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Abstract1

The Sec secretion pathway is found across all domains of life. A critical feature of Sec2

secreted proteins is the signal peptide, a short peptide with distinct physicochemical prop-3

erties located at the N-terminus of the protein. Previous work indicates signal peptides are4

biased towards translationally inefficient codons, which is hypothesized to be an adaptation5

driven by selection to improve the efficacy and efficiency of the protein secretion mechanisms.6

We investigate codon usage in the signal peptides of E. coli using the Codon Adaptation7

Index (CAI), the tRNA Adaptation Index (tAI), and the ribosomal overhead cost formu-8

lation of the stochastic evolutionary model of protein production rates (ROC-SEMPPR).9

Comparisons between signal peptides and 5’-end of cytoplasmic proteins using CAI and tAI10

are consistent with a preference for inefficient codons in signal peptides. Simulations reveal11

these differences are due to amino acid usage and gene expression – we find these differences12

disappear when accounting for both factors. In contrast, ROC-SEMPPR, a mechanistic13

population genetics model capable of separating the effects of selection and mutation bias,14

shows codon usage bias (CUB) of the signal peptides is indistinguishable from the 5’-ends of15

cytoplasmic proteins. Additionally, we find CUB at the 5’-ends is weaker than later segments16

of the gene. Results illustrate the value in using models grounded in population genetics17

to interpret genetic data. We show failure to account for mutation bias and the effects18

of gene expression on the efficacy of selection against translation inefficiency can lead to a19

misinterpretation of codon usage patterns.20

Keywords: Codon usage bias; signal peptides; protein secretion21

Introduction22

A secreted protein can broadly be defined as any protein entering a secretory pathway for23

transport through a cellular membrane. These proteins serve important cellular functions,24

including metabolism and antibiotic resistance [15, 37]. Secreted proteins also play essential25
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roles in the virulence of pathogenic bacteria [15]. Numerous secretion systems exists and vary26

between and within taxa [1, 15, 37]. Despite the diversity of secretion pathways, the general27

secretion pathway, also commonly referred to as the Sec pathway, is found across all domains28

of life [15, 26]. In brief, proteins are transported to the SecYEG translocon located in the29

membrane in a chaperone-dependent (SecA/B and SRP) or chaperone-independent manner30

[26, 43]. All SecA/B-dependent proteins and chaperone-independent, as well as some SRP-31

dependent proteins, contain a short peptide chain located at the N-terminus of the protein32

known as the signal peptide [15, 26, 43]. The signal peptide is an essential component of33

the Sec pathway, serving as a binding site for the appropriate chaperones and/or helping34

delay the folding of the protein [26, 43]. Although signal peptides do vary in their amino35

acid sequences, signal peptides have distinct physicochemical properties which biases their36

amino acid usage [26, 43, 49]. A signal peptide generally consists of 3 regions: a positively37

charged N-terminus, a hydrophobic core, and a polar C-terminus, where the signal peptide38

is cleaved from the rest of the protein, sometimes referred to as the ”mature peptide.”39

The ability to accurately predict signal peptides is useful for identifying secreted proteins40

in non-model organisms; this has led to the development of machine learning approaches41

to predict signal peptides which take advantage of the distinct physicochemical properties42

of signal peptides, such as SignalP [31]. Although the physicochemical properties of signal43

peptides are consistent, altering the N-terminus has a range of effects on protein secretion:44

from a decrease in the number of proteins secreted to no observable effect [18, 27, 34, 45].45

The variability in the outcomes of neutralizing the N-terminal positive charge led to a search46

for other mechanisms which also contribute to the efficacy of protein secretion [49, 50].47

Numerous studies suggests codon usage bias (CUB) – the non-uniform usage of synony-48

mous codons – contributes to effective protein secretion in E. coli [3, 32, 52, 51, 53, 55].49

