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24 Abstract

25 Objective: To develop and validate an automated segmentation algorithm for the lower 

26 leg using a multi-parametric magnetic resonance imaging protocol. 

27 Methods: An automated algorithm combining active contour and intensity-based 

28 thresholding methods was developed to identify skin and muscle regions from proton Dixon MR 

29 images of the lower leg. Tissue sodium concentration was then computed using 

30 contemporaneously acquired sodium images with calibrated phantoms in the field of view. 

31 Resulting sodium concentration measurements were compared to a gold standard manual 

32 segmentation in 126 scans.  

33 Results: Most cases had no observable errors in segmentation of muscle and skin. Six cases 

34 had minor errors that were not expected to affect quantification; in the worst, 126 mm2 (2%) of a 

35 muscle area of 8,042 mm2 was misclassified. In one case the algorithm failed to separate the tibia 

36 from the muscle compartment. Correlation between automated and manual measurements of 

37 sodium concentration was R2 = 0.84 for skin, R2 = 0.99 for muscle. Additionally, the RMSE was 

38 2.4mM for skin and 0.5mM for muscle; the observed physiological range was 8.5 to 37.4mM. 

39 Conclusion: For the purpose of estimating sodium concentrations in muscle and skin 

40 compartments, the automated segmentations provided equally accurate results compared to the 

41 more time-intensive manual segmentations. Sodium quantification serves as a biomarker for 

42 disease progression, which would assist with early diagnostic treatments. The proposed algorithm 

43 will improve workflow, reproducibility, and consistency in such studies. 

44
45
46
47
48
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49 Introduction

50 With technological advancements, biomedical application of sodium (Na) magnetic 

51 resonance imaging is on the rise, as it provides unique and quantitative biochemical information 

52 related to tissue viability, cell integrity and function [1-7]. The lower leg muscle and skin is of 

53 particular interest because of the technical simplicity and speed of obtaining an MRI scan of the 

54 calf [8]. 

55 A straightforward approach to determine sodium levels based on the sodium magnetic 

56 resonance images of the calf is to manually segment the desired regions. This process requires 

57 meticulous attention and inconsistencies can be introduced via human error, which diminishes 

58 reproducibility.

59 An automated approach could address these problems, and consequently improve 

60 workflow. A variety of automated methodologies have been developed to segment anatomical 

61 magnetic resonance images of the leg. One approach has been to apply a fuzzy clustering method 

62 to segment anatomical regions such as adipose tissue, cortical bone, and spongy bone in the lower 

63 musculature of the leg [9] and in the thigh [10]. For segmentation, other studies use a combination 

64 of applications including: shaping histograms, adaptive thresholding, connectivity [11], a 

65 deformable model, global histogram based intensity thresholding, k means clustering [12], and 

66 intensity based temporal homomorphic filter [13].

67 In this study, we develop an application-specific automated segmentation pipeline for the 

68 lower leg and show that its segmentations applied to sodium MR images yield sodium 

69 concentration measurements comparable to the measurements obtained via the gold standard 

70 manual segmentations. 
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71 Materials and Methods

72 Participants

73 We conducted a study of 93 people who had formerly participated in a variety of sodium 

74 MRI studies in Vanderbilt University Medical Center between July 2014 and May 2017 and had 

75 data available with 23NaMRI readings. Our study sample included pre-hypertensive patients, 

76 maintenance hemodialysis patients, maintenance peritoneal dialysis patients, and controls. 31 

77 people were scanned twice on separate occasions, while the remaining population was scanned 

78 once, in total 126 scans were acquired. The Institutional Review Board approved the study 

79 protocol and written informed consent was obtained from all study patients. The procedures were 

80 in accordance with the Declaration of Helsinki Principles regarding ethics of human research.

