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Abstract

One of the biggest challenges in preprocessing pipelines for neuroimaging data is to increase

the signal-to-noise ratio of the data which will be used for subsequent analyses. In the same line,

we suggest in the present work that the application of consensus clustering for brain connectivity

matrices to find subgroups of subjects can be a valid additional ”connectome processing” step

helpful to reduce intra-group variability and therefore increase the separability of distinct classes.

In addition, by partitioning the data before any group comparison, we demonstrate that unique

regions within each cluster arise and bring new information that could be relevant from a clinical

point of view.
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I. INTRODUCTION

In the supervised classification of human connectome data [1], subjects are usually

grouped based on high-level clinical categories (e.g., patients and controls), and typical

approaches aim at deducing a decision function from the labeled training data, see e.g.[2].

Likewise, unsupervised analysis are also usually performed such that one is blind to any phe-

notypic factors and is more interested in finding subgroups of subjects/features with similar

characteristics. There exist in the literature a vast number of clustering algorithms dealing

with this issues (see for example [3] and references in). The emergence of substructures

underlying the data is due to the fact that in general the population of healthy subjects

(as well as those of patients) is usually highly heterogeneous. Consequently, stratification

of groups may be a useful preprocessing stage, so that the subsequent supervised analysis

might exploit the knowledge of the structure of data. A convenient strategy for stratification

of groups involves using phenotypic variables of subjects when available. More interestingly,

stratification may rely on the measured variables, like the human connectome data itself, by

application of clustering algorithms that find natural groupings in the data.

An effective supervised approach, named Multivariate Distance Matrix Regression

(MDMR), has been proposed in [4] for the analysis of gene expression patterns; it tests

the relationship between variation in a distance matrix and predictor information collected

on the samples whose gene expression levels have been used to construct the matrix. The

same method was also applied to the cross-group analysis of brain connectivity matrices [5],

as an alternative to the common method used in connectome-wide association studies, i.e.

mass-univariate statistical analyses, in which the association with a phenotypic variable of

each entry of the brain connectivity matrix, across subjects, is tested. Whilst MDMR has

found wide application, see e.g. [6], its findings may be certainly affected by the heterogene-

ity of classes.

Recently an unsupervised method [7], rooted on the notion of consensus clustering [8],

has been developed for community detection in complex networks [9], when a connectivity

matrix is associated to each item to be classified; in this method, the different features,

extracted from connectivity matrices, are not combined in a single vector to feed the clus-

tering algorithm; rather, the information coming from the various features are combined by

constructing a consensus network [8]. Consensus clustering is commonly used to generate
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stable results out of a set of partitions delivered by different clustering algorithms (and/or

parameters) applied to the same data [10]; in [7], instead, the consensus strategy was used

to combine the information about the data structure arising from different features so as to

summarize them in a single consensus matrix, which not only provides a partition of subjects

in communities, but also a geometrical representation of the set of subjects. It has been

shown that it is an effective technique for disentangling the heterogeneity that is inherent

to many conditions, and to the cohort of controls. The main similarity with MDMR is that

in both methods a distance matrix in the space of subjects is introduced.

The purpose of this work is to propose the consensus clustering approach in [7] as a

preprocessing stage of MDMR in exploratory analysis, so as to cope with the heterogeneity

of subjects. First, we will test the robustness of our consensus clustering with respect to

the introduction of heterogeneity in the data provided by means of different affects of noise.

Second, we will show that extracting the natural classes present in data and subsequently

performing the supervised analysis between the subgroups found by consensus clustering,

allows to identify variables whose pattern is altered in group comparisons, which are not

identified when the groups are used as a whole. As a result, the proposed approach leads to

an increase in separability.