[32] found E. coli K12 MG1655 signal peptides are biased for translation inefficient codons,50

which are predicted to be translated slower than their synonymous counterparts. This is51

in stark contrast to the rest of the E. coli proteome, where E. coli is biased towards the52
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most efficient codons [17, 32]. [20, 21, 24] examined the usage of inefficient codons in sig-53

nal peptides of S. coelicolor, S. cerevisiae, and various multicellular eukaryotes and came54

to similar conclusions when applying codon usage indices such as the Codon Adaptation55

Index (CAI) [41] and tRNA Adaptation Index (tAI) [7]. Consistent across this work is the56

interpretation that selection is driving the apparent increase in inefficient codon usage in57

signal peptides. Furthermore, [54] concluded an overabundance of the lysine codon AAA at58

the second position in the signal peptide promoted efficient translation initiation.59

[49] hypothesized an adaptive role for inefficient codons in the protein secretion process in60

which the combination of efficient translation initiation and inefficient translation reduced the61

distance between sequential ribosomes along the mRNA, leading to more efficient recycling62

of the necessary chaperones. Other explanations for the observed increase in inefficient63

codons include the inability of E. coli SRP to induce a translational pause following signal64

peptide recognition [33, 49] and slowing down the co-translational folding of the protein, as65

a folded protein cannot be translocated through the SecYEG translocon [32, 52, 51, 50]. If66

signal peptides have a different CUB relative to the rest of the genome, then codon-level67

information could be incorporated into signal peptide prediction tools.68

In contrast [21] found no significant differences in the ribosome densities between the69

signal peptides and the 5’-ends of nonsecretory genes in various eukaryotes. Ribosome den-70

sities are expected to be higher in signal peptides relative to the 5’-end of nonsecretory genes71

if selection is acting to increase translation inefficiency in the signal peptide. Additionally,72

while both [24] and [21] examined codon usage in relation to secretion in H. sapiens using73

a metric based on tAI, only [24] found results consistent with increased frequencies of in-74

efficient codons in signal peptides. From a population genetics perspective, it is surprising75

statistically significant results were obtained in a mammal, which usually have little adaptive76

CUB due to their lower effective population sizes [5, 22]. More recently, [38] found codon77

optimization of a signal peptide improved localization of the protein to the periplasm of E.78

coli, seemingly contradicting a general role for inefficient codon usage in signal peptides. A79
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potential reason for these contradictions is the previous analyses of signal peptide codon80

usage by [20, 21, 24, 32] did not adequately account for the effects of mutation bias and drift81

in shaping codon usage [2, 13, 11, 12, 40, 46].82

We re-examined CUB in signal peptides of E. coli using CAI, tAI, and ROC-SEMPPR83

- a population genetics model which accounts for selection, mutation bias, and gene expres-84

sion - to determine if selection on codon usage in signal peptides differs from the 5’-ends85

of genes. Although we find significant differences in codon usage using CAI and tAI, we86

present evidence these differences are due to signal peptide-specific amino acid biases and87

differences in the gene expression distributions of genes with and without signal peptides.88

When comparing signal peptides and the 5’-ends of genes not containing a signal peptide89

with ROC-SEMPPR, we find signal peptide codon usage is consistent with the 5’-ends. We90

find selection on codon usage favors the efficient codons, but the strength of selection is91

weaker at the 5’-ends, corroborating previous analyses [9, 13, 11, 32, 35].92

Our work demonstrates the value of analyzing CUB from a formal population genetics93

framework, as well as highlights potential limitations with using more common metrics such94

as CAI for analyzing codon usage on relatively small regions of the genome. Failure to95

account for variation in the strength of selection due to variation in gene expression can lead96

to conflating mutation bias with selection, resulting in a misinterpretation of observed codon97

usage patterns. Our work also illustrates the importance of considering non-adaptive forces98

in shaping biological phenomenon before invoking adaptive explanations [14]. We believe this99

is particularly important in the modern genomic-age when the combination of large datasets,100

misinterpretation of p-values, and an inherent bias towards adaptationist interpretations can101

lead to the proliferation of over-interpreted hypotheses within the biological community.102
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Materials and Methods103

