitute level 2 or 3 annotations according to the 2007 metabolomics standards initiative 115 
(Sumner et al., 2007). The reference libraries that can be searched against, as their spectra are 116 
publicly available or available for purchase (and can be used as private spectral libraries in 117 
GNPS), include NIST17, Massbank Europe and North America, ReSpect, CASMI, EMBL 118 
metabolomics library, HMDB, and from GNPS contributed MS/MS spectra (Wang M et al., 2016, 119 
Aksenov, da Silva, Knight, Lopes, & Dorrestein, 2017, Blaženović, Kind, Ji, & Fiehn, 2018). The 120 
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resulting molecular networks visualize chemical relationships of detected compounds and 121 
provide a powerful tool for in-depth interpretation of chemical transformations. 122 
 With these and other widely used mass spectrometry approaches, such as multivariate 123 
statistics, we set out to investigate how the molecular make-up of foods is impacted by normal 124 
handling before consumption, during processing and preparation. We hypothesize that many of 125 
our methods of sourcing, handling and/or processing of food impact the molecular make-up of 126 
the foods and that untargeted mass spectrometry combined with advanced analysis tools can 127 
give us insight into these impacts on a molecular level. Building upon this hypothesis we aim to 128 
address some of the following specific questions: 1) How does the molecular composition of a 129 
food change based on how it was ripened off the vine or its particular sourcing (tomato), 2) how 130 
does improper storage affect the molecular make-up (meat), 3) what are the molecular impacts 131 
of starter culture for the preparation of yogurts, 4) what is the effect of roasting type of coffee, 132 
and 5) what is the effect of the duration of brewing tea? All of these scenarios represent typical 133 
situations encountered daily in our lives.  134 
 135 
Methods: Generic sample collection method; applied to all of the samples that have been 136 
prepared by the methods outlined below. Solid samples (defined here as tomato, yogurt, coffee 137 
beans, tea leaves and meat) were collected into one 2 ml round bottom tube (Qiagen) pre-filled 138 
with 1.0 ml room temperature ethanol-water (95:5 v/v; Ethyl alcohol, pure, 200 proof (Sigma-139 
Aldrich) and Invitrogen UltraPureTM Distilled Water) (for extraction) and one empty 2 ml round 140 
bottom tube (as an archive). All solid sample tubes were weighed before and after sample 141 
collection and the final sample weight was recorded in the metadata, unless otherwise noted. 142 
Samples were fully submerged in ethanol prior to being frozen at -80oC. Liquid samples (defined 143 
here as brewed coffee, brewed tea, and milk) were collected into 2 identical empty 2 ml round 144 
bottom tubes (Qiagen). After sample collection all samples were frozen and stored at -80oC until 145 
downstream sample preparation for mass spectrometry based metabolomics. Solid and liquid 146 
samples for each sample type were sampled according to the following schema: 147 

Meat samples (G1): Refrigerated, ground turkey and beef were purchased from grocery 148 
stores Trader Joe’s and Ralphs. Three packages of organic products for the beef and 3 149 
packages with the labeling “without antibiotics and growth hormones” for the turkey as well as 150 
three packages of products without any “organic” labeling for both meat types were selected. 151 
Each package of product was sampled into two petri dishes: one of them was spiked with 152 
tetracycline (15 mg/mL tetracycline solution in 70% EtOH (Teknova, Hollister, CA) was diluted 153 
with distilled water) to make the final concentration of residual tetracycline to be 300 ppb, while 154 
the other was treated with the vehicle (70% EtOH). At 0, 24, 48, 72, and 96 h after treatment, a 155 
sample from each meat was collected using ethanol-sterilized forceps and then placed in either 156 
a) a tube for archival storage or b) a tube for mass spectrometric analysis.  157 

Tomato samples (G2): Three biological replicates of tomatoes were sampled from 158 
distinct sources: organic cherry tomatoes from Vons, non-organic cherry tomatoes from Vons, 159 
organic cherry tomatoes from Trader Joe’s, tomatoes from the UC San Diego Farmer’s Market, 160 
organic cherry tomatoes from Whole Foods, and cherry tomatoes from a home garden in Los 161 
Angeles County, as well as sun-dried tomatoes from Whole Foods and canned tomatoes from 162 
Whole Foods. Tomatoes were stored at 4 oC for 20 hours prior to sample collection. For the 163 
ripening study, organic tomatoes from Vons were allowed to remain at room temperature with 164 
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moderate amount of sunlight and absence of ethylene source for 0, 1, 2, 3, 4, and 5 days in 165 
biological triplicate. The ripening was arrested by placing the fruit in 4 oC within double Ziploc 166 
bag enclosure to avoid acquisition of external compounds. Three technical replicates of each 167 
tomato sample were collected using ethanol-cleaned scalpel blades. Samples approximately 168 
3x3x3 mm by size were collected such that each included an equivalent proportion of peel and 169 
parenchyma but excluding seeds and placed in either a) a tube for archival storage or b) 170 
submerged in ethanol in a tube for mass spectrometric analysis.  171 

Coffee (G3): Coffee was purchased from different roasteries (Perro Negro Coffee 172 
Roasters, Eich, Germany; Bird Rock Coffee Roasters, San Diego, USA; Bristol Farms, San 173 
Diego USA; Ralph’s, San Diego, USA; Whole Foods, San Diego, USA; Trader Joe’s, San 174 
Diego, USA; World Market, San Diego, USA; Illy, Italy; Moniker Coffee Co., San Diego, USA; 175 
and Von’s, San Diego, USA) in either ground or whole bean form. Whole beans were ground 176 
with a commercial coffee grinder (Hamilton beach fresh-grind #80335). 15 g coffee powder was 177 
then brewed with a “french press” brewing device (AeroPress) using 30 mL purified drinking 178 
water (Nestle Pure Life) at around 94 oC. After incubating the coffee powder and water for 179 
approximately 2 minutes inside the brewing device, coffee was pressed through disposable 180 
micro-filters (AeroPress) by hand with moderate pressure. Approximately 1 mL of brewed coffee 181 
was poured into the duplicate 2.0 mL tubes and frozen at -80 oC. For solid samples of ground 182 
coffee, approx. 0.5 g of coffee was transferred into the sample tubes for archival and extraction 183 
for comparison. Two biological replicates for each sample were obtained.  184 

Milk/yogurt samples (G4) : Pasteurized whole milk (Horizon Organic Vitamin D Milk) and 185 
three different brands of yogurt (Oikos Plain Greek Nonfat Yogurt, Voskos Plain Greek Yogurt, 186 
and Kroger Plain Nonfat Greek Yogurt) were chosen. Fermentation was initiated by heating 187 
whole milk to 82 oC, followed by cooling to 42 oC. Exactly 25 mL of the milk was then inoculated 188 
with 1 mL of each of the store bought yogurts, in sterile 50 mL conical tubes to yield three 189 
experimental fermentation conditions. The original milk and the three yogurts were used as 190 
controls against the fermented samples, for a total of seven conditions, with three biological 191 
replicates for each condition. Samples were sterilely collected by transferring 500 µL of liquid 192 
into empty 2.0 mL tubes (Qiagen) and 500 µL of liquid into another 2.0 mL tube (Qiagen) 193 
already containing 1 mL of 95% ethanol. The control milk group, that did not have yogurt added, 194 
was sterilely sampled at the same time points by transferring 500 µL of liquid each into two 195 
empty 2.0 mL tubes. All 21 experimental conical tubes were then covered with aluminum foil 196 
and left to incubate at room temperature. Samples were collected starting from the initial 197 
inoculation approx. every 12 hours thereafter through 58 hours total (0 hours, 11 hours, 24 198 
hours, 35 hours, 47 hours, and 58 hours), as described above. 199 