81 MR Imaging

82 MR images were acquired on a Philips Achieva 3.0T MR scanner (Philips Healthcare, 

83 Cleveland OH, USA) using a 23Na quadrature knee coil (Rapid Biomedical GmbH, Rimpar, 

84 Germany). The left lower leg was placed in the coil, in close proximity to a set of calibration 

85 phantoms (NaCl aqueous solution of 10mM, 20mM, 30mM, and 40mM). Two proton scans were 

86 performed using the scanner body coil: a mDixon scan for fat and water images, and a standard 

87 proton-density-weighted image. These proton scans have the same geometry parameters: FOV = 

88 192 x 192 mm2, resolution = 1 x 1 mm2, 5 slices at a thickness of 6 mm. The proton mDixon 

89 scan was acquired with TR = 200 ms and TE = 4.6 ms, 20 images were constructed in the form 

90 of water, water fat in-phase, water fat out-of-phase, and fat images, scan time = 3 min 52 s. The 

91 standard proton-density-weighted scan used the following parameters: TR/TE/FA = 4000 ms/ 30 

92 ms/ 90°, and scan time = 2 min 32 s. Using the sodium coil and an optimized 3D gradient-echo 
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93 sequence, a sodium image was obtained with the following parameters: FOV = 192 x 192 x 210 

94 mm3, voxel size = 3 x 3 x 30 mm3, 7 slices, TR/TE/FA = 130 ms/0.99 ms/90°, bandwidth = 434 

95 Hz/pixel, acquisition: 26, and scan time = 15 min 54 s [5]. 

96 Manual Segmentation 

97 Manual segmentation followed a previously described protocol [5]. The central imaging 

98 slices of the mDixon and sodium scans were used for manual segmentation. Five muscle regions 

99 of interest (anterior compartment, peroneus, soleus, medial gastrocnemius, and lateral 

100 gastrocnemius) were drawn on the mDixon, while a small region of the skin and phantoms were 

101 drawn on the sodium image (Fig. 1). 

102  

103 Fig 1: Example of manual segmentation. Four phantoms with sodium concentrations of 

104 10mM, 20mM, 30mM, and 40mM, a background sample, skin, and 5 muscle regions were 

105 overlaid on a water image. 

106

107 Automated Segmentation

108 Image analysis was performed in MATLAB version 2016a (Mathworks, Natick, MA) 

109 using an XNAT data management platform [14].

110 Regions of interest were identified by applying an active contour model and a global 

111 histogram based intensity thresholding method. Active contour is an energy minimizing model 

112 that uses deformable curves to match the desired object [15]. First, the edges of the image are 

113 determined via application of

114 (1)𝑔(𝑥,𝑦) =  
1

1 + |∇ (𝐺𝑜 ∗ 𝐼)|2
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115 where “G0” represents the image and “I” represents the smoothing factor. The curves that shape 

116 the object are then minimized in order to closely identify the desired object. This is achieved by 

117 integrating the edge indicator function using calculus of variance

118                    (2)
𝑑𝐶
𝑑𝑡 = (𝑔(𝐼)(𝑐 + 𝜅) ‒   ⟨∇𝑔,𝑁⟩)𝑁

119 which yields a mask of the desired object. More simply stated, the active contour model can be 

120 thought of as creating a basic shape that encloses the object, then progressively moving closer to 

121 the object until it reaches the edge, shaping the object’s boundary (Fig 2). 

122

123 Fig 2. Basic illustration of the active contour method.  A stepwise framework to illustrate the 

124 process of identifying an object outline.  

125

126 The global histogram based intensity thresholding (Otsu’s method) is also used in this 

127 algorithm [16]. This method identifies a threshold that separates a bimodal intensity based 

128 histogram into two classes. In order to determine this threshold, the global histogram based 

129 intensity thresholding algorithm determines the thresholding that yields the smallest weighted 

130 variance of the two classes,

131 .               (3)𝜎2
𝑤(𝑡) =  𝜔0(𝑡)𝜎2

0(𝑡) +  𝜔1(𝑡)𝜎2
1(𝑡) 

132 As illustrated in Fig 3, this thresholding approach distinguishes between the two groups of a 

133 bimodal histogram in order to produce a binary object. 

134

135 Fig 3. Basic illustration of global histogram based intensity thresholding. A water-only 

136 image derived from the mDixon scan was applied to an image intensity histogram to create two 

137 classes. 
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138

139  The automated quantification algorithm can be divided into four main phases: leg and 

140 phantom segmentation, skin segmentation, muscle segmentation, and quantification of sodium 

141 concentration.  

142 First, using the proton-density weighted image (Fig 4a) a 400-iteration active contour 

143 Chan-Vese method [15] was used to identify the leg portion of the mask and phantoms from the 

144 background (Fig. 4b). Nature of each segmented region was determined automatically based on 

145 size (leg >2400 mm2, phantoms <1300 mm2). 