Signal Peptide Prediction104

Signal peptides were predicted using SignalP 4.1 [31] using both the default cutoff D-score105

of 0.51 and a more conservative D-score of 0.75. In brief, SignalP consists of two neural net-106

works, one for determining the amino acid sequence similarity to signal peptides and the other107

for identifying the most likely cleavage site. The results of both neural networks are combined108

into one value, called the D-score, which ranges between 0 and 1. Setting the cutoff D-score109

closer to 1 results in a lower false positive rate. A set of confirmed signal peptides for E. coli110

K12 MG1655 was taken from The Signal Peptide Website (http://www.signalpeptide.de/).111

All analyses in the main text will focus on the set of signal peptides with D ≥ 0.51 as this112

set provides us with the most data; analyses of the D > 0.75 and set of confirmed signal113

peptides give similar results (see Supplementary Material).114

ROC-SEMPPR115

Given a set of protein-coding genes, ROC-SEMPPR employs a Markov Chain Monte Carlo116

(MCMC) to estimate codon specific parameters for mutation bias ∆M and pausing times ∆η117

for each codon within a synonymous codon family (Table 1). In previous work, ∆η was scaled118

relative to the most efficient codon, which had ∆η and ∆M values fixed at 0. To avoid the119

choice of reference codon affecting our comparisons of CUB between regions, all ∆η values120

in this paper are re-scaled such that these values are centered around 0 for each amino acid.121

The ∆η values reflect the strength and direction of selection against translation inefficiency122

in a set of protein-coding regions (e.g. the signal peptides). A region with stronger selection123

against translation inefficiency will have higher ∆η values on average than a region with124

weaker selection. Similarly, a region which favors translation inefficiency would be expected125

to have ∆η values which negatively correlate with a region which favors translation efficiency.126

ROC-SEMPPR also estimates an average protein production rate φ for each gene (Table127
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1). It is important to note ROC-SEMPPR is structured such that the average value of φ128

across the genome is 1. This choice of scaling means the pausing times ∆η represent the129

average strength of selection relative to genetic drift for or against a given codon. We find130

ROC-SEMPPR estimated φ values correlate well with empirical measurements of protein131

production rates for E. coli (see Supplementary Methods: Assessing ROC-SEMPPR Model132

Adequacy and Figures S1 - S2). If changes in synonymous codon usage alter the efficiency133

at which a protein is translated, then such a change will have the largest impact on the134

energetic costs of proteins with high production rates, making φ a more appropriate gene135

expression metric than say, mRNA abundance or protein abundance. Thus, we use protein136

production rates φ as our metric of gene expression. For more details on ROC-SEMPPR,137

see [12]. Analysis of CUB with ROC-SEMPPR was performed using AnaCoDa [19].138

Parameters Description
∆ηi Cost of translating codon i relative to reference codon
∆Mi Mutation bias towards codon i relative to the reference

codon
φk Average Protein Production Rate of gene k

Table 1: Description of ROC-SEMPPR parameters used in this paper.

CAI and tAI139

Analysis of CUB was also performed using CAI [41] and tAI [7]. Both CAI and tAI quantify140

CUB by assigning weights to the 61 sense codons. For CAI, each codon is assigned a weight141

based on its relative frequency to its synonymous counterparts in a reference set of highly142

expressed genes, such as ribosomal protein coding genes. The key assumption of CAI is the143

most frequent codons in the reference set are the most efficient codons [41]. In contrast, tAI144

assigns weights based on tRNA abundances corresponding to a codon, as well as accounting145

for codon-anticodon interactions. The key assumption of tAI is the most efficient codons are146

usually those with the most abundant tRNA [7].147

CAI and tAI both range between 0 and 1. A CAI score closer to 1 represents a sequence148
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which more closely resembles the codon usage of the reference set of genes, while a tAI149

closer to 1 indicates a sequence is more closely adapted to the genomic tRNA pool [7, 41].150

