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SUMMARY

The  mammalian  transcriptome  includes  thousands  of  transcripts  that  do  not  correspond  to

annotated protein-coding genes. Although many of these transcripts show homology between

human and mouse, only a small proportion of them have been functionally characterized. Here

we use ribosome profiling  data  to  identify  translated  open reading  frames,  as well  as  non-

ribosomal protein-RNA interactions, in evolutionary conserved and non-conserved transcripts.

We  find  that  conserved  regions  are  subject  to  significant  evolutionary  constraints  and  are

enriched in translated open reading frames, as well as non-ribosomal protein-RNA interaction

signatures, when compared to non-conserved regions. Translated ORFs can be divided in two

classes, those encoding functional micropeptides and those that show no evidence of protein

functionality. This study underscores the importance of combining evolutionary and biochemical

measurements to advance in a more complete understanding of the transcriptome.
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INTRODUCTION

The advent of high-throughput genomic technologies has revealed that mammalian transcrip-

tomes are more complex than initially  thought  (Carninci  et  al.,  2005; Kapranov et  al.,  2007;

Okazaki et al., 2002; Ponjavic et al., 2007). One of the most intriguing findings has been the dis-

covery of thousands of expressed loci that lack conserved or long ORFs (Cabili et al., 2011; Liu

et al., 2012; Okazaki et al., 2002; Pauli et al., 2012; Ponting et al., 2009; Ulitsky and Bartel,

2013).  These  transcripts,  commonly  denominated  long  non-coding  RNAs  (lncRNAs),  share

many of the features of coding mRNAs, such as the presence of a polyadenylated tail and a

multi-exonic structure (Consortium et al., 2007). Some lncRNAs may have originated as a result

of bidirectional transcription from promoters  (Lepoivre et al., 2013) or enhancers  (Hon et al.,

2017; Li et al., 2016), whereas others may have been born thanks to the fortuitous appearance

of weak promoters in the genome (Ruiz-Orera et al., 2015).

The function of lncRNAs is a matter of intense debate. In general, lncRNAs display high evolu-

tionary turnover  (Kutter et al., 2012; Neme and Tautz, 2016), and show very weak sequence

constraints according to single nucleotide polymorphism data (Wiberg et al., 2015). This is con-

sistent with the idea that many lncRNAs are not functional but a result of the high transcriptional

activity of the genome (Brosius, 2005; Struhl, 2007; Wang et al., 2004). However, some lncRNAs

have been shown to regulate gene expression through interactions with specific proteins in the

nucleus or the cytoplasm (Gong et al., 2012; Han et al., 2010; Ribeiro et al., 2017) or with the

chromatin (Ponting et al., 2009), even if expressed at very low levels (Seiler et al., 2017). Cur-

rently, the fraction of lncRNAs that are functional is unknown.

Not surprisingly, functional lncRNAs often contain short conserved sequence segments that are

required for their function (Kapusta and Feschotte, 2014; Ulitsky, 2016). Although very few lncR-

NAs display deep conservation in vertebrates, hundreds of lncRNAs show conservation between

human  and  mouse  (Necsulea  et  al.,  2014;  Ulitsky  et  al.,  2011).  The  conserved  sequence
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patches tend to be short and 5'-biased (Hezroni et al., 2015). According to polymorphism data,

the evolution of conserved lncRNAs tends to be more constrained than the evolution of non-con-

served lncRNAs (Wiberg et al., 2015), indicating that the former lncRNAs are enriched in func-

tional sequences.

Ribosome profiling sequencing data (Ribo-Seq), which captures RNA-ribosome interactions but

also other types of RNA-protein interactions (Ingolia et al., 2009; Ji et al., 2016), offers new op-

portunities to investigate the properties of conserved  versus non-conserved lncRNA regions.

Remarkably,  Ribo-Seq has  revealed  the  existence  of  thousands of  translated  open reading

frames (ORFs) in lncRNAs (Bazzini et al., 2014; Castaneda et al., 2014; Ingolia et al., 2011; Ji et

al., 2015; Ruiz-Orera et al., 2014). Some of them correspond to small functional proteins which

have been missed by gene annotation pipelines, such as myoregulin (Mrln)  (Anderson et al.,

2015) or TUNAR (Megamind) (Lin et al., 2014). Other ORFs are likely to translate non-functional

peptides according to polymorphism data (Ruiz-Orera et al., 2014, 2018). The footprints of non-

ribosomal ribonucleoprotein particles have also been detected on some functional lncRNAs be-

cause of the distinctive length of the associated Ribo-Seq reads (Ingolia et al., 2014).

Here we investigate the presence of Ribo-Seq-related signatures, as well as other annotated

features  such  as  putative  promoter  sequences,  in  lncRNAs  sequences  that  are  conserved

between mouse and human. We find that conserved regions contain an excess of promoter

sequences, translated ORFs and non-ribosomal ribonucleoprotein particles when compared to

non-conserved regions. 