Tea samples (G5): Twelve teas (Numi rose white, Allegro tropical white, Prince of Peace 200 
oolong, Allegro oolong, Charleston Tea Plantation green, Higgins & Burke green, Lipton 201 
matcha, Salada matcha, Charleston Tea Plantation black, Higgins & Burke black, Numi pu’er 202 
and Allegro pu’er) representing six tea varieties (white, oolong, green, matcha green, black, and 203 
pu’er) were sampled. Tea samples were prepared in two ways. Firstly, tea leaves were removed 204 
from the tea bags, divided into triplicates, weighed and placed into a 2.0 mL extraction tube 205 
containing room temperature ethanol-water (95:5 v/v) and an empty tube for sample archival. 206 
The second way in which tea samples were prepared emulates the brewing process. Tea 207 
samples were extracted, i.e. brewed, in their respective tea bags in triplicates using 200 mL of 208 
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95°C bottled water (Nestle) in disposable paper cups (Chinet Comfort Cups). The water was 209 
heated with an electric kettle. Aliquots of tea (1000 μL) undergoing the brewing process were 210 
taken at 0.5 min, 1 min, 4 min, and 4 hrs after the addition of 95°C water. Aliquots were placed 211 
into 2.0 mL tubes and then placed on dry ice. The temperature of the water was measured 212 
throughout the extraction, i.e. brewing (mean °C of duplicate measures ± reported accuracy of 213 
thermometer of 0.1 °C): 0.5 min, 81.5°C; 1.0 min, 81.0°C; 4.0 min, 73.5°C; and 240.0 min, 214 
23.0°C. Extraction blanks (room temperature ethanol-water and 95°C water) were collected in 215 
duplicate as controls while monitoring water temperature (1000 μL aliquots collected in 2.0 mL 216 
tubes). 217 
 218 
General sample preparation methods for metabolomics: All five sample types were 219 
processed with the methods described below. Sample processing [extraction, centrifugation and 220 
resuspension]: Solid samples in 1.0 ml of 95% EtOH were thawed over wet ice for 30 minutes. 221 
A sterile stainless steel bead was added to each sample and samples were homogenized for 5 222 
minutes at 25 Hz on a tissue homogenizer (QIAGEN TissueLyzer II, Hilden, Germany). 223 
Homogenized samples were swabbed with a sterile barcoded cotton swab (BD SWUBETM 224 
Applicator) for future analyses. 100 μL of prechilled extraction solvent (100% EtOH, Sigma-225 
Aldrich) was then added to each well. Liquid samples were thawed over wet ice, gently mixed 226 
by inversion and 100 μL were pipetted into a prefilled 96 well deep well plate containing 900 μL 227 
prechilled 100% EtOH.  228 