II. MATERIALS AND METHODS

A. Materials

The robustness of the consensus clustering algorithm to disentangle the real structure of

data was tested using simulated data for two groups of 15 subjects each, generated using

simTB [11], a toolbox written in MATLAB that allows to simulate functional magnetic

resonance imaging (fMRI) datasets under a model of spatiotemporal separability. Given the

number of sources/components (nC), repetition time (TR) and a hemodynamic model, the

program yields the time course profile subject to the experimental design (block- and/or

event-related) provided. Our scenario consists of nC = 20 components and TR = 2s, such

that in a event-related experiment the first 10 components of the cohort of group 1 have

high probability (90%) of becoming activated, whereas for the remaining components the

activation is rare (10 %). For subjects of group 2 the situation is the opposite. This scenario
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Sex (M/F) Age Framewise displacement (FWD)

HC (N=118) 64/54 31.56± 8.83 0.17± 0.15

ADHD (N=40) 21/19 32.05± 10.4 0.15± 0.11

BP (N=47) 26/21 35.47± 9.16 0.19± 0.13

SCH (N=50) 38/12 36.46± 8.88 0.25± 0.20

TABLE I: Demographic information for LA5C dataset

could be then considered as the same group of subjects performing two orthogonal task,

where different components get involved.

On the other hand the advantages of using the consensus clustering method as a prepro-

cessing step were explored on two real and public neuroimaging datasets. The first dataset

comprises Healthy Controls (HC) subjects and several pathologies: Attention-deficit hy-

peractivity disorder (ADHD), Bipolar Disorder (BD), Schizophrenia (SCH). Such a dataset

can be found in the UCLA Consortium for Neuropsychiatric Phenomics LA5C Study from

the OpenfMRI database with accession number ds000030 [12], from which we used resting

functional MRI (rfMRI) of 255 subjects: 40 ADHD, 47 BD, 50 SCH and 118 HC. Demo-

graphics information about this cohort can be found in table I. Data were preprocessed with

FSL (FMRIB Software Library v5.0). All volume images were corrected for motion, after

which slice timing correction was applied to correct for temporal alignment. All voxels were

spatially smoothed with a 6mm FWHM isotropic Gaussian kernel and a band pass filter

was applied between 0.01 and 0.08 Hz after intensity normalization. In addition, linear

and quadratic trends were removed. We next regressed out the motion time courses, the

average CSF signal and the average white matter signal. Global signal regression was not

performed. Data were transformed to the MNI152 template, such that a given voxel had a

volume of 3mm x 3 mm x 3mm. Finally we obtained 278 time series, each corresponding

to an anatomical region of interest (ROI), by averaging the voxel signals according to the

functional atlas described in [13]. Finally, a 278×278 matrix of Pearson coefficients amongst

time series for each subject was obtained.

As for the second dataset, it corresponds to unprocessed Resting-State fMRI signal for a

population of healthy controls and Autism Spectrum Disorder (ASD) subjects that can be

found in the Autism Brain Imaging Data Exchange (ABIDE) repository [14], an initiative
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that aims at collecting data of this disorder from laboratories around the world to accelerate

the understanding of its neural bases. Since it is unclear the effect that different scanner

machines can have on the observable results, we decided to avoid this issue by considering

only a sample of 75 subjects for each group acquired at the same site (NYU). For this

subset, we matched age and sex between samples (Wilcoxon rank sum p = 0.27 and χ2 test

p = 0.29 respectively). Preprocessing of the data was done using FSL, AFNI and Matlab.

Firstly, slice-time correction was applied. Then each volume was aligned to the middle

volume to correct for head motion artefacts followed by intensity normalization. We next

regressed out 24 motion parameters, the average cerebrospinal fluid (CSF) and the average

white matter signal. A band pass filter was applied between 0.01 and 0.08 Hz and linear and

quadratic trends were removed. All voxels were spatially smoothed with a 6 mm full width at

half maximum (FWHM). Finally, FreeSurfer software was used for brain segmentation and

cortical parcellation. A 86 region atlas was generated with 68 cortical regions from Desikan-

Killiany Atlas (34 in each hemisphere) and 18 subcortical regions (9 in each hemisphere:

Thalamus, Caudate, Putamen, Pallidum, Hippocampus, Amygdala, Accumbens, VentralDC

and Cerebellum). Each subject parcellation was projected to individual functional data and

the mean functional time series of each region was computed.

B. Consensus clustering method

Given a set of matrices of distance among subjects, the consensus clustering proposed

in [7] can be summarised as follows: (i) clusterise each distance matrix using a known

clustering algorithm, (ii) build the consensus network from the corresponding partitions and

(iii) extract groups of subjects by finding the communities of the consensus network thus

obtained.