Calculations for CAI were performed using the AnaCoDa [19], while tAI was calculated using151

the R package tAI [6].152

Generating Datasets153

Previous analysis of the E. coli genome found a set of genes with CAI values that had a154

negative correlation with their gene expression estimates [8]. It is believed many of these155

genes were the result of horizontal gene transfer and had not yet reached evolutionary equi-156

librium with respect to their CUB. We repeated the analysis described in [8] on the current157

E. coli K12 MG1655 genome (version 3, NC 000913.3). Briefly, correspondence analysis was158

performed using CodonW [30], followed by clustering based on the principle axis scores using159

the CLARA algorithm [23] in R. Our analysis was consistent with the findings of [8], reveal-160

ing 782 genes with a CUB deviating significantly from the majority of the E. coli genome.161

We will refer to this set of 782 genes as the “exogenous” component of the genome and the162

rest of the E. coli genome as the “endogenous” for simplicity. All analyses presented will163

consider only “endogenous” genes because the “exogenous” genes may violate the implicit164

assumptions of CAI and tAI and the explicit assumptions of ROC-SEMPPR.165

Proteins with a signal peptide were split into the signal peptide and the mature peptide166

– the segment of the peptide chain after the signal peptide. On average, the signal peptides167

were 23 codons long. For comparisons to the 5’-ends of nonsecretory genes – defined here168

as those lacking a signal peptide – the first 23 codons of the nonsecretory genes were used.169

We note the secretory genes have an average protein production rate φ approximately 10%170

higher than that of the nonsecretory genes (φ̄ = 1.08 and φ̄ = 0.992,respectively, Figure S3).171

As the strength of selection on CUB scales with protein production rate φ, we created a172

control group that eliminates differences in the distribution of φ for the nonsecretory genes173

and signal peptide genes. Specifically, the nonsecretory genes were selected using acceptance-174
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rejection sampling to create the “pseudo-secreted proteins”. In brief, acceptance-rejection175

sampling is a procedure for sampling from a population such that its distribution of a metric176

for one population mirrors the distribution of the same metric for another population. In177

this case, the pseudo-secreted proteins were sampled such that the mean and variance of the178

log(φ) values reflected those of the genes with a signal peptide. The CUB signature of a179

gene varies with protein production rate φ; thus we can be more confident any differences180

seen between genes with a signal peptide and pseudo-signal peptide genes are not due to181

differences in their respective φ distributions. All pseudo-secreted proteins were split into two182

regions we will refer to as the “pseudo-signal peptides” and the “pseudo-mature peptides”183

(the first 23 codons and the remainder of the gene, respectively).184

To assess the performance of CAI and tAI when comparing regions with differences in185

the distributions of protein production rates φ and amino acid biases, simulated sequences186

were used. Sequences based on the 5’-ends of nonsecretory genes, pseudo-signal peptides, and187

signal peptides were simulated using the AnaCoDa package [19]. To normalize for amino acid188

usage, sequences 23 amino acids in length were randomly generated to match the amino acid189

frequencies of the signal peptides. The codon usage of these sequences was also simulated190

in AnaCoDa, assuming either the φ distribution of the nonsecretory genes or the pseudo-191

secreted proteins. All sequences were simulated using the pausing times ∆η and mutation192

bias ∆M parameters estimated from the 5’-end of endogenous nonsecretory genes.193

Analysis of Codon Usage with CAI, tAI, and ROC-SEMPPR194

We estimated protein production rates φ by fitting ROC-SEMPPR to the protein-coding195

sequences in the E. coli K12 MG1655 genome. Analysis of intragenic (e.g. signal vs. mature196

peptides) and intergenic (e.g. pseudo-signal peptides vs. real signal peptides) CUB was197

carried out using the mixture distribution functionality available in the AnaCoDa imple-198

mentation of ROC-SEMPPR [19]. We assumed mutation bias was consistent for the entire199

genome; thus, we forced mutation bias ∆M parameters to be equal across the groups of200
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regions. Each group of regions (e.g. signal peptides, mature peptides, etc.) was assumed to201

have an independent set of pausing time parameters, allowing pausing time ∆η estimates to202

vary between them. φ was fixed for each region of a gene at the value estimated when the203

model was fit to the entire protein-coding sequence. This is done for two reasons: (a) shorter204

regions, such as the signal peptide, likely have insufficient information to accurately estimate205