RESULTS

Conserved regions in lncRNAs are enriched in translation and regulatory signatures 
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We searched for matches of the complete set of Ensembl mouse annotated transcripts against

the human transcriptome using BLASTN (E-value < 10-5)  (Altschul et  al.,  1997).  The human

transcriptome was obtained using high coverage RNA sequencing data (RNA-Seq) from different

tissues  (Ruiz-Orera  et  al.,  2015).  We  detected  19,779  conserved  protein-coding  genes

(codRNAs) and 1,547 conserved lncRNAs, containing at least one conserved region in humans.

The conserved regions were in general shorter in lncRNAs than in codRNAs (median length of

163 and 343 nucleotides, respectively; Additional file 1: Figure S1 for more details).

Next, we focused on genes expressed that were significantly expressed in brain tissue, using a

high  coverage  ribosome profiling  dataset  from mouse hippocampus  (Cho et  al.,  2015).  We

detected significant expression for 13,081 conserved codRNAs and 289 conserved lncRNAs,

including 444 conserved lncRNA regions (Additional  file  1:  Table  S1).  The set  of  conserved

lncRNAs was enriched in functionally characterized lncRNAs (27 cases, see Additional File 2);

the only exceptions were Firre, Adapt33, and Snhg6. The percentage of genes with at least one

conserved region was 98% for codRNAs and 40.88% for lncRNAs (Figure 1a).  In terms of total

length, 8.50% of the total lncRNA sequence (25.39% in the case of functionally characterized

lncRNAs), and 61.62% of the codRNA sequence, was conserved (Figure 1a).

We observed that the transcripts frequently overlapped sequences annotated as promoters by

Ensembl  (Zerbino et al., 2015). This affected 87.15% of codRNAs and 68.18% of lncRNAs. In

relative  terms,  lncRNAs  were  more  extensively  covered  by  promoters  (24.50%  of  total

sequence) than codRNAs (11.52% of total sequence) (Figure 1a), and promoter regions were

biased towards the 5' end of lncRNAs (Figure 1b). The relatively high overlap of promoters with

lncRNAs could be explained by their short size compared to codRNAs; when we focused on the

5'-most 200 nucleotides of the transcript the percentage of sequence covered by promoters was

actually higher for codRNAs than for lncRNAs (80.46% versus 63.38%). We observed a strong

enrichment  of  promoters  in  conserved  regions:  promoters  occupied  nearly  54% of  the total

lncRNA conserved sequence, compared to only ~22% of the non-conserved one (Figure 2b).
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Next, we investigated the presence of ribosome profiling (Ribo-Seq) signals on the transcripts.

We observed that most codRNAs (99.10%) and lncRNAs (89.92%) were covered by at least 1

Ribo-Seq read. When looking at the total sequence length, 50.08% of the codRNA sequence

and 27.17% of the lncRNA sequence was covered by Ribo-Seq reads (Figure 1a). These results

are in  line with  recent  reports  of  a relatively  high coverage of  lncRNAs by Ribo-Seq reads

(Ingolia et al., 2011; Ruiz-Orera et al., 2014). The Ribo-Seq reads showed a clear 5' bias, both in

conserved and non-conserved regions (Figure 1b, Additional file 1: Figure S2). 

To account for the fact that some regions might be conserved because of antisense overlaps

with protein-coding exons, we did the same analysis without considering any overlapping region,

reaching similar  conclusions of  higher  density  of  Ribo-Seq reads in  conserved  versus non-

conserved regions (Additional file 1: Figure S3). Moreover, even though conserved regions had

higher RNA-seq and Ribo-Seq read coverage than non-conserved ones (Additional file 1: Figure

S4), the same effect could be observed for different expression level intervals, indicating that the

trend was robust to variations in the amount of the transcript (Additional file 1: Figure S5). Ribo-

Seq data from human and rat brain tissues, for the corresponding genomic syntenic sequences,

yielded very similar results (Additional file 1: Figure S6). 

Consistent results across lncRNA types

We divided  lncRNAs come in  two  groups,  intergenic  lncRNAs (I,  Figure  2a)  and  antisense

lncRNAs  (A,  figure  2a).  Intergenic  lncRNAs  were  completely  independently  loci.  Antisense

lncRNAs included those lncRNAs annotated as antisense in  Ensembl,  as well  as any other

lncRNA whose transcription start site was located less than 2Kb from the TSS of another gene in

antisense orientation and/or had antisense exonic overlap with another gene. We also found 50

annotated  lncRNAs  with  embedded  short  non-coding  RNAs  in  the  exons  (they  contain  33

miRNAs, 41 snoRNAs, and 32 miscRNAs); we termed this class ncRNA host (H, Figure 2a).
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Many of these lncRNAs are known to be processed to form small conserved RNA molecules, as

it occurs with the 3' tail of  Malat  (Wilusz et al., 2008), although in other cases (f.e.  Slert) the

presence of the sRNA-like sequence in the lncRNA enables the biogenesis and translocation of

the transcript (Xing et al., 2017). For comparative purposes, we classified the genes annotated

as coding in the same three categories as the lncRNAs. We observed that the relative frequency

of antisense genes was much higher in lncRNAs than in codRNAs (451 out of 707 versus 3,324

out of 13,342).