Regarding the distance matrices calculation in the case of fMRI data, let us consider m

subjects such that each one has a N ×N matrix of features, that can for example represent

the brain functional connectivity matrix. We will denote this matrix as {A(i, j)α}, where

α = 1, . . . ,m and i, j = 1, . . . , N . For each row i, we build a distance matrix for the set

of subjects as follows. Consider a pair of subjects α and β, and consider the corresponding

patterns {A(i, :)α} and {A(i, :)β}; let r be their Pearson correlation. As the distance between

the two subjects, for the node i, we take dαβ = 1− r; other choices for the distance can be
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used, like, e.g., dαβ =
√

2(1− r) where r is the Pearson correlation. The m ×m distance

matrix dαβ corresponding to row i will be denoted by Di, with i = 1, . . . , N . The set of

D matrices may be seen as corresponding to layers of a multilayer network [15], each brain

node providing a layer.

Each distance matrix Di is then partitioned into k groups of subjects using k-medoids

method [16]. Subsequently, an m × m consensus matrix C is evaluated: its entry Cαβ

indicates the number of partitions in which subjects α and β are assigned to the same

group, divided by the number of partitions N. Eventually the consensus matrix is averaged

over k ranging in the interval (2-20) so as to fuse, in the final consensus matrix, information

about structures at different resolutions, see [7].

The consensus matrix, obtained as explained before, is eventually partitioned in commu-

nities by modularity maximization, with the consensus matrix C being compared against

the ensemble of all consensus matrices one may obtain randomly and independently per-

muting the cluster labels obtained after applying the k-medoids algorithm to each of the set

of distance matrices. More precisely, a modularity matrix is evaluated as

B = C−P,

where P is the expected co-assignment matrix, uniform as a consequence of the null ensem-

ble here chosen, obtained repeating many times the permutation of labels; the modularity

matrix B is eventually submitted to a modularity optimization algorithm to obtain the out-

put partition by the proposed approach (we used the Community Louvain routine in the

Brain Connectivity Toolbox [17], which admits modularity matrices instead of connectivity

matrices as input).

C. Multivariate Distance Matrix Regression

The cross-group analysis of brain connectivity matrices has been performed using the

Multivariate Distance Matrix Regression (MDMR) approach as described in [4, 5].

For a fixed brain node i, the distance between connectivity patterns of i with the rest

of the brain was calculated per pair of subjects (u,v) –by calculating Pearson correlation

between connectivity vectors of subject pairs–, thus leading to a distance matrix in the

6

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 16, 2018. ; https://doi.org/10.1101/348110doi: bioRxiv preprint 

https://doi.org/10.1101/348110
http://creativecommons.org/licenses/by/4.0/


subject space for each i investigated. In particular, the following formula was applied

diuv =
√

2 (1− riuv) (1)

where riuv is the Pearson correlation between connectivity patterns of i for subjects u and v.

Next, MDMR was applied to perform cross-group analysis as implemented in R [18].

MDMR yielded a pseudo-F estimator (analogous to that F-estimator in standard ANOVA

analysis), which addresses significance due to between-group variation as compared to

within-group variations [19]. In the particular case when the only regressor variable is

categorical (i.e. the group label), given a distance matrix, one can calculate the total sum

of squares as

SST =
1

n

N∑
u=1

N∑
v=u+1

d2uv (2)

with N being the total number of subjects. Notice that, from here on, we will consider

Thus, we got a different for each module i. Similarly, the within-group sum of squares can

be written as

SSW =
∑ 1

ng

∑
u=1

n∑
v=u+1

d2uvε
a
uv (3)

where is the number of subjects per group and a variable equal to 1 if subjects u and v

belong to group g and 0 otherwise. The between-group variation is simply , which leads to

a pseudo-F statistic that reads

F = (N − 1)
SSA
SSW

(4)

where m is the number of groups. As it was acknowledged in [4], the pseudo-F statistic is not

distributed like the usual Fisher’s F-distribution under the null hypothesis. Accordingly, we

randomly shuffled the subject indexes and computed the pseudo-F statistic for each time. A

p-value is computed by counting those pseudo F-statistic values from permuted data greater

than that from the original data respect to the total number of performed permutations.