φ and (b) this guarantees our gene expression metric has the same impact on the estimates206

of ∆η and ∆M for intragenic regions, such as a signal peptide and its corresponding mature207

peptide. We note the use of empirical φ estimates in place of ROC-SEMPPR estimated φ208

did not impact our interpretations.209

A Model-II regression was used to compare estimated pausing times ∆η between regions.210

Unlike ordinary least squares, Model-II regression, or errors-in-variables regression, accounts211

for errors in both the x and y variables [42]. When both variables are subject to error, which212

is the case for the ∆η estimates, the use ordinary least squares leads to downwardly biased213

parameter estimates. A Model-II regression slope β = 1 (or the y = x line) will serve as214

the null hypothesis, as this indicates both the strength and direction of selection between215

two regions are the same. The intercept parameter was fixed at α = 0 because the ∆η216

estimates are scaled such that the mean value of ∆η is 0. We note that when we allowed217

the α parameter to vary, it was as expected, approximately 0. For more details on our use218

of Model-II regression, see Supplementary Methods.219

CAI and tAI were used to compare codon usage between signal peptides, 5’-ends, and220

pseudo-signal peptides [8, 7, 41]. As recommended by [41], methionine and tryptophan were221

not included when normalizing for the length of the gene in our calculations of CAI. Statisti-222

cal significance was assessed using a one-tailed Welch’s t-test in R [36]. R and Python scripts223

used for this paper can be found at https://github.com/acope3/Signal Peptide Scripts.224
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Results225

Our analysis of CUB in signal peptides and the 5’-ends of nonsecretory genes using ROC-226

SEMPPR revealed these regions to be indistinguishable. Qualitatively, the expected codon227

frequencies for the 5’-ends of nonsecretory genes and the signal-peptides based on the pausing228

time ∆η and mutation bias ∆M values estimated from these regions are indistinguishable229

(Figure S4). Cysteine, aspartic acid, lysine, glutamine, and tyrosine are apparent exceptions,230

but only the 95% posterior probability intervals of cysteine and glutamine fail to overlap231

with y = x line. When comparing the pausing times ∆η of signal peptides to the 5’-ends of232

nonsecretory genes using a Model-II regression, we find no significant difference from the y =233

x line (slope β 95% confidence interval: 0.923 – 1.128, Figure 1a). To determine if differences234

were not detected due to underlying differences in the distributions of φ, we compared ∆η235

estimated from signal peptides and pseudo-signal peptides. Again, no statistically significant236

difference from the y = x line was found and the expected codon frequencies are similar (β237

95% confidence interval: 0.939 – 1.149, Figure 1b and S5). Similar results are obtained using238

the signal peptides with a D-score greater than 0.75 or the confirmed signal peptides (Figures239

S6 - S7). We also see no significant result when using empirically estimated φ values (β =240

0.908, 95% confidence interval: 0.671 – 1.168, Figure S8), although these results show much241

more variability. The increased variability in the ∆η values and corresponding regression242

line is unsurprising given the empirically estimated φ values are subject to significant noise243

(Figure S2), but are, in this case, treated as error free estimates of a gene’s true φ value.244
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Figure 1: Comparing the pausing time estimates ∆η between (a) the 5%-ends of nonsecretory
genes or (b) pseudo-signal peptides to signal peptides. Grey dashed lines represent the 95%
confidence intervals of the regression line. Results clearly show a strong positive linear
relationship (ρ = 0.802) between the regions and a regression line not significantly different
from y = x.