All solid samples were incubated at -20oC for 40 minutes and liquid samples at -20oC for 229 
20 minutes and centrifuged (Eppendorf centrifuge 5418, Hamburg, Germany) for 15 minutes at 230 
maximum speed. 400 μL of ethanol extract was carefully transferred to a 96 deep well plate and 231 
dried down overnight by centrifugal evaporation (Labconco Acid-Resistant Centrivap 232 
Concentrator, Missouri, USA). Prior to LC-MS/MS analysis, samples were resuspended in 50% 233 
methanol with 2 μM sulfadimethoxine, as resuspension standard. Samples were vortexed for 2 234 
minutes, followed by 5 minutes sonication (Branson 5510, Connecticut, USA) in a water bath, 235 
before centrifuging (Thermo SORVALL LEGEND RT, Germany) for 15 minutes at 4oC. Samples 236 
were transferred into a 96 well shallow well plate, and run at 1x dilution or diluted 5x prior to 237 
analysis. Samples were centrifuged for 5 minutes before placing on the autosampler and 5 μL of 238 
extract were injected for each sample.  239 
 240 
Sample metadata curation: Metadata were entered manually for 704 samples of the above 241 
described food and beverages. Images were used to capture key sample information including 242 
unique barcode IDs, packaging information and time of sample collection. Metadata consists of 243 
142 different descriptive categories including, but not limited to, information about the following: 244 
ingredients, packaging type, location of food production, location of sample collection, store and 245 
brand names, UPC codes, NDB numbers and descriptions, cheese and dairy types, fermented 246 
and non-fermented foods, botanical definitions and genus names of plant samples, conventional 247 
vs organically produced, type of animal meat, and presence of common allergens and additives. 248 
Sample information entries were standardized by use of a metadata dictionary that explained 249 
the type of information needed for each category as well as the correct formatting. 250 
 251 
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Mass spectrometry data collection: Food sample extracts were chromatographically 252 
separated with a UltiMate 3000 UPLC system (Thermo Scientific, Waltham, Ma). Reverse 253 
phase chromatographic separation was achieved with a Kinetex C18 column (100x2.1 mm) 254 
packed with 1.7 μm particles from Phenomenex (Torrance, CA, USA), fitted with a guard 255 
cartridge. The column compartment was held at 40°C, with a constant flow rate of 0.5 mL/min. A 256 
linear gradient was applied: 0-1.5 min isocratic at 5% B, 1.5-9.5 min 100% B, 9.5-12 min 257 
isocratic at 100% B, 12-12.5 min 5% B, 12.5-14 min 5% B; where mobile phase A is water with 258 
0.1% formic acid (v/v) and phase B is acetonitrile 0.1% formic acid (v/v) (LC-MS grade solvents, 259 
Fisher Chemical). The UPLC system was coupled with a Maxis Q-TOF mass spectrometer 260 
(Bruker Daltonics, Bremen, Germany) controlled by Otof Control and Hystar software packages 261 
(Bruker Daltonics, Bremen, Germany) and equipped with an ESI source; MS spectra were 262 
acquired in positive ionization mode with mass range 50-1500 m/z. The instrument was 263 
externally calibrated to 1.0 ppm mass accuracy with ESI-L Low Concentration Tuning Mix 264 
(Agilent Technologies, Waldronn, Germany) twice daily. During the run, hexakis (1H, 1H, 2H-265 
difluoroethoxy)phosphazene (Synquest Laboratories, Alachua, FL) with m/z 622.029509, was 266 
used for lock mass correction. For data dependent acquisition the five most abundant ions per 267 
MS1 scan were fragmented and the spectra collected. MS/MS active exclusion was set after 2 268 
spectra and released after 30 seconds. A fragmentation exclusion list was set: m/z 144.49-269 
145.49; 621.00-624.10; 643.80-646.00; 659.78-662.00; 921.0-925.00; 943.80-946.00; 959.80-270 
962.00 to exclude known contaminants and infused lockmass compounds. A process blank was 271 
run every 12 samples; a standard mix [Sulfamethazine 10 mg/l, Sulfamethizole 10 mg/l, 272 
Sulfachloropyridazine 10 mg/l, Sulfadimethoxine 10 mg/l, Coumarin-314 20 mg/l ] was injected 273 
1-2 times per plate of samples [a 96 well plate contained 8 blanks and 88 samples max]. These 274 
intensity and RSD of the standards are plotted in Supplementary Figure 12. 275 
 276 
QC assessment of the data collection: Bruker raw data files were lock mass corrected (m/z 277 
622.0290) and converted to .mzXML files using Bruker DataAnalysis software. Raw data files 278 
were manually inspected in Bruker DataAnalysis software. Files that did not contain the 279 
resuspension standard (sulfadimethoxine, [M+H]+, m/z 311.0809) were not included for further 280 
analysis. The turkey and beef samples had significant lipid carryover, which was minimized by 281 
running two wash cycles and one blank in between each of the meat samples. Caffeine was 282 
observed as a contaminant between runs due to the high intensity in some samples, and this 283 
carryover was removed during feature finding, described below. Files were organized into 284 
samples, wash, controls, blanks and the data were uploaded via GNPS and stored in MassIVE 285 
(https://massive.ucsd.edu/): Meat (G1): MSV000082423; Tomato (G2): MSV000082391; Coffee 286 
(G3): MSV000082386; Milk/yogurt (G4): MSV000082387; Tea (G5): MSV000082388.  287 
 288 
Molecular networking and small molecule annotations: For molecular networking 289 
parameters were set to a minimum requirement of 4 ions to match and a cosine score of >0.7. 290 
Parent mass tolerance was 0.1 Da and MS/MS was set to 0.1 Da (these parameters were used 291 
as many reference type spectra are low resolution). The library search was performed with min 292 
match peaks of 4 and a cosine >0.7. Due to the different small molecule compositions for each 293 
food, the annotations of all individual food analyses are impacted differently as recently shown 294 
with Passatutto, a false discovery rate (FDR) estimator (Scheubert et al., 2017). Passatutto was 295 
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used to estimate FDR for the annotations with our settings for each of the five sub-analyses. 296 
Passatutto uses a decoy database created using fragmentation trees and rebranching of 297 
fragments to estimate the FDR. With these analysis parameters the estimated FDR of 298 
annotations based on spectral matching, at level 3, for the meat data is at 1.5%, for the tomato 299 
data 4.8%, coffee 0.09%, milk to yogurt 0.5%, and 0.2% for tea. 300 
 301 
Feature finding: MS1 feature detection was performed using MZmine 2.32 in batch mode. Only 302 
features linked to MS/MS were kept in the final output. For this purpose mzXML files were 303 
imported and cropped based on retention time (0-11.5min). The mass detection noise level for 304 
MS1 was set at 1.0E3 and 5.0E2 for MS/MS. Chromatograms were built with a min time span of 305 
0.01 min, a min height of 3.0E3 and a m/z tolerance of 20.0 ppm. Chromatograms were 306 
deconvoluted using local minimum search (chromatographic threshold: 20%; search minimum in 307 
RT range (min): 0.05; minimum relative height: 25%; min absolute height: 2.0E3, min ratio of 308 
peak top/edge: 1 and peak duration range (min) of 0.05 - 3.00). The m/z range for MS/MS scan 309 
pairing was 0.05 Da and the RT range for MS/MS scan pairing was 0.1 min. Isotopic peaks 310 
were grouped with an m/z tolerance of 20.0 ppm, a retention time tolerance of 0.1 and a 311 
maximum charge of 4. Features were then aligned with a m/z tolerance of 20.0 ppm, weight or 312 
m/z 75% and weight for RT 25%, with a retention time tolerance of 0.4 min. Gap filling was then 313 
performed with an intensity tolerance of 10.0% and a retention time tolerance of 0.3 min. 314 
Feature tables were then filtered to include only features that contain a minimum of 2 peaks in a 315 
row and which have MS2 scans in at least one sample.  316 
 317 
The filtered feature tables were then further processed to remove MS1 features (within 10 ppm 318 
mass error) associated with the lock mass ([M+H]+, m/z 622.0290 and [M+Na]+, m/z 644.0109), 319 
the resuspension standard (sulfadimethoxine, [M+H]+, m/z 311.0809), the standard mix, 320 
described above, as well as carry-over contamination from caffeine ([M+H]+, m/z 195.0877). 321 
Feature tables were concatenated with metadata, based on the MS filename and used for MS1 322 
analysis. The final feature tables used for PCoA analysis and heatmaps were uploaded to 323 
GNPS (http://gnps.ucsd.edu) to create each respective MassIVE accession link for public 324 
access. 325 
 326 
PCoA: We used Principal coordinates analysis (PCoA) to observe broad molecular patterns and 327 
trends within the data  PCoA takes a dissimilarity matrix as input and aims to produce a low-328 
dimensional graphical representation of the data such that samples closer together have smaller 329 
dissimilarity values than those further apart.  PCoA plots consist of orthogonal axes where each 330 
axis (PC1, PC2, PC3) captures a percentage of the total variance. For PCoA, the signal 331 
intensities of the features were normalized with Probabilistic Quotient Normalization (PQN) 332 
(Ejigu et al., 2013). The PCoAs were calculated using the Canberra dissimilarity metric using 333 
QIIME (Caporaso et al., 2010) and visualized in EMPeror (Vázquez-Baeza, Pirrung, Gonzalez, 334 
& Knight, 2013).  335 
 336 
Heatmaps: Heatmaps were created from the filtered and preprocessed feature tables, 337 
comprising both overall features as well as only features with a GNPS library hit. Jupyter 338 
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notebooks used to create the heatmaps are publically available at: 339 
https://github.com/DorresteinLaboratory/supplementary-MolecularChangesInFood 340 

Results:  341 

A wide variety of foods including meat, tea, coffee, tomato and home fermented yogurt were 342 
sampled based on processing types and/or longitudinal changes to determine molecular 343 
variation associated with each processing method. Figure 1 highlights some representative 344 
examples of images associated with the specific foods that were sampled. The numbers on the 345 
tubes indicate the barcode number associated with each file, which was used to track the 346 
information and metadata for the entire project. Figure 1a shows an example of ground beef at 347 
3 days left at room temperature (a part of a 5 day time course to investigate meat spoilage). The 348 
discoloration of the meat is non-uniform. The next sample type is tea, where twelve teas were 349 
subjected to brewing for 0.5 min, 1 min, 4 min and 240 min. A representative sample point of 350 
one tea at 1 min is shown in Figure 1b. The third sample type is tomatoes (Figure 1c). Both the 351 
tomato origin and impact of time of storage at room temperature on the molecular make-up 352 
were investigated. The fourth sample type studied was the home fermentation of yogurt, over 6 353 
days, including controls of the milk and initial yogurts containing live active cultures. One 354 
example for yogurt fermentation is shown in Figure 1e. Finally, we assessed different roasts of 355 
coffee (the packaging for the medium/dark roast is shown in Figure 1d). Each of the samples 356 
were subjected to extraction as outlined in the methods and the resulting extracts were 357 
subjected to LC-MS/MS-based mass spectrometry. To obtain an overview of the data, we 358 
created PCoA plots, heatmaps and molecular networks. 359 
 360 

 361 
Figure 1. Representative images of the foods sampled. a) Ground beef at 3 days storage, b) 362 
Tea brewed at 1 min, c) Tomato slices from a local Farmer’s market, d) Coffee, e) Yogurt 363 
preparation from milk. The timelines in the lower panel indicate the sampling times by the 364 
numbers indicated. RT denotes room temperature and // denotes a time break.  365 
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PCoA: 366 