Nevertheless, in our cross-group analyses, in addition to group label, age, sex and frame-

wise displacement (FWR) were also considered as covariates since their possible confounding

effect in distance variation between subjects. Finally, we controlled for I errors by False dis-

covery rate corrections and set significance threshold at 1%.
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D. The proposed approach

The application of MDMR, to identify altered patterns, is hampered by the heterogeneity

of subjects in the same group (healthy or patients). Therefore we propose here the use of the

consensus clustering approach as a preprocessing stage, to extract the natural classes present

in the group of controls (and/or in the group of patients); subsequently the supervised

analysis of MDMR is to be performed between the pairs of subgroups found by consensus

clustering, so as to identify variables whose pattern is altered in subgroups comparisons,

whilst they are not identified as significantly altered when the groups are used as a whole.

III. RESULTS

A. Simulated data

Our approach is based on the benefit of gain cluster information from each node instead

of using the whole brain. We can visualise this in figure 1, where the group reconstruction

provided by our method is compared with the one yielded by considering the whole correla-

tion matrix as pattern connectivity from which calculate the distance matrix, so the average

is only carried out over different resolutions κ when applying k-medoids.

We also assessed the robustness of our method in group reconstruction when gaussian

noise is added to the time series of group 1 (TS1) and group 2 (TS2), that can be written

as follows

TSij1 = TSij1 + εij1 · A · N
ij
1 (0, 1) (5)

TSij2 = TSij2 + εij2 · A · N
ij
2 (0, 1) , (6)

for i = 1 . . . 15 subjects and j = 1 . . . 20 components. A is the amplitude of the perturbations

and εij is a binary matrix allowing us to play with different noise configuration scenarios.

In a first scenario, different values of the noise amplitude A={0.1,0.3,0.5} were applied

to all components and subjects εi=1..15,j=1..20
1,2 =1. As we can see in figure 2, only for large

amplitude, noise starts to dominate so much that the consensus algorithm renders group

more compact and mix them together making it incapable of distinguishing between groups

perfectly
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FIG. 1: Comparison of group reconstruction obtained after the application of Louvain community

detection to the modularity matrix B provided by our method using the whole pattern connectivity

matrix (upper left) or the node pattern connectivity (upper right)

In a second scenario, variation of noise according to subsets of components perturbed

was studied. In order to amplify this effects, we restrict noise amplitudes to a fixed

large value A = 0.5. Four subsets of components affected by noise were taken j =

{(1), (1 . . . 3), (1 . . . 6), (1 . . . 10)}. In addition, in order to add more complexity, we con-

sidered the application of noise to 5 subjects of group 1 and 10 of group 2 respectively. As

a consequence, this effect is more notorious in group 2, since for the first 10 components the

activity is lower and therefore more sensitive to noise. When applied to a different number
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FIG. 2: Comparison of the evolution of the modularity matrix B and group reconstruction when

changing the amplitude noise that affects to all the simulated time series for both groups

FIG. 3: Comparison of the evolution of the modularity matrix B and group reconstruction when

changing the number of components affected by large amplitude noise

of components, this leads to a decrease of intra-group distance of subjects affected (yellowish

areas in the consensus matrices of figure 3) and also a slight approximation between groups

as a consequence of the synchronisation amongst the noised components. Nevertheless, the

consensus clustering is pretty robust when reconstructing both groups

Finally, variation of number of subjects was taken into account. In order to sim-

plify this scenario, we considered that noise only affected group 2 and the first 10 com-
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FIG. 4: Comparison of the evolution of the modularity matrix B and group reconstruction when

changing the subjects affected by large amplitude noise

ponents with a large amplitude A = 0.5. The subset of number of subjects are i =

{(1), (1 . . . 5), (1 . . . 10), (1 . . . 15)}. The consensus turns out to be again robust when re-

constructing both groups. For this case, the effect of changing the number of subjects of

group 2 affected by noise makes this group more compact as more subjects are involved

since noise makes them look more similar. This also makes these subjects of group 2 be

more similar with those of group 1 for the first 10 components, but not enough to mix them

together to render them indistinguishable by the consensus method.