The Model-II regression lines estimated from the mature vs. signal peptide comparison245

and the pseudo-mature vs. pseudo-signal peptide comparison are similar, providing further246

evidence the nature and magnitude of selection on codon usage in signal peptides and the247

5’-ends of nonsecretory genes is indistinguishable (Figure 2). The mature vs. signal peptide248

comparison produces a regression line with slope β = 0.480 (95% confidence interval: 0.428249

- 0.574), which is approximately 50% of the slope observed when comparing signal peptides250

to the 5’-ends of nonsecretory genes and pseudo-signal peptides. This indicates selection251

on codon usage in the mature peptides is stronger than it is in signal peptides, although252

the nature of selection is still against translation inefficiency. Similar behavior is observed253

when comparing the pseudo-mature vs. pseudo-signal peptide comparison (β = 0.509, 95%254
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confidence interval: 0.490 - 0.533). The slope estimate from the mature vs. signal peptide255

comparison is not significantly different from β = 0.509 (Two-tailed Z-test, p = 0.0682).256

Similar regression lines would not be expected if differences in selection on codon usage257

existed between signal peptides and the pseudo-signal peptides.258
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Figure 2: (a) Comparing the codon pausing time estimates ∆η between mature peptides
and signal peptide regions. Grey dashed lines represent the 95% confidence intervals of
the regression line. Results show a positive linear relationship (ρ = 0.43) between the ∆η
estimates for the two regions. This indicates codons favored in one region tend to be favored
in the other. (b) Same comparison for pseudo-signal peptide genes. Regression estimates
are indistinguishable from those estimated for the mature and signal peptide comparison
(Likelihood Ratio test, p = 0.562).

Noting CAI and tAI do not account for the effects of gene expression, mutation bias, drift,259

or amino acid biases, we found signal peptides have lower CAI and tAI values compared to260

the first 23 codons of nonsecretory genes (one-tailed Welch’s t-test, p < 10−5). This was also261

the case when looking at the pseudo-signal peptides, which normalizes for protein production262

rates φ. These results with CAI and tAI can potentially be explained by either the preferred263
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use of inefficient codons in signal peptides or as artifacts of amino acid biases. Signal peptides264

have a different amino acid composition from the 5’-end due to the required physicochemical265

properties of this region (Figure S9). We examined the robustness of tAI and CAI as a266

means of quantifying differences in selection on codon usage when underlying differences267

between amino acid composition and φ exists using data simulated under the same mutation268

bias ∆M and pausing time ∆η parameters. When comparing simulated signal peptides to269

simulated 5’-end of nonsecretory genes and simulated pseudo-signal peptides using CAI, the270

simulated signal peptides are found to have a significantly lower mean CAI (Welch’s t-test,271

p < 0.05) 100% of the time (Figure 3A-B), despite the fact the ∆η and ∆M parameters used272

to simulate these regions were the same. This suggests differences in amino acid usage and273

not adaptation to novel selective forces, explains the lower CAI of the signal peptides.274

When using simulated 5’-ends of nonsecretory genes which have amino acid composition275

consistent with the signal peptides, the p-values were heavily skewed towards 1. (Figure276

3C). This odd behavior is due to the differences in the φ distribution differences of the signal277

peptide and nonsecretory genes. As the former has a higher mean φ, the signal peptides on278

average will have a stronger CUB after normalizing for the amino acid biases. A one-tailed279

Welch’s t-test with the alternative hypothesis being signal peptides have a lower mean CAI,280

when in reality they likely have a larger mean CAI, would skew the p-value distribution281

towards 1. Importantly, ROC-SEMPPR did not detect significant differences between signal282

peptides and the 5’-ends of non-secretory genes, despite differences in the φ distributions283

(Figure 1a). When normalizing for both amino acid usage and φ, significant differences in284

CAI are found approximately 4% of the time, which is close to the expected number of false285

positives at the 0.05 significance level (Figure 3D). Similar results are seen when using tAI286

(Figure S10). Our results indicate CAI and tAI are prone to inflating differences in CUB287

between two regions when differences in φ and amino acid usage are not accounted for.288
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Figure 3: Distribution of p-values from a one-tailed Welch’s t-test comparing CAI in simu-
lated nonsecretory 5’-ends, pseudo-signal peptides, and signal peptides in which all regions
were simulated using the same pausing time ∆η and ∆M parameters. (A-B) The CAI of sim-
ulated signal peptides was found to be significantly lower on average at a 100% false positive
rate when compared to simulated 5’-ends of nonsecretory genes and simulated pseudo-signal
peptides. (C) Adjusting the amino acid frequencies of the 5’-end of nonsecretory genes to
match those of the signal peptides results in a heavily skewed distribution. (D) Adjusting the
amino acid frequencies of the pseudo-signal peptides to match those of the signal peptides
results in a more uniform distribution.