146

147 Fig. 4. Creation and application of mask from MR images.  (A) Proton density image, (B) 

148 mask of leg and phantom regions, (C) mask of skin region, (D) reduced skin mask, (E) reduced 

149 skin mask overlaid on sodium image, (F) Otsu thresholding of the water image, (G) smoothed 

150 muscle region, (H) phantom, skin, and muscle regions overlaid on water image, and (I) phantom, 

151 skin, and muscle regions overlaid on sodium image.

152

153 The skin region was estimated by eroding the leg portion of the mask (Fig. 4b) by a 4 mm 

154 radius circular kernel and subtracting the resulting image from the original leg portion of the 

155 mask (Fig. 4b) to select approximately the outer 4 mm of the leg region (Fig. 4c). It should be 

156 noted that this process assumes the skin thickness is similar in all participants. At the time of MR 

157 acquisition, the posterior area of the leg was resting on the phantom holder surface and thus 

158 aligned perpendicular to the slice direction such that through-plane partial volume effect was 

159 minimized [22]. Therefore, the skin region was reduced to include only the portion in contact 

160 with the surface of the phantom holder (Fig. 4d). The reduced skin region was parallel to the coil 
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161 surface and the tissue thickness was more stable. Then, the produced image was overlaid on the 

162 sodium image (Fig. 4e) [17, 18]. 

163 The muscle region was identified on the water-only image derived from the mDixon scan 

164 (Fig. 3a) using a two-class global histogram based intensity thresholding method (Fig. 3) [19]. 

165 The estimated classification threshold was then reduced by 50% to account for intensity 

166 inhomogeneity in the image. Both the resulting two class image (Fig. 4f) and the leg portion of 

167 the mask (Fig. 4b) which was eroded by a 2 mm radius circular kernel, were used to create a 

168 three class intensity based leg image. By utilizing the index values for identification purposes, 

169 the region that included the muscle was isolated. Following erosion by a 1 mm radius circular 

170 kernel, size based artifact removal, and dilation by a 1 mm radius circular kernel, all remain 

171 holes within the muscle region were filled. The extracted muscle region was smoothed using a 

172 300 iteration Chan-Vese active contour model with a smooth parameter of 1.2. The skin region 

173 (Fig. 4c) was then subtracted from this muscle region to confirm there is no overlap between the 

174 two (Fig. 4g). Then, the four phantoms were uniquely labeled and eroded by a 4 mm radius 

175 circular kernel to ensure proper alignment on the sodium image. The phantoms, skin, and muscle 

176 regions are shown overlaid on the water only image in Figure 4h [17, 18]. 

177 Calibration for Quantitative Sodium Concentration

178 To quantify the sodium content in each region, the linear relationship between tissue 

179 intensity and the calibration phantoms was applied. A linear fit was computed using the known 

180 concentrations of the phantoms: 10mM, 20mM, 30mM, and 40mM, and their respective average 

181 sodium image intensity signal to estimate the calibration coefficients. Using these parameters, 

182 the sodium image was calibrated. The regions of interest were then applied to this calibrated 
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183 sodium image (Fig. 4i) and the mean and median sodium concentrations were quantified [17, 

184 18]. 

185

186 Results

187 Participants and Scan Quality

188 In total, 126 scans were acquired from 93 participants. Three scans were excluded from 

189 the analysis based on technical errors at the time of acquisition: in one case, the phantom holder 

190 was misaligned relative to the leg, while in two cases, the fields of view were misaligned 

191 between sodium and proton scans. Method comparisons were based on the remaining 123 scans.

192 Automatic Segmentation Algorithm Results

193 Of the 123 usable scans, 94% of the segmentations were highly accurate on visual 

194 inspection, correctly identifying the muscle and skin while excluding the tibia (Fig. 4h-i). 5% 

195 were usable for the intended purpose, identifying the muscle and skin with minor errors and 

196 excluding the tibia (Fig. 5a).  We observed that two of the cases with minor errors also had high 

197 amounts of intramuscular fat, e.g. Fig. 5b. And lastly, there was one case in which the tibia was 

198 not excluded (Fig. 5c).  

199

200 Fig. 5.  Illustration of automated segmentations special cases. (A) Example of a minor error, 

201 exclusion of small amount of muscle tissue (arrow). (B) In one case, the tibia was erroneously 

202 included in the muscle region. (C) A case with high level of intramuscular fat. 

203
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204 Automatic and Manual Segmentation Comparison

205 Sodium concentrations estimated by the automated algorithm were compared to values 

206 obtained from the gold standard manual segmentation using Bland-Altman analysis (Fig. 6) [20]. 