B. LA5C dataset

The application of the consensus clustering method to the brain matrices in the four

groups yields the consensus matrices depicted in figure 5, which have been ordered according

to the membership configuration found by the community Louvain routine. For the healthy

group, this algorithm detects three communities of 55, 54 and 8 respectively. For ADHD

group, it finds 2 clusters of 21 and 15 subjects. For BD group, it detects 3 clusters of 17,

21, 8 subjects and for SCH group 3 of 14, 25 and 9. In all cases, communities with fewer

subjects than 5 have considered as outliers.

Likewise, the consensus clustering algorithm allows to extract more homogeneous sub-

groups of subjects, as it can be noticed from figure 5, where the mean intra-group distance

distribution produced by the collection of distance matrix for each pattern connectivity is
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FIG. 5: Consensus matrices and the reduction of the mean intra-group distance per node after

applying the consensus clustering method

exhibited. We stress that the inter-subjects distance is highly significantly smaller for the

clusters w.r.t the whole groups, as estimated by means of a Wilcoxon rank-sum test.

Furthermore, having more homogeneous clusters is translated in a variability decrease

which leads in some cases to a gain in separability when clusters are introduced in between

group comparison studies. In figure 6, we show this by means of the empirical cumulative

distribution function for the uncorrected p-values from each possible comparison between
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FIG. 6: Empirical cumulative function for the uncorrected p-values in all possible comparisons

involving on partitioned group

whole and cluster comparison within a healthy versus pathologic group setup. As we can

see, the comparisons when no clustering has been performed (represented as thick lines)

begin to accumulate larger p-values in contrast to the case when some of the clusters are

involved. Concerning partition of the healthy group, we can see that a procedure selecting

and recruiting of subjects with similar characteristics of those subjects within the cluster 2

in our healthy control sample would optimise the node association with the pathology. In
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FIG. 7: Unique node for clusters in each disorder

addition, ADHD, which lacks of significant results when being involved in group-comparisons

as a whole, develops significance gain improvement when clusterised using the consensus

algorithm. In contrast, for both BD and SCH clusters such an improvement only takes

place to some of their clusters and as a consequence, the consensus algorithm can also help

filter out ”noisy” subjects which have less in common with the pathology in study.

On the other hand, application of consensus clustering to brain connectivity matrices

of pathologies can also help unmask substructures whose underlying properties are unique
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and that might be worth studying. For example, concerning the comparisons with healthy

subjects of the ADHD group after been partitioned, we obtain for cluster 1 59 significant

nodes that are not present neither in cluster 2 nor when this group is taken as a whole; we will

denote these nodes as ”unique nodes” for cluster 1, meaning that only the comparison with

cluster 1 leads to point out their altered pattern w.r.t. pathological conditions. Likewise, 7

nodes are unique for cluster 2 of the same disorder group. Regarding comparison with the

BD group, there are 61 unique nodes which are recognized as significant for cluster 1 and 46

for Cluster 2. Finally, 113 nodes arise as being significantly associated with the whole group

of schizophrenia, whereas substructure inspection increases this number to 128 and 132 for

cluster 1 and 2, exhibiting both 27 different unique nodes. Both cluster 1 of BD group

and cluster 3 of SCH keep subjects with associated with both pathologies and therefore

no association is found whatsoever. Regions affected by unique nodes in each pathology is

represented in figure 7.

Higher significant regions for cluster 1 of ADHD lie in cortical regions from the Lateral

Occipital Cortex, superior division, the Cingulate Gyrus, posterior division and Lingual

Gyrus and involve functions from the visual and dorsal attention system. Cluster 2 have

also incidence from parts of the lingual gyrus in addition to postcentral Gyrus, the superior

parietal Lobule and the supramarginal Gyrus, anterior division -all with roles attached at

the dorsal attention system- and a small portion of the cerbellum.

On the other hand, regarding the BD group, the default mode system fundamentally

emerges in cluster 2 with cortical regions in the Frontal pole, temporal pole, the Inferior

Temporal Gyrus, anterior division and the Precuneus. Cluster 3 includes the postcentral

gyrus and the left thalamus, which take part in sensorimotor functions, and parts of the

cerebellum and the Occipital Fusiform Gyrus.