Notably, selection on codon usage near the N-terminus appears to be on average approxi-289

mately 50% weaker than the remainder of the gene based on the slopes β. Previous analyses290

using a variety of codon usage metrics found CUB near the 5’-end to be weaker than middle291

sections of the gene, with these differences being attributed to selection against nonsense er-292

rors and to maintain translation initiation efficiency by reducing mRNA secondary structure293
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[9, 13, 11, 16, 35, 32]. We confirm this trend using ROC-SEMPPR (Figure S11).294

[54] proposed selection for translation initiation efficiency was shaping signal peptide295

codon usage, particularly the use of lysine codon AAA, at the second amino acid position.296

While AAA appears to be slightly favored in signal peptides, which is not the case in the297

pseudo-signal peptides, the 95% posterior probability interval overlaps with the y = x line298

(Figure S12). If the insignificant increased usage of AAA is due to greater selection for299

translation initiation efficiency in signal peptides, then removing the first 3 codons when300

analyzing signal peptide codon usage should remove this effect. Doing so results in no301

change in the behavior of AAA, suggesting if there is any selection for increased AAA usage302

in signal peptides, it is not due to selection for increased translation initiation efficiency303

(Figure S13). Notably, AAA is both mutationally and selectively-favored for lysine in E.304

coli. Keeping in mind selection on CUB is weaker near the 5’-end of the genes in E. coli,305

the combination of weaker selection, mutational favorability, and a slight increase in the306

occurrence of lysine in signal peptides (Figure S9) likely drives up the frequency of codon307

AAA in signal peptides relative to the 5’-ends of nonsecretory genes.308

Discussion309

In summary, we found no evidence to support the hypothesis that selection on codon usage in310

signal peptides and the 5’-ends of nonsecretory genes in E. coli using a mechanistic model of311

CUB which incorporates the effects of selection, mutation bias, gene expression, and amino312

acid usage. We find commonly employed codon usage metrics CAI and tAI produce spurious313

differences between signal peptides and 5’-ends of nonsecretory genes due to differences in314

amino acid usage and gene expression of signal peptide containing genes relative to the rest315

of the genome. Importantly, both amino acid usage and φ were significant confounding316

factors when analyzing CUB with CAI and tAI – only accounting for one of these factors317

still suggested significant differences between the simulated regions. Although we are not the318
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first to note potential issues with metrics like CAI or tAI for intragenic CUB analysis [16],319

our results demonstrate these metrics are insufficient for intragenic CUB analysis when these320

regions have drastically different amino acid usage or φ distributions, resulting in incorrect321

biological interpretation.322

This is not to say CUB plays no role in the secretion of specific proteins. For example,323

experimental evidence demonstrates codon optimization of the E. coli maltose binding pro-324

tein’s (MBP) signal peptide results in a decrease in protein abundance. Evidence suggests325

this is due to increased targeting of the codon optimized MBP by proteases due to improper326

folding [52, 53]. However, CUB as a means to guide proper co-translational folding is not a327

phenomenon unique to proteins with a signal peptide [4, 29, 48]. Although inefficient codons328

might be crucial to the fold of certain secreted proteins, our results do not indicate this is329

any more or less so than nonsecretory genes.330

Although we found no general difference in selection on codon usage between signal pep-331

tides and the 5’-ends, it is possible CUB differences exist between the chaperone-dependent332

and chaperone-independent mechanisms of the Sec pathway. Previous analyses revealed pat-333

terns consistent with a region of slower translation at the 5’-ends of transmembrane proteins,334

which are typically secreted via SRP in bacteria [26]. [10] found transmembrane proteins335