207 The bias for both regions was approximately zero: -0.05 mM for the skin and -0.11 mM for the 

208 muscle. The root mean square error (RMSE) of the automated algorithm compared to gold 

209 standard was 0.5 mM for the muscle, and 2.4 mM for the skin. The range of sodium 

210 concentration values in the muscle and skin regions in the entire sample was 11.3 to 35.0 mM 

211 (muscle) and 8.5 to 37.4 mM (skin). The correlations between automated and manual 

212 measurements were 0.99 and 0.84 for the muscle and skin, respectively. We observed four cases 

213 in the skin region marked in red on Fig. 6a) and three cases in the muscle region (marked in red 

214 on Fig 6b) where the difference between automated and manual measurements was more than 

215 two standard deviations from the mean.

216

217 Fig. 6.  Bland-Altman plots comparing automated and manual measurements of sodium 

218 concentration in the skin and muscle.  (A) Bland-Altman plot of the skin comparing the 

219 automated and manual measurement differences (y axis) versus the automated and manual 

220 measurement mean (x axis) (sodium range: 8.5-37.4 mM). Discrepancy cases indicated in red. 

221  (B) Bland-Altman plot of the muscle, comparing the automated and manual measurement 

222 differences (y axis) versus the automated and manual measurement mean (x axis) (sodium range: 

223 11.3-35.0 mM). Discrepancy cases indicated in red. 

224
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225 Automatic and Manual Segmentation Inter-Scan Comparison

226 Of the 123 used scans, 31 subjects were scanned twice. Using the Bland-Altman analysis 

227 (Fig6) [20], the inter-scan comparison was evaluated. The bias for both methods and both 

228 regions were approximately zero. In all cases, bias was below 1.05 and 95% limits of agreement 

229 were less than +/-10 mM. The limits of agreement for the automated method of the muscle was [-

230 4.50, 4.87], the manual method of the muscle was [-4.91, 5.44], the automated method of the 

231 skin was [-4.87, 5.12], and the manual method of the skin was [-5.91, 8.01]. 

232  

233 Fig 7. Bland-Altman plots comparing sodium concentration measurement concentration in 

234 the skin and muscle before and after the study.  (A) Bland-Altman plot of the muscle region, 

235 identified by the automated method, comparing the baseline and follow-up measurement 

236 differences (y axis) versus the sodium median from the automated method (x axis) (sodium 

237 range: 12.9-25.2 mM).  (B) Bland-Altman plot of the muscle region, identified by the manual 

238 method, comparing the baseline and follow-up measurement differences (y axis) versus the 

239 sodium mean from the manual method (x axis) (sodium range: 12.7-25.8 mM). (C) Bland-

240 Altman plot of the skin region, identified by the automated method, comparing the baseline and 

241 follow-up measurement differences (y axis) versus the sodium median from the automated 

242 method (x axis) (sodium range: 8.32-21.3 mM). (D) Bland-Altman plot of the skin region, 

243 identified by the manual method, comparing the baseline and follow-up measurement differences 

244 (y axis) versus the sodium mean from the manual method (x axis) (sodium range: 8.72-24.8 

245 mM).

246

247 Discussion
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248 In this study, we aimed to develop an algorithm that would allow us to streamline 

249 23NaMRI readings of the lower leg. Our data suggest that the sodium concentration 

250 measurements obtained by the automated segmentation were of excellent quality, adequate to 

251 replace those obtained by the gold standard manual segmentation method. 

252 Seven cases fell outside the limits of agreement in the Bland-Altman analysis, indicating 

253 that these cases had a relatively large discrepancy between manual and automated results: four 

254 were in skin and three cases in muscle. For the manual segmentation of the skin region, we 

255 observed variability from one case to the next in how much skin versus background was included 

256 in the final region, and in the thickness of the manually drawn skin region. This is a challenging 

257 segmentation task even when the regions are directly drawn on the sodium image [5], because 

258 the skin (~2 mm thick) is poorly resolved at the 3 x 3 mm in-plane voxel size. The automated 

259 method sacrificed any improvement in accuracy related to using the sodium image intensity to 

260 define boundaries; however, it added substantial consistency in positioning and thickness due to 

261 the use of the higher resolution structural images. Three of the four cases where skin results were 

262 outside the limits of agreement (Fig. 6a) showed erroneous inclusion of background voxels or 

263 exclusion of skin voxels in the manual segmentation. In the fourth case, the source of 

264 inconsistency was unclear. 