A global PCoA analysis of all datasets revealed clustering based on the different sample types 367 
(Figure 2 and movie S1). Tomato and meat samples form tight groups, red and blue 368 
respectively, while the tea has two groups representing the solid (tea leaves) and brewed 369 
samples. Coffee has three groups due to extractions of brewed samples, direct extraction of 370 
ground beans and then extraction of the beans themselves. The dairy samples differentiate 371 
between the milk and the samples containing yogurt cultures. To further visualize details within 372 
a sample type, PCoA analyses were performed on each dataset independently. 373 
 374 
 375 
Figure 2. Global PCoA analysis to 376 
understand the molecular relationships 377 
among all the samples analyzed. PC1 378 
(10.43%); PC2 (5.96%); PC3 (5.86%). As a 379 
2D image, the PCoA plot does not reveal the 380 
relationships clearly, a movie rotating this 381 
image is provided as supporting information. 382 
In parentheses the number of samples for 383 
each group are shown. 384 
 385 
The PCoA analysis of the yogurt and milk 386 
samples shows distinct grouping between 387 
yogurt and milk samples (Figure 3a-3d). In 388 
fact, each brand of yogurt is distinct despite 389 
containing similar live active cultures and ingredients (yogurt 1 = Sun Valley Dairy; yogurt 2 = 390 
Oikos; yogurt 3 = Kroger). Oikos and Sun Valley Dairy contain the same live active cultures (S. 391 
thermophilus; L. bulgaricus; L. acidophilus; Bifidus; L. casei) whereas Kroger contains L. 392 
acidophilus, B. bifidum, and L. casei. The home fermentation time courses of the milk inoculated 393 
with the different yogurts as starter culture are displayed in Figure 3b-3d. The fermentation 394 
process and associated molecular changes can be visualized by all three home ferments 395 
becoming more yogurt-like, as evidenced from the later time points becoming closer to yogurt 396 
than the starting milk in PCoA space. For example, Figure 3c nicely illustrates the transition of 397 
the home ferment (milk + starter yogurt) through time, becoming more similar to the original 398 
starter culture. Sun Valley Dairy contains Grade A pasteurized milk and cream, in addition to 399 
nonfat milk found in the Oikos, possibly contribute to the difference between these yogurts and 400 
the corresponding home ferment.  401 

PCoA analysis of ground turkey and ground beef left at room temperature and the 402 
impact of tetracycline are shown in Figure 3e-3g. In PCoA space the attribute that most 403 
differentiates the samples is the type of meat (Figure 3f). Samples with and without tetracycline 404 
addition change similarly over time, indicating that based on this multivariate analysis, the 405 
addition of tetracycline does not greatly impact the aging process (Figure 3g). Surprisingly, 406 
even after leaving the meats out at room temperature for 5 days and the development of a 407 
significant emanating odor from the samples, no trend could be spotted in the PCoA. A greater 408 
change may be detected using other methods such as GC-MS that would detect volatile 409 
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compounds. As Figure 1a reveals, the aging process is non-uniform and thus the experimental 410 
variation of the samples within the same time points appears to be larger than the overall 411 
molecular variation associated with the 5 day aging process.  412 

PCoA analysis of the tomato samples revealed that both source (Figure 3h) and storage 413 
time (Figure 3i) affect the molecular composition of tomatoes. As expected, canned and 414 
sundried data occupy very different PCoA space than fresh tomatoes. It is also notable that 415 
differences exist for fresh tomatoes, with those from Farmer’s market most closely resembling 416 
home garden tomatoes and all store-bought tomatoes resembling one another, whether organic 417 
or not. When organic tomatoes are left at room temperature they occupy the bottom left corner 418 
in Figure 3i and gradually change to the lower right over the course of 6 days suggesting that 419 
there are major molecular changes over this time period and upon inspecting Figure 2 it 420 
appears that these changes are larger than the changes in meat over the same period. Notably, 421 
despite the magnitude of these molecular changes the tomatoes did not change at all in either 422 
their appearance or smell.  423 

PCoA analysis of the coffee revealed a clear trend among the sample type liquid 424 
“brewed coffee” or solid “ground coffee” (Figure 3j-l). If the coffee sample was a liquid from 425 
brewing and the brew was extracted, then the sample appeared on the left side of the PCoA, 426 
while extracts of the ground beans (picked up with clean spoon) or the cut beans (with sterile 427 
knife) themselves directly appeared on the right. Besides sample type, the data suggest there is 428 
clustering based on the roasting type, as there are clusters associated with clustering of dark 429 
roast, light roast and the medium roast. This is particularly noticeable when the coffee is 430 
extracted from the ground beans and/or directly from the beans (Figure 3k).  431 
 PCoA analysis of tea samples, Figure 3m-3o, revealed unambiguous differentiation of 432 
solid from liquid samples, prepared using room temperature ethanol solution and 95°C water, 433 
respectively. Note that water samples were most differentiated from the solid extract samples 434 
along PC1. Twelve different teas were sampled over time (0.5 min, 1 min, 4 min, and 240 min) 435 
to emulate the brewing process (Figure 3m). A water-only control at the same time points did 436 
not change (Figure 3m) and direct extractions of the solid teas are also shown. Interestingly, 437 
the samples appeared most similar to water blanks in the earliest time points and became more 438 
similar to the solid samples over time (along the PC1 axis which explained 25.9% of total 439 
variance), independent of tea type, indicating continued release of compounds from the leaves. 440 
The kinetics of tea extraction were similar for all teas - interestingly, the observed chemical 441 
differences between 240 min and 4 mins were minor for all teas which supports a steeping time 442 
rationale which appears to be sufficiently effective for tea extraction of phytochemicals. A slight 443 
deviation in overall kinetic trend was observed for oolong. The first two time points (0.5 and 1 444 
min) appeared to be more similar to the blanks than other teas at the same time point. 445 
Differences based on tea type were also observed. White, green, matcha, and black tea liquid 446 
samples were more similar to each other than to oolong and pu’er, which were differentiated 447 
along PC3 (6.81% of total variance); Figure 3n and 3o, illustrate the clear differences between 448 
Chinese teas (oolong and pu’er), Figure 3n) and the American and British teas (Figure 3o). 449 
Although PCoA enables the detection of overall trends, PCoA does not enable looking at 450 
changes in levels of the individual molecules.  451 
 452 
 453 
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 455 
 456 
Figure 3. PCoA plots for the individual food types, color coded by metadata categories to 457 
visualize key drivers in molecular patterns. The three store bought yogurts containing live active 458 
cultures, the milk and the home ferments using the different yogurts as starter culture show 459 
distinct groupings. The spheres are colored based on fermentation time from 0 to 58 hrs (a-d). 460 
The meat samples separate by animal type (e), duration left at room temperature (f), but do not 461 
show a clear trend based on tetracycline addition (g); tomato samples display differences based 462 
on source (h) and storage time (i); coffee samples group based on collection device, which 463 
tracks with brewed coffee vs. ground beans (j); the impact of the roast type is also depicted in 464 
(k) and (l). Tea samples differentiated based on whether they were extracted with ethanol (tea 465 
leaves) or first extracted with water, over a range of brewing times (m); different Chinese tea 466 
varieties group separately (n) from the British and American teas (o).  467 

Heatmaps: 468 

We created heatmaps to visualize molecular changes driving differences between 469 
samples for the time course experiments of tea brewing, yogurt fermentation, tomato ripening 470 
and improper meat storage and gain more insight into groups of features that behave similarly 471 
over time or in different sample types. In addition to a PCoA, heatmaps provide a visual 472 
overview of the data to give more detailed insights behind molecular changes driving the 473 
differences between sample types and within sample types. Because the tea and the milk-to-474 
yogurt had the largest changes in abundances of groups of molecules they are shown in Figure 475 
4. Other heatmaps are shown in the Supplementary Information (Supplementary Figure 1-4). 476 
Consistent with the PCoA analysis, we observe different metabolite profiles between solid and 477 
liquid samples in tea (Figure 4a). Furthermore, we observe that relative intensity of molecular 478 
features increases with extraction time independent of the tea type. We assessed the 479 
correlation of relative intensity per feature and tea type with extraction time. In tea this resulted 480 
in a total of  2,045 significantly correlated features (spearman correlation, p-value < 0.05). 481 
Figure 6c highlights selected molecular features for which we obtained a putative structure 482 
annotation through GNPS library matching. For example, we observe that the relative intensity 483 
of procyanidin B and theaflavin increase over time (Kruskal–Wallis, N=6, p-value ranging from 484 
0.01 to 0.02, between brewing times 0.5 and 240). We also assessed the correlation of relative 485 
intensity per feature and home ferment with different yogurt inoculums over time. For the Kroger 486 
yogurt, this resulted in a total of 1,587 significantly correlated features (spearman correlation, p-487 
value < 0.05). Figure 5b highlights selected molecular features for which we obtained a putative 488 
structure annotation through GNPS library matching. For example, we observe that the relative 489 
intensity of 4-O-beta-galactopyranosyl-D-mannopyranose decreases over time for each yogurt 490 
type individually as well as overall (Kruskal–Wallis, N=9, p-value=0.0023, between 0 and 58 491 
hrs).  492 