Finally, SCH community representation obtained through the consensus algorithm exhibit

a well differentiated structure, with cluster 1 focusing mainly on the back parts of the brain

with the Postcentral Gyrus, Precuneous Cortex and Lingual Gyrus and play roles from the

somatosensory and visual systems, and cluster 2 involving basically the prefrontal cortex

and some parts of the Superior frontal Gyrus whose functions can be assigned to the default

mode network.
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FIG. 8: modularity matrix B ordered after label structure provided by community detection for

healthy (left) and autistic (right) group

IV. ABIDE DATASET

Application of the consensus clustering algorithm and subsequent community detection

algorithm to both groups leads to the ordered community structure provided by the consen-

sus matrices in figure 8. For healthy group, the modularity matrix B yields 3 modules of 18,

36 and 19 subjects respectively. In contrast, division of autism group consists of two mod-

ules of 30 and 38 patients respectively. Moreover, a Wilcoxon Rank sum test performed on

ASD community partition separates subjects statistically by age (p = 0.0028) and framewise

displacement (p < 0.0001) (see fig 9).

On the other hand, we can see in figure 10 that the statistical significance is overall

stronger when a partitioned case is involved. In particular, it is notable how cluster 3 of

healthy group shows all the benefits of applying the consensus clustering method since it

gathers the healthy subjects with the highest connectome difference in comparison with

autistic subjects. Moreover, this pronounced case corresponds to the scenario where the

decrease of intra-group distance (cluster is more homogeneous) also follows an increase of

the inter-group distance (left panel of figure 11). This also happens less notoriously for

cluster 1 of autism group. In the rest of the cases, even though clusters become more
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FIG. 9: Age and FWD distribution for ASD clusters

compact, such a behaviour does not take place, given that, since we are clustering each

group separately, maximum separation between classes does not need to be guaranteed.

Nevertheless, the gain in statistical significance for some of the case might allow to unmask

regions not observed significantly different at first and therefore be further exploited by a

more thorough exploratory analysis.

When analysed together both groups each as a whole, MDMR yields only 2 significant

regions (region 57 and 83) as explained by group-label variation between subjects, whereas

this number increases to 13 and 70 for age and FWR respectively, showing an important effect

of the observed variance based on these last variables. However, applying first consensus

clustering to the healthy group produces 3 clusters such that, when comparing with the ASD

group, one cluster yields 52 significant nodes, being 48 not in any other possible comparison.

Likewise, both clusters obtained by partitioning ASD group lead to 16 and 9 significant nodes

when compared with healthy group and most importantly, 14 and 6 of them respectively

only observable in each cluster. Therefore, not only do we gain separability by means of an

increase of significant nodes, but also our approach allows us to unmask unique regions not

visible whatsoever when using standard whole groups comparisons.

From a clinical point of view, the emergence of unique nodes can be important and lie

in brain regions whose implications on the development of the pathology should be further
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FIG. 10: Uncorrected p-values distribution for all possible comparisons involving one partitioned

ABIDE group from the application of the consensus clustering

examined. In our case, concentrating on the ASD case, cluster 1 has 14 regions not presented

neither in cluster 2 versus HC, nor in whole group comparison. These regions are specially

focalised on the right brain hemisphere with the highest overall significance located at the

pars triangularis of the inferior frontal gyrus (pfdr = 0.0004). Areas in the same hemisphere

involving the frontal pole (pfdr = 0.0018) and the precuneus (pfdr = 0.0036) and regions

from the the postcentral (pfdr = 0.0014) and paracentral (pfdr = 0.0019) in the opposite

hemisphere exhibit also a great significance. On the other hand, the 6 unique significant

nodes of cluster 2 belong to areas in both hemispheres involving the Banks of the Superior

Temporal Sulcus (pfdr = 0.0021 in the left hemisphere and pfdr = 0.0078 in the right) and

the superior temporal lobe (pfdr = 0.0085 and pfdr = 0.0075 respectively); and regions in the

inferior temporal lobe (pfdr = 0.0069) and the supramarginal (pfdr = 0.0079) in the right

hemisphere.

V. DISCUSSION

The incorporation of new techniques for increasing separability in neuroimaging studies

is important for the obtainment of new findings. Our clustering method deals naturally
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with brain connectivity matrices, providing underlying more compact sub-classes beyond

the usual group labels. In addition, the application of the consensus clustering to different

regions of the brain allows us to capture the differences in groups in comparison to using the

whole connectivity matrix. To our best knowledge, this has not been considered yet at least

in the neuroimaging field. On the other hand, consensus matrix gathers all the information

from different resolutions and nodes and encodes this in the consensus matrix. As a conse-

quence, arbitrariness brought about by a priori choice of the number of clusters disappears.