265 Based on the Bland-Altman analysis of the muscle (Fig. 6b) the sodium concentration 

266 measurements in this region were highly correlated. However, three cases fell outside of the limit 

267 of agreement. One of these had high levels of intramuscular fat (Fig. 5b). In this scenario, the 

268 manual approach which divides the muscles into five sub-compartments could possibly exclude 

269 slightly more of the intramuscular fat tissue between compartments compared to the automated 

270 method, resulting in a small bias towards lower muscle sodium concentration estimates by the 
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271 automated method. Another was the case where the tibia was erroneously included in the muscle 

272 region due to poor estimation from the active contour model in the automated method, this 

273 consequently yielded an underestimation of sodium concentrations. The manual segmentation 

274 from the third case was performed on the first slice of the mDixon scan instead of the middle 

275 slice, which was an accidental deviation from the protocol due to human error as is typical with 

276 manual procedures.

277 Overall, the inter-scan comparisons were comparable for both the regions and 

278 segmentation methods (Fig. 7). The correlations between baseline and the follow up for the skin 

279 region is slightly higher for the automated method, hence increased reproducibility, compared to 

280 the manual method. Conversely, the correlations between baseline and the follow up for the muscle 

281 region is the same in the automated and manual methods. It should be noted that the used sub-

282 dataset is from an ongoing longitudinal study during which some subjects will experience 

283 treatment and time effects, thus we are not strictly measuring reproducibility.

284 Although the automated algorithm performed quite well, there are some limitations. First, 

285 the MR imaging protocol it relies on is fast, but still moderately complex and multi-parametric, 

286 requiring both proton-tuned and sodium-tuned coils. Also, the results still require manual quality 

287 review to identify significant failures such as inclusion of the tibia. Finally, the algorithm did not 

288 reliably exclude the fibula from the muscle region. However, the area of the fibula is relatively 

289 quite small, and we used the median instead of the mean in the muscle region to summarize 

290 sodium quantification more robustly in the presence of a small number of outlier voxels (fibula). 

291 Observed results had trivial errors compared to the manual segmentation that consistently 

292 excluded the fibula (Fig. 7).
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293 The global intensity-based thresholding step can be confounded by intensity 

294 inhomogeneity in the MR images, resulting in a threshold that excludes some muscle tissue in 

295 lower intensity regions or includes some background voxels in higher intensity regions. Such 

296 inhomogeneity was present in our data, but not to a degree that affected results compared to 

297 manual segmentation. This issue could be more pronounced in data from other field strengths or 

298 other imaging protocols. Possible solutions would be to utilize a bias field correction [21] or a 

299 local thresholding method so that the intensity-based segmentation is applied more uniformly 

300 across the image. 

301 Finally, arbitrary fixed smoothness parameters were chosen for the active contour portion 

302 of the segmentation algorithm, which is a likely cause of the minor errors in identifying the 

303 muscle edges. Developing a dynamic and automated procedure for tuning smoothness to match 

304 specific images may improve results, although we would expect the improvement to be minimal 

305 in terms of the final concentration measurements. 

306 The algorithm is applied to the proton Dixon image. The resulting segmentation in this 

307 case were applied to a standard sodium weighted image, but in general could be applied to 

308 images of other physiological parameters. For instance, intracellular or extracellular sodium 

309 concentrations can be measured separately using inversion recovery techniques [1]. Additionally, 

310 to obtain more accurate sodium concentration measurements in the skin region, 23NaMRI at 7.0 

311 T could be used to acquire higher image resolution [22].  

312 Conclusion

313 In summary, we developed an algorithm that could streamline assessment of 23NaMRI 

314 measurements in the leg in both research and clinical settings. By applying an active contour 

315 model and a global histogram based intensity thresholding method, specific regions of interest 
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316 were identified which were later used for sodium quantification. This algorithm proved to be 

317 highly comparable to the gold manual segmentation method. For both the skin and muscle 

318 regions, the RMSE was relatively low based on the physiological range and the bias was 

319 approximately zero based on the Bland-Altman analysis. This automated approach is time 

320 efficient, reproducible, and minimizes observer bias and human error. Our results suggest that 

321 this algorithm is an excellent alternative to the manual segmentation methodology.
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