 493 
Molecular changes during meat (beef and turkey) storage over five days were also 494 

visualized (Supplementary Figure 2a). When comparing antibiotic vs non antibiotic treated 495 
meat (both beef and turkey), the overall molecular differences as seen in PCoA space do not 496 
vary much. However, there are some specific low intensity molecules that change, although with 497 
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minimal differences due to the addition of tetracycline, consistent with the observations from the 498 
PCoA. We do observe differences between organic and non-organic beef. For example, in the 499 
non-organic beef, oleoyl-taurine increases during the 5 days and does not appear by day 5 in 500 
the organic samples, while the levels of acetyl-carnitine decrease in the non-organic beef but 501 
are consistent across all time points for the organic beef. In the turkey the rate of appearance of 502 
oleoyl-taurine and rate of disappearance of acetyl-carnitine are only slightly different 503 
(Supplementary Figure 2b). The spectral match with parent mass difference 0.000 Da and 504 
very strong cosine match of 0.84, to the fungal molecule, termitomycamide E (Choi et al., 2010), 505 
increases over time, the presence of three analogues with mass differences pointing to different 506 
acyl chain lengths, and minor suppression by tetracycline appears to have been detected and 507 
would be consistent with increased microbial loads (Supplementary Figure 4). 508 

Molecular differences between tomato samples were most striking when comparing sun 509 
dried, canned and fresh tomatoes. In the heatmap visualizing molecular changes during the 510 
ripening of fresh tomatoes (Supplementary Figure 1) no clear-cut large scale patterns were 511 
observed. During the ripening process some individual molecular features were found to 512 
decrease in their relative abundance. For example,  5’-methylthioadenosine, a molecule, which 513 
can be used to produce ethylene, a key ripening hormone for plants (North, Miller, Wildenthal, 514 
Young, & Tabita, 2017) was found to decrease significantly in its relative abundance over the 5 515 
day time course. Also plant flavonoids (including level 3 annotation of naringenin) and 516 
tomatidine, a tomato-specific alkaloid, were found to decrease significantly in their relative 517 
intensity over time. This is informative as many of the healthy properties assigned to 518 
polyphenol-containing food are attributed to molecules like naringenin and it indicates that the 519 
nutritional value of tomatoes may change over the time period we typically store tomato fruits at 520 
home.    521 
 522 
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 523 
 524 
Figure 4. Metabolites changing over tea extraction time and during the fermentation process 525 
from milk to yogurt. a) Heatmap showing tea metabolites changing over extraction time across 526 
different tea types. b) Specific metabolites increasing significantly in their relative intensity 527 
during tea extraction time. c) Heatmap showing metabolites changing during the fermentation 528 
process from milk to yogurt across different yogurt brands used as inocula, as well as the milk 529 
as control. d) Metabolites increasing or decreasing significantly during the fermentation process 530 
across different home ferments. Metabolite annotation was performed through mass spectral 531 
molecular networking and spectral matching to reference spectra as indicated below.   532 

Molecular networking and annotations: 533 

To further explore specific molecules and molecular changes within each food type, we 534 
subjected all LC-MS/MS data to mass spectral molecular networking. Mass spectrometry of the 535 
tomato samples (120) resulted in 71,430 MS/MS spectra, 62,263 passed the filtering for a 536 
minimum of 4 ions and a minimum of two identical MS/MS spectra in the data set and this 537 
condensed to 2,611 unique spectra that are presented as nodes (Supplementary Figure 5). 212 538 
of the nodes had an annotation. This is an 8.1% annotation rate and with an FDR for spectral 539 
matches estimated using Passatuto to be 4.8% (Scheubert et al., 2017). All annotations are 540 
level 2 or 3 according to the 2007 metabolomics standards initiative (Sumner et al., 2007). For 541 
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the milk to yogurt analysis, the 126 samples resulted in 78,203 MS/MS spectra, 63,241 passed 542 
the minimal requirement of four ions and minimum of two identical spectra (Supplementary 543 
Figure 6). Post clustering identical spectra, 4,142 nodes remain. 147 of the nodes had spectral 544 
matches against the libraries (3.5% annotation rate, FDR 0.5%). The coffee analysis included a 545 
total of 146 samples that resulted in a total of 50,929 MS/MS spectra. After filtering, 42,752 546 
MS/MS spectra remained that condensed to 1,460 unique spectra in Supplementary Figure 7. 547 
Of the 1,460 unique spectra, 72 had spectral matches to the reference libraries within a cosine 548 
of 0.7. This is a 4.9% annotation rate and with an FDR estimated to be 0.09%. The meat 549 
analysis included 119 samples, resulting in 72,083 MS/MS spectra, 54,663 of which passed the 550 
filtering step (Supplementary Figure 8-9). Merging all identical spectra resulted in 5,035 unique 551 
spectra of which 313 were annotated (6.2% annotation rate, FDR 1.5%). Finally, the tea 552 
analysis had 185 samples resulting in 50,547 MS/MS spectra, 44,505 of which passed the 553 
filtering (Supplementary Figure 10-11). After merging identical spectra, 1,834 unique MS/MS 554 
spectra comprised the molecular network with 207 annotations (11.2% annotation rate, FDR 555 
0.2%).  556 

MS/MS belonging to the internal standard sulfadimethoxine was observed in all analyses 557 
and correctly annotated through GNPS library matching. Molecules annotated as the amino 558 
acids tryptophan and phenylalanine as well as phospholipids were widely distributed across all 559 
samples and different food types. Other putatively annotated molecules were found to be food-560 
specific. 561 

In the tomato samples (Figure 5a), many spectral matches to chlorogenic acid 562 
derivatives and flavonoids were detected, both compounds indeed commonly found in different 563 
tomato cultivars (van der Hooft, Vervoort, Bino, & de Vos, 2012, Floros et al., 2017). Moreover, 564 
a molecular family of tomatidine-related molecules was observed throughout all tomato 565 
samples. A molecular family is a set of MS/MS spectra that are similar from which the structural 566 
relatedness is inferred (Nguyen et al., 2013). As the name suggests, this is a tomato-specific 567 
alkaloid that is the basis for glycoalkaloids like tomatine found abundantly in tomato plant leaves 568 
and stem and at minor concentrations in the fruits. Similarly, phenylethyl pyranosides are found 569 
in all tomatoes, irrespective of processing. 5’-methylthioadenosine was detected in all tomatoes 570 
except sundried tomatoes and can be used to produce ethylene, a key ripening hormone for 571 
plants (North, Miller, Wildenthal, Young, & Tabita, 2017). The relative concentration of 5’-572 
methylthioadenosine is observed to decrease over the time course of ripening (Supplementary 573 
Figure 1), while other molecules increase. Only in the sun dried tomatoes did we observe a 574 
spectral match to glucose, perhaps added as a sweetener. In both sun dried and fresh tomatoes 575 
we detected azoxystrobin, a fungicide used as protectant against fungal diseases in agriculture.  576 