Moreover, clusters found by our method are fairly robust with respect to moderate changes

in amplitude noise. However, given nowadays the strong protocols in experiment design and

the successive denoising steps in the preprocessing pipeline, one would not expect to find

such a noise contaminating the real data.

In addition to variability reduction that allows to elucidate significant pattern connectiv-

ity regions in group comparisons, each cluster found also provides unique information. In

particular, we have shown this for two different datasets which include four different mental

disorders: ADHD, BD, SCH and ASD.

Most of the studies on finding brain alterations in ADHD subjects have been focused on

children, since the symptoms related to this disorder such as inattention, and/or hyperac-

tivity/impulsivity need to be treated since the beginning of their appearance. In our case,

however, our cohort consists of adult subjects and we have found two different clusters car-
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rying both different and unique information. The first cluster comprises a vast anterior brain

area, with Lateral Occipital Cortex and the lingual gyrus and are mainly responsible both

for visual attention. This has already been reported using structural data [20]. The second

one covers a small portion of the brain developing functions from the dorsal attention and

the cerebellum, maybe capturing the cognitive functions of this last structure in attention

tasks [21].

Amongst our findings, our clustering method clearly separates the Default Mode Network

as one of the relevant system embedded in one of the subgroups in Bipolar Disorder and

Schizophrenia. Such a fundamental network has already been reported many times and it is

known to play a crucial role in both mental disorders [22, 23]. In our specific clusters, regions

with a disrupted connectivity pattern concentrates on the frontal cortex [24, 25], with also

some areas in the temporal lobe with prominence in bipolar disorder subjects, which may

account for differences when compared with schizophrenia [26–28].

Interestingly, our method also allows us to provide areas involved in different functional

systems, such as the cerebellum [29–31], the appearance of delusion and hallucinations con-

ducted by disfunction of sensory system located in the postcentral gyrus [32] and lack of

empathy triggered by an hyperactivation of the bilateral lingual gyrus in schizophrenic sub-

jects [33].

On the other hand, our results regarding ASD subject show two clear region domains.

The first one with a clear right asymmetry, with the participation of areas around the Pars

opercularis and Pars triangularis in the Inferior frontal gyrus, and whose individuals usually

exhibit lack of emotions [34–36]. Likewise, this domain also includes sensory-motor areas

such as the postcentral and paracentral gyrus and precuneus and confirm the results observed

in a larger ABIDE cohort of subjects when comparing ASD with typically developing controls

[37]. Second, some parts of the temporal lobe which, in addition to regions in the orbito-

frontal cortex (OFC) and amygdala define the ”social brain”. In this case, autistic subjects

specialise for verbally labelling complex visual stimuli and processing faces and eyes, which

compensate amygdala abnormality [38].

It is worth to stress that the connectivity patterns among brain regions are influenced by

respiration, movement, cardiac phase and other physiological variables, and what we observe

and can infer here (and in most of fMRI studies) is just a higher level view in which all these

actors are conflated.
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VI. CONCLUSIONS

In this work we have proposed the use of the consensus clustering approach developed in

[7] for exploratory analysis, in order to cope with the hetereogeneity of subjects. Extracting

the natural classes present in data and subsequently performing the supervised analysis by

MDMR, between the subgroups found by consensus clustering, allows to identify variables

whose pattern is altered in group comparisons, and which are not highlighted when the

groups are used as a whole. As a result, the proposed approach leads to an increase in

statistical power. We present application of the proposed method to fMRI public data,

looking for brain regions whose connectivity pattern is altered in the group comparisons

which are significantly altered due to the pathology.

[1] O. Sporns, Networks of the Brain. 2011.

[2] A. Fornito and E. T. Bullmore, “What can spontaneous fluctuations of the blood oxygenation-

level-dependent signal tell us about psychiatric disorders?,” Current Opinion in Psychiatry,

vol. 23, pp. 239–249, may 2010.