in E. coli have a higher frequency of “programmed pause sites,” areas of high ribosomal336

density downstream from Shine-Dalgarno-like sequences, near the 5’-end. This region of337

higher ribosomal density was not observed in periplasmic proteins, which are normally se-338

creted via SecA/B [26, 43]. Notably, [25] challenged the assertion that Shine-Dalgarno-like339

sequences are responsible for inducing translational pauses in bacteria, concluding signals340

previously seen were an artifact of the method for assigning ribosome occupancy along the341

transcript. [28] also found a consistent trend of inefficient codons 35-40 codons downstream342

of the SRP-binding site in various yeasts species using a modified form of the tAI. Ribosomal343

profiling data taken from S. cerevisiae provided experimental support for this hypothesis,344

but this analysis was limited to a small, closely-related phylogeny. Further work is needed345
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to determine the general mechanistic role, if any, of codon-induced inefficient translation in346

SRP-dependent protein secretion, as well as to determine if any specific codon biases exists347

for SecA/B-dependent or chaperone-independent secreted proteins.348

We do find selection on CUB is weaker at the 5’-ends relative to later portions of the349

gene, corroborating previous work [9, 13, 11, 16, 32, 35]. Weaker selection at the 5’-ends is350

often attributed to selection against nonsense errors and selection against mRNA secondary351

structure. Importantly, the advent of ribosome profiling suggested the presence of high352

ribosomal density at the 5’-ends, often referred to as the “5’-ramp” [44]. The 5’-ramp353

was originally thought to be the result of increased selection for slow translation at the 5’-354

end to reduce ribosomal interference further down the transcript, but simulations suggest355

the 5’-ramp is an artifact of short genes with high initiation rates [39]. Selection for co-356

translational folding is also thought to shape intragenic CUB [4, 29, 48]. Further work is357

needed to understand how these various selective forces are balanced to maintain translation358

efficiency and efficacious protein biogenesis.359

Although it may be tempting to explain statistically significant results in the context of360

selection and adaptation, it is important to assert results cannot be explained by nonadap-361

tive evolutionary forces (e.g. mutation bias and genetic drift) and/or as an artifact of some362

other constraint on the trait of interest (e.g. amino acid biases). We are certainly not the363

first to note the importance of considering nonadaptive explanations. Almost four decades364

ago, [14] critiqued the propensity of evolutionary biologists to invoke natural selection and365

adaptation without seriously considering possible nonadaptive explanations. The explosion366

of genomic data means now, more than ever, biologists should be hesitant to adopt adapta-367

tionist explanations to biological phenomenon without first investigating if such results could368

be shaped by nonadaptive forces. The embrace of ”big data” by biological researchers is a369

double-edged sword: while we have the ability to investigate patterns and explore hypotheses370

which would not have been possible 20 years ago, the indiscriminate analysis of large datasets371

can lead to spurious, but statistically significant p-values, which are often misinterpreted as372
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both evidence of a strong effect and a small probability of the null hypothesis being true373

[47]. The misinterpretation of p-values and a bias towards adaptationist explanations can be374

a dangerous combination, leading to a misinterpretation of results and, in turn, misleading375

other researchers.376

The development of models incorporating both adaptive and nonadaptive evolutionary377

forces will be important for understanding the selective forces shaping complex biological378

data. In the case of the studying CUB, codon indices like CAI have long been employed,379

but these metrics often are sensitive to and, thus, unable to disentangle the effects of amino380

acid and mutation biases from selection. While often good proxies of gene expression, these381

indices do not directly incorporate gene expression information into the weights estimated for382

each codon. This could lead to further problems of conflating mutation bias with selection383

when comparing CUB across regions. In contrast, because ROC-SEMPPR is grounded in384

population genetics and thus, is able to decouple selection and mutation bias, it serves as385

a more accurate and evolutionarily-grounded tool for the study of CUB. Ultimately, our386

work further illustrates the value of employing population genetics models which include387

nonadaptive evolutionary forces for analyzing genomic data.388
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