In milk and yogurt, matches to six carbon sugars, disaccharides and oligosaccharides, 577 
vitamins and acylated carnitines were observed (Figure 5b). In addition, large lipid molecular 578 
families, such as sphingolipids, and glycerol conjugated with fatty acids such as monoolein and 579 
linoleoylglycerol were annotated. Delvocid, also known as the clinically used antimicotic 580 
natamycin, which is a known additive used to preserve dairy products from fungal growth, was 581 
detected (Branen, Davidson, Salminen, & Thorngate, 2001), and did not change in relative 582 
abundance over time. These annotations are all consistent with the animal, milk and yogurt 583 
origin of the samples. However, we also obtained unexpected annotations. The bile acids 584 
glycocholic acid and cholic acid formed an annotated molecular family. These were not 585 
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expected to be observed as they are primarily associated with the gut. Although level 3 586 
annotations, manual inspection of the ions and retention time analysis reveal the data are 587 
indeed consistent with these bile acids. 588 

In coffee (Figure 5c) we observed caffeine as well as methyl-caffeine and a related 589 
compound with a delta mass of m/z 14.01 (CH2), corresponding to theobromine. Furthermore, 590 
we detected several flavonoids and a large number of hydroxycinnamic acids and chlorogenic 591 
acids, which are commonly observed in plants (Islam MT, et al., 2018, Clifford, Jaganath, 592 
Ludwig, & Crozier, 2017, Pastoriza, Mesías, Cabrera, & Rufián-Henares, 2017, Karpinska, 593 
Świsłocka, & Lewandowski, 2017, Tajik, Tajik, Mack, & Enck, 2017, Naveed et al., 2018a, 594 
Naveed et al., 2018b). In addition, library matching revealed presence of mascarosides, 595 
molecules commonly observed upon roasting of coffee (Shu et al., 2014). The ascarosides were 596 
noted in the molecular network by m/z 162.053, 15.996 and 18.011 gains and losses, 597 
corresponding to mass shifts associated with six carbon sugars, oxygen, and water, 598 
respectively.  599 

In the meat samples (Figure 6a), we observed MS/MS matches to tetracycline displayed 600 
as a single node (no related spectra were detected), which were more abundant in the turkey 601 
samples. Although tetracycline is commonly used as a growth promoter, here it was added to 602 
see the effect of this antibiotic on a 5 day food spoilage test (Granados-Chinchilla & Rodríguez, 603 
2017). We also have spectral matches to carnosine as well as a large cluster of acyl carnitines 604 
with five spectral matches to different acylations. The acyl carnitines are predominantly 605 
observed in beef when comparing to turkey. We also found a family of N-acyltaurines (NATs), a 606 
recently discovered class of lipids (Turman, Kingsley, Rouzer, Cravatt, & Marnett, 2008). 607 
Supplementary Figure 2 shows how after two days storage at room temperature levels of 608 
NATs increase whereas levels of acylcarnitines (markers for beta-oxidation) drop, suggesting a 609 
change in metabolism over time. Taurine is an organic compound that is widely distributed in 610 
animal tissues. Ceramides, component lipids of one of the major bilayer eukaryotic cell 611 
membranes, are detected in both beef and turkey but only in beef do they fall below the 612 
detection level after 5 days. Their presence marks disintegration of cells within the meat and the 613 
lability of ceramides explains their disappearance over time. A spectral match to carnosol, a 614 
metabolite from rosemary plants, and connected MS/MS spectra were observed in turkey, but 615 
not in beef. Only the packaging of the turkey grown without antibiotics and growth hormones 616 
states that rosemary was used, yet it is observed in the conventionally grown as well as 617 
antibiotic-free meat. Both dipeptides and N-methyl histidine are also detected during the 5 day 618 
aging process of the meats. Thus, in general the majority of annotations are consistent with 619 
what we would expect to observe in these sample types and we observed changes in molecular 620 
compositions emerging after 2 days of storage but only for a small number of molecules. 621 

A large range of phytochemicals were annotated in the tea samples (Figure 6c and 622 
Supplementary Figure 10) including large molecular families associated with flavonoids with 623 
spectral matches to puerins, catechins, and apigenin (assignment are putative as isomers are 624 
difficult to differentiate in accordance with level 3 metabolite identification (Cuyckens & Claeys, 625 
2004, Sumner et al., 2007, Borges et al., 2018). Mass spectrometry work on tea is primarily 626 
done in negative ionization mode; here, using positive ionization mode, we corroborate earlier 627 
work by finding molecular families containing the flavonoid aglycones with MS/MS matches to 628 
quercetin, kaempferol, myricetin, and (epi)catechin - glycosides that are abundant in tea (van 629 
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der Hooft et al., 2012) and a large molecular family consisting of glycoside derivatives that have 630 
spectral matches to quercetin and kaempferol that are bundled together with chlorogenic acids. 631 
Note that the majority of nodes for this family were annotated with GNPS community contributed 632 
library hits, indicating that for some compound classes library coverage is increasing due to the 633 
growing publicly available spectra. As with coffee, caffeine was annotated in the tea samples as 634 
well. Theaflavin, a polyphenol formed during fungal oxidation and its analogues often associated 635 
with black tea (Zhang et al., 2018), were detected in white, green, black and oolong tea 636 
samples, and as seen in Figure 4 and Supplementary Figure 11, it increases in relative 637 
concentration as the tea sits. These annotations are consistent with the known processes that 638 
use the polyphenol building blocks to create larger scaffolds like theaflavin, giving black tea its 639 
typical brown color. Furthermore, fuzhuanins, polyphenol-derived molecules (Luo et al., 2013) 640 
which are beta-ring fission lactones of flavan-3-ols like epicatechin, were found at high 641 
abundance in tea.  642 
 643 
 644 

 645 
Figure 5. Molecular network clusters of the a) tomato color coded by processing method, b) 646 
milk to yogurt, c) coffee data. The clusters are enlarged regions of specific molecular families 647 
observed within the full molecular network. The color coding for different samples groups are 648 
explained in the figure legend. Node sizes indicated relative precursor abundance and selected 649 
library identifications are annotated in the figure and shown through squared node shape. The 650 
full size images of the entire network where one can zoom in to the molecular networks can be 651 
found as supporting information (Supplementary Figure 5 -7) and the GNPS links to the 652 
analysis jobs are provided in the data availability section. All annotations shown are level 2 or 3 653 
according to the 2007 metabolomics standards guidelines (Sumner et al., 2007). 654 
 655 
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 656 
 657 
Figure 6. Molecular networks of the data. a) reflect the meat samples color coded by turkey or 658 
beef. b) same network as a) but color coded by aging time. c) molecular networks color coded 659 
by tea. The insets are enlarged regions of specific molecular families observed within the 660 
molecular networks. The full size images of the entire molecular networks where one can zoom 661 
in molecular networks can be found as supporting information (Supplementary Figures 8-10) 662 
and the GNPS links to the analysis jobs are provided in the data availability section. All 663 
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annotations shown are level 2 or 3 according to the 2007 metabolomics standards guidelines 664 
(Sumner et al., 2007).  665 
 666 
Discussion: 667 