[3] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Transactions on Neural

Networks, vol. 16, pp. 645–678, May 2005.

[4] M. A. Zapala and N. J. Schork, “Multivariate regression analysis of distance matrices for

testing associations between gene expression patterns and related variables,” Proceedings of

the National Academy of Sciences, vol. 103, no. 51, pp. 19430–19435, 2006.

[5] Z. Shehzad, C. Kelly, P. T. Reiss, R. C. Craddock, J. W. Emerson, K. McMahon, D. A. Cop-

land, F. X. Castellanos, and M. P. Milham, “A multivariate distance-based analytic framework

for connectome-wide association studies,” NeuroImage, vol. 93, no. Part 1, pp. 74 – 94, 2014.

[6] J. Rasero, C. Alonso-Montes, I. Diez, L. Olabarrieta-Landa, L. Remaki, I. Escudero, B. Ma-

teos, P. Bonifazi, M. Fernandez, J. C. Arango-Lasprilla, S. Stramaglia, J. M. Cortes, and

t. A. D. N. I. , “Group-level progressive alterations in brain connectivity patterns revealed

by diffusion-tensor brain networks across severity stages in alzheimers disease,” Frontiers in

Aging Neuroscience, vol. 9, p. 215, 2017.

[7] J. Rasero, M. Pellicoro, L. Angelini, J. M. Cortes, D. Marinazzo, and S. Stramaglia, “Consen-

21

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 16, 2018. ; https://doi.org/10.1101/348110doi: bioRxiv preprint 

https://doi.org/10.1101/348110
http://creativecommons.org/licenses/by/4.0/


sus clustering approach to group brain connectivity matrices,” Network Neuroscience, vol. 0,

no. 0, pp. 1–12, 0.

[8] A. Lancichinetti and S. Fortunato, “Consensus clustering in complex networks,” Scientific

Reports, vol. 2:336, mar 2012.

[9] A.-L. Barabasi and J. Frangos, Linked: The New Science of Networks. Perseus Books Group,

1st ed.

[10] A. Strehl and J. Ghosh, “Cluster ensembles - A knowledge reuse framework for combining

partitionings,” in EIGHTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTEL-

LIGENCE (AAAI-02)/FOURTEENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL

INTELLIGENCE CONFERENCE (IAAI-02), PROCEEDINGS, (FIVE CAMBRIDGE CEN-

TER, CAMBRIDGE, MA 02142 USA), pp. 93–98, Amer Assoc Artificial Intelligence; ACM

SIGART; Alberta Informat Circle Res Excellence; DARPA; NASA Ames Res Ctr; Natl Sci

Fdn; Naval Res Lab, M I T PRESS, 2002. 18th National Conference on Artificial Intelli-

gence/14th Conference on Innovative Applications of Artificial Intelligence, EDMONTON,

CANADA, JUL 28-AUG 01, 2002.

[11] E. B. Erhardt, E. A. Allen, Y. Wei, T. Eichele, and V. D. Calhoun, “Simtb, a simulation

toolbox for fmri data under a model of spatiotemporal separability,” NeuroImage, vol. 59,

no. 4, pp. 4160 – 4167, 2012.

[12] R. A. Poldrack, E. Congdon, W. Triplett, K. J. Gorgolewski, K. H. Karlsgodt, J. A. Mumford,

F. W. Sabb, N. B. Freimer, E. D. London, T. D. Cannon, and R. M. Bilder, “A phenome-wide

examination of neural and cognitive function,” Sci Data, vol. 3, p. 160110, 12 2016.

[13] X. Shen, F. Tokoglu, X. Papademetris, and R. Constable, “Groupwise whole-brain parcel-

lation from resting-state fmri data for network node identification,” NeuroImage, vol. 82,

no. Supplement C, pp. 403 – 415, 2013.

[14] D. Martino, Y. A., L. C.-g., D. Q., C. E., F. X., and K. Alaerts, “ milham, m. p. (2014),”

The Autism Brain Imaging Data Exchange: Towards Large-Scale Evaluation of the Intrinsic

Brain Architecture in Autism, vol. 19, no. 6, pp. 659–667.

[15] S. Boccaletti, G. Bianconi, R. Criado, C. del Genio, J. Gómez-Gardeñes, M. Romance,
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