The untargeted mass spectrometry approach coupled with molecular networking allowed 668 
us to assess large scale differences between sample type, find molecule-molecule links within 669 
and between sample types, and identify different compound classes found within a sample type 670 
- all useful for biochemical interpretations. We determined that different foods undergo different 671 
molecular changes over time, exemplified by the tea and yogurt time courses. Furthermore, 672 
mass spectral molecular networking could identify key metabolites, which differed based on 673 
processing type, such as fermentation time in the yogurt samples and brewing time for tea. The 674 
heatmaps as well as the molecular networks, while very different visualization techniques, 675 
confirm and support each other. For example, theaflavin increases significantly in relative 676 
abundance over time which can be visualized in the heatmap (Figure 4a,b) as well as the 677 
molecular network displaying brewing time (Supplementary Figure 11). In Figure 6c one can 678 
see that theaflavin is connected to two unannotated compounds, which allows us to understand 679 
more about the compound family without understanding the exact identity. Furthermore, foods 680 
within a group were found to undergo differential molecular changes over time, exemplified by 681 
the extraction kinetics of oolong tea deviating from the rest of the tea samples. Two potential 682 
explanations for the observed changes in extraction kinetics for tea are hypothesized. The 683 
oolong tea bags might affect extraction kinetics; however, the observed differences were 684 
observed in both manufacturers’ brands. The second hypothesis is that the extraction kinetics of 685 
oolong tea is different from those of other teas, which might result from the extensive drying, 686 
physical changes of the leaves (e.g. twisting/curling), and oxidation. The molecular composition 687 
of the teas changed over time, with observed patterns mainly consistent with continued 688 
extraction of molecules as opposed to chemical modifications. While a range of compounds 689 
increased in many of the tea types, there were signatures specific to tea type, such as the 690 
increase in the relative abundance of coniferyl aldehyde only in oolong tea.  691 

The changes observed are in contrast to the yogurt samples, where chemical alterations 692 
over time vary significantly, likely due to the microbial activity. We can detect significant 693 
changes in PCoA, molecular networks and heatmaps. In the PCoA, the home ferment 694 
inoculated with Kroger yogurt resembled the original starting culture at a molecular level, and it 695 
differed from the other home ferments, possibly because it contained a different set of yogurt 696 
cultures. Interestingly, significant changes over time are not observed in the heatmap, when we 697 
focus our analysis on annotated compounds only (Figure 4 and Supplementary Figure 3), 698 
indicating that many of the molecular transformations during fermentation are not yet 699 
characterized or that the reference spectra are not present in the available MS library 700 
databases. Consistent with the lack of reference spectra in the public databases, the yogurt and 701 
milk samples also had the lowest annotation rate at 3.5%. Among the compounds that were 702 
annotated we found a broad range of compounds (Supplementary Figure 6), including food 703 
additives and sugars, which are also found in other milk types within publically available 704 
datasets on GNPS, such as breast milk. 705 

One of the questions of interest was whether the different origins of tomatoes could be 706 
distinguished on a chemical level. Expectedly, the processed tomatoes (canned and sun-dried) 707 
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were significantly different from fresh ones. Many molecules including added oils, sugars and 708 
preservatives explain these differences. However, differences between fresh fruit are also 709 
noticeable in the PCoA data. The private garden-grown tomatoes were used as an ideal case 710 
scenario - these fruits were naturally grown, ripened on the vine and have not been treated with 711 
any pesticides/herbicides. In PCoA space, farmer’s market tomatoes most closely resemble 712 
home-grown ones, while the store-bought tomatoes were all similar to each other. Also, different 713 
brands could be distinguished. It is likely that the close similarity of garden and farmer’s market 714 
tomatoes results from similar treatment where the fruits are ripened on the vine and collected 715 
and sold without any processing (this is known for the garden tomatoes and presumed for the 716 
farmer’s market ones). Conversely, the store-bought tomatoes are collected at an early stage, 717 
often not fully ripened for ease of transportation, transported over long distances and treated 718 
with exogenous ethylene (depending on the supplier). This appears to have a more significant 719 
effect on the chemical composition of tomatoes than the “organic” designation.  720 

Another question of interest was whether organic designation and the addition of an 721 
antibiotic would impact meat spoiling over time. While the largest difference was that of beef 722 
versus turkey, there are some minor trends that can be observed over time in the PCoA plots. 723 
Because there was a large within intra-day sample variation, specific major trends could not be 724 
detected with respect to organic or antibiotic addition. The data as well as visual inspection of 725 
the meat indicate that there were non-uniform chemical transformations, possibly related to the 726 
surface area and exposure to air. When the data from each time point is merged, as done with 727 
molecular networking, and assessed for presence and absence of spectra, there are hints that 728 
there are few low intensity molecular clusters, including oleoyl-taurine and acetyl-carnitine, that 729 
change in both the molecular networking data and in a time-dependent manner 730 
(Supplementary Figure 2). These were different for the different meat classification of organic 731 
vs non-organic. Similarly the effect of tetracycline is observed in both the turkey and beef, but 732 
only affects few molecules within the 5 day experiment. We expect that these observations are 733 
just the tip of the iceberg that warrant further investigation. Future studies can further utilize the 734 
mass spectral molecular networking data, with the ability to propagate annotations across a 735 
network, to better understand the effect of time on spoilage.   736 

Finally, we assessed the effect of roasting type of coffee across solid “ground” coffee as 737 
well as liquid “brewed” coffee. The largest molecular changes were observed between the liquid 738 
and solid samples, whereas, comparatively the roasting type only displayed minor molecular 739 
changes. This finding suggests that extraction method has a larger effect on the molecular 740 
composition of coffee than processing type such as roasting. Alternatively, molecular changes 741 
induced by roasting might be predominantly observed in volatile components, not assessed in 742 
this study. Indeed, changes in smell between the different roasting types could be readily 743 
perceived. Further analyses which address aromatics, such as GC-MS, would be needed to 744 
confirm this hypothesis.  745 

In summary we have created five unique data sets that enable the molecular 746 
assessment of five common foods and beverages, which are connected by frequently used 747 
handling and processing practices. We show that the combination of molecular networking, and 748 
multivariate statistical methods such as PCoA and heatmaps and univariate statistics 749 
(correlation, significance testing) can be used to explore the molecular composition and the 750 
effect of different processing methods, different products and storage conditions relative to all 751 
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other samples in the study or group. The data sets provided here serve as a reference data set 752 
that can continue to be mined. One exemplary feature of the GNPS molecular networking 753 
workflow is the search parameter 'Find Related Datasets'. As exemplified in this study, even the 754 
most traditional food types contain a large number of unannotated molecules, therefore, we 755 
expect that the increasing deposition of mass spectrometry datasets in the public domain would 756 
allow the comparison to other complex mixtures and to narrow down the origin of molecular 757 
features. In this spirit the projects are publicly available in GNPS (Wang et al., 2016). Anyone 758 
who wishes to continue to learn about these data sets can subscribe to the projects as they will 759 
be subjected to living data analysis. Living data is a strategy introduced in Wang et al., 2016 760 
where the data is continuously reanalyzed and updates are provided automatically to all the 761 
subscribers of these data sets. As 88-97% of all the signals are currently unannotated, we will, 762 
as a community, continue to increase our knowledge about the molecular composition and 763 
changes of our food.  764 
 765 
Data and code availability: Data can be accessed via http://gnps.ucsd.edu via accession 766 
numbers for Meat (G1): MSV000082423; Tomato (G2) : MSV000082391; Coffee (G3) : 767 
MSV000082386; Milk/yogurt (G4): MSV000082387; Tea (G5): MSV000082388. Metadata are 768 
uploaded with each dataset. All jupyter notebooks and scripts used for data pre-processing and 769 
analysis are publically available at: https://github.com/DorresteinLaboratory/supplementary-770 
MolecularChangesInFood 771 
 772 
Links to networking jobs for GNPS networking jobs: Parameters are precursor and fragment ion 773 
tolerance set to 0.1 Da, min matched fragment ions: 4, cosine 0.7; library search min match 774 
peaks: 4; run with metadata, attributes assigned; NIST17 included. 775 
G1 meat samples only 776 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=1520f7112d9f445384eb743ac4358c21 777 
G2 tomato samples only 778 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=cf6e0347de8b48aeb8c700e45b4d3159 779 
G3 coffee samples only 780 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=2c83502fefc0469ba79ba70a9461b9b5 781 
G4 yogurt samples only 782 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=1f11fb76e15240a893e46e02d9c58cd2 783 
G5 tea samples only 784 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=f7569832b0d241f79812446d81cd5ca5 785 
Global: 786 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=b881151839574f639ceaf06f9b11e464 787 
 788 
Links for jobs performed to obtain the feature MS1 and MS2 linked table for PCoA and 789 
heatmaps and statistical analysis: Parameters are precursor and fragment ion tolerance set to 790 
0.1 Da, 4 min match peaks, cosine 0.7; inputs are the .mgf; .csv from mzMINE and the 791 
metadata file.  792 
Global: 793 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=25577f11a35c48cdb30dfc005cbd6638 794 
G1 meat: 795 
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https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=85c7380ca7ee44b3a3ed448c9b4d09fa 796 
G2 tomato: 797 
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=7a4031dd3ee146699ceecef919d7f668 798 
G3 coffee: 799 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=750cc6fe82dc4732b84b355904cf91d3 800 
G4 yogurt: 801 
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=f9ede96d9e694f9e8b6186991e289c17 802 
G5 tea:  803 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=80fc6384e52b4fe18e13ebbb3a86b4d8 804 
 805 
Link to Clusterapp: 806 
http://dorresteinappshub.ucsd.edu:3838/clusterMetaboApp0.9.1/ 807 
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 971 
Supplementary Information:  972 

 973 
Movie S1. PCoA of all the samples for 3D visualization. 974 
 975 
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 976 
Supplementary Figure 1. Heatmap showing tomato metabolites changing over time and 977 
tomato type. a. Heatmap of organic fresh tomato, sundried, and canned tomato metabolites 978 
changing over time b. Selected metabolites found within the organic tomatoes significantly 979 
decrease in their relative intensity over time upon ripening at room temperature, including 980 
5’Methylthioadenosine . 981 
 982 
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 984 
Supplementary Figure 2. Heatmap showing metabolites changing from meat samples. a. 985 
Heatmap of beef (organic and non-organic) and turkey (with and without antibiotic/growth 986 
hormones). b. Selected metabolites found within the organic or non-organic meat significantly 987 
changed in their relative intensity over the period of 5 days. o = organic and no tetracycline, n = 988 
non-organic and no tetracycline, w = with tetracycline.  989 
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 990 
Supplementary Figure 3. Heatmap showing annotated metabolites changing during the 991 
fermentation process from milk to yogurt across different yogurt brands revealing a general lack 992 
of trends. Metabolite annotation was performed through mass spectral molecular networking 993 
and spectral matching to reference spectra.   994 
 995 
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 997 
Supplementary Figure 4. The kinetics of termitomycamide abundance over time in turkey 998 
samples. Top is non-organic turkey (Kroger brand). Bottom is turkey grown without antibiotics 999 
and growth hormones (Empire brand).  1000 
 1001 
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 1002 
Supplementary Figure 5. The complete tomato molecular network from Figure 5a. 1003 
Molecular network shows a global overview of the spectral similarity of all MS/MS spectra from 1004 
this dataset. Below the global network shown in the upper panel numbered zoomed regions are 1005 
shown. Binary presence of MS/MS spectra in different subsets of the samples are indicated 1006 
through the color coding of pie charts. Node sizes indicated relative precursor abundance and 1007 
selected library identifications are annotated in the figure or shown through squared node 1008 
shape. 1009 
 1010 
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 1011 
 1012 

 1013 
Supplementary Figure 6. The complete milk to yogurt molecular network from Figure 5b. 1014 
Molecular network shows a global overview of the spectral similarity of all MS/MS spectra from 1015 
this dataset. Numbered amplified regions in the global network are shown. Contribution of 1016 
MS/MS spectra from different fermentation time points are indicated by the color coding of pie 1017 
charts. Node sizes indicates relative precursor abundance. Library identifications are 1018 
represented with squared node shapes. 1019 
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 1021 
Supplementary Figure 7. The complete coffee molecular network from Figure 5c. The 1022 
Molecular network shows a global overview of the spectral similarity of all MS/MS spectra from 1023 
this dataset. Below the global network shown in the upper panel numbered zoomed regions are 1024 
shown. Binary presence of MS/MS spectra in different roast type subsets of the samples are 1025 
indicated through the color coding of pie charts. Node sizes indicate relative precursor 1026 
abundance and selected library identifications are annotated in the figure or shown through 1027 
squared nodeshape. 1028 
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 1029 
 1030 
Supplementary Figure 8. The complete meat molecular network from Figure 6a. Molecular 1031 
network shows a global overview of the spectral similarity of all MS/MS spectra from this 1032 
dataset. Below the global network shown in the upper panel numbered zoomed regions are 1033 
shown. Spectral counts of MS/MS spectra in different meat type subsets of the samples are 1034 
indicated through the color coding and ratio of pie charts. Node sizes indicated relative 1035 
precursor abundance and selected library identifications are annotated in the figure or shown 1036 
through squared node shape. 1037 
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 1039 
Supplementary Figure 9. The complete meat molecular network from Figure 6b. Molecular 1040 
network shows a global overview of the spectral similarity of all MS/MS spectra from this 1041 
dataset. Below the global network shown in the upper panel numbered zoomend regions are 1042 
shown. Spectral counts of MS/MS spectra in different subsets of the samples are indicated 1043 
through the color coding and ratio of pie charts. Node sizes indicated relative precursor 1044 
abundance and selected library identifications are annotated in the figure or shown by a 1045 
squared node shape. 1046 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 15, 2018. ; https://doi.org/10.1101/347716doi: bioRxiv preprint 

https://doi.org/10.1101/347716
http://creativecommons.org/licenses/by/4.0/


 37 

 1047 
Supplementary Figure 10. The completer tea molecular network from Figure 6c. Molecular 1048 
network shows a global overview of the spectral similarity of all MS/MS spectra from this 1049 
dataset. Amplified regions indicated by numbers in the global network (up) are shown. 1050 
Contribution of MS/MS spectra in different tea types are indicated through the color coding of 1051 
pie charts. Node sizes indicates relative precursor abundance. Library identifications are 1052 
represented with squared node shapes. 1053 
 1054 
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 1055 
Supplementary Figure 11. Molecular network of brewing time for tea, the network is the same 1056 
as Supplementary Figure 10 but with the metadata of time used to color it.  1057 
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 1059 
Supplementary Figure 12. Plot of standards in standard mix, injected on average every 50 1060 
samples. Shows instrument consistency across the time course of all sample groups run on the 1061 
QTOF mass spectrometer. The minor grouping separation correspond to instrument 1062 
maintenance (cleaning the MS source and changing the guard cartridge). Standard mix  was 1063 
Sulfamethazine [m/z 279.0910 (RSD 24.95)], Sulfamethizole [m/z 271.0317 (RSD 26.08)] 1064 
Sulfachloropyridazine [m/z 285.0206 (RSD 24.94)], Sulfadimethoxine [311.0809 (RSD 27.55)], 1065 
Coumarin-314 [314.1388 (RSD 29.61)]. This means that variations in our experiments are larger 1066 
than the RSDs, which we observe here.  1067 
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