The  class  defined  as  ncRNA host  was  strongly  enriched  in  conserved  sequences  when

compared to the other two lncRNA classes (Figure 2a). Overall, 90% of the mouse ncRNA host

sequences showed significant conservation in the human transcriptome, whereas this fraction

was 42% for antisense lncRNAs and 27% for intergenic lncRNAs. Promoter sequences and

Ribo-Seq mappings were more abundant in conserved than in non-conserved regions for all

three lncRNA classes (Figure 2b). The main differences between the classes were an excess of

promoter sequences in antisense lncRNAs and increased Ribo-Seq signal in conserved ncRNA

host. When the three classes of lncRNAs were taken together, the fraction of regions covered by

Ribo-Seq reads was about double for conserved than for non-conserved regions (51.7% versus

24.9%, Test of equal proportions, p-value < 10-5).

Conserved lncRNA sequences are under selection

Although mouse and human are relatively distant species (~ 90 Million years)  (Hedges et al.,

2015), some sequence segments may be conserved purely by chance. In order to estimate the

expected degree  of  conservation between mouse and human transcripts  in  the absence of

selection we run sequence evolution simulations using Rose (Stoye et al., 1998). In particular,

we  simulated  the  evolution  of  lncRNAs  along  the  mouse  and  human  branches  under  no

evolutionary constraints. Subsequently we performed BLASTN searches of the evolved mouse

sequences against the set of evolved human sequences (see Methods for more details).  We
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could find BLASTN homology hits for about 56.2% of the evolved lncRNA sequences. The fact

that this fraction is larger than the observed one for real lncRNAs (40.9%, Figure 1a) supports

the idea that a fraction of the current mouse lncRNAs have originated after the split with the

human lineage.

Next,  we used the sequence alignments  obtained  with  BLASTN to  estimate  the  number  of

substitutions per site (k) using the PAML package (Yang, 2007), in different sequence sets. In

alignments of size equal or longer than 300 nucleotides,  the computed  k was similar to the

expected 0.51 substitutions per site for regions evolving under no constraints  (See Methods for

more details). Using the same length cut-off the computed  k for real lncRNAs was 0.25 and

hence significantly lower than the expected under no constraints (Wilcoxon test, p-value < 10-5).

This  indicates  that  purifying  selection  is  acting  on  lncRNAs  containing  regions  that  are

conserved between mouse and human.

Alignments shorter than 300 nucleotides tended to give estimates of k lower than 0.51 even in

the case of the simulated sequences, which was not initially expected. In this size range we

observed a positive relationship of  k with alignment length,  with shorter sequences showing

lower  k  (Additional file 1: Figure S7). This indicated that short sequenced needed to have a

higher percent identity to be detected as significant by BLAST. As many conserved sequences in

lncRNAs were lower than 300 nucleotides (Additional file 1: Figure S1) we modeled the effect of

length on k using two different log-linear regression models, one for short (< 300 nt) and one for

long (≥ 300 nt) sequences, using the data from the sequence evolution simulations. This allowed

to predict an expected k (ke) given a sequence alignment length, which we used to normalized

the observed k for real sequences (ko/ke).

The ko/ke was significantly lower in all three categories of lncRNAs than in the neutrally evolved

sequences (Figure 3, Wilcoxon test, p-value < 10-5), consistent with selection acting on at least

some of the lncRNAs. The intensity of the selection signal, as measured with the ko/ke ratio, was
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similar  for  conserved  segments  in  functionally  characterized  and  uncharacterized  lncRNAs

(median  0.49  and  0.50,  respectively).  Coding  sequences  and  ncRNA host  transcripts  also

showed clear selection signals (median  ko/ke  0.37 and 0.46, respectively).  We also calculated

separated  values  for  regions  corresponding  to  Ensembl  annotated  promoter  regions,  which

spanned 34-69% of the conserved lncRNA regions (Figure 2b). Although  conserved promoter

regions had a somewhat lower ko/ke than the rest of conserved lncRNA sequences (median 0.47

versus 0.58), the signal of purifying selection continued to be very clear after eliminating the

promoters.

Conserved lncRNAs regions are enriched in translated ORFs

Actively  translated  sequences  show  a  characteristic  three-nucleotide  read  periodicity  in

ribosome profiling experiments, allowing the identification of novel translation events (Bazzini et

al., 2014; Chew et al., 2013; Ingolia et al., 2009). We used the program RibORF to score read

periodicity and uniformity in all ORFs of size 30 nucleotides or longer (Ji et al., 2015). Translated

ORFs were defined as those with  a  RibORF score equal  or  higher than 0.7,  as previously

described  (Ruiz-Orera  et  al.,  2018) (Figure  4a).  The  program predicted  that  52.05%  of  all

expressed lncRNAs translated at least one ORF, which is in line with previous studies (Calviello

et al., 2016; Ji et al., 2015; Ruiz-Orera et al., 2014, 2015). Annotated functional lncRNAs were

no exception; we found significant Ribo-Seq signal in 29 out of 30 annotated functional lncRNAs.

Except for TERC, Rian, Mir124a-1hg, and Kcnq1ot1, the rest of the cases contained small ORFs

that appeared to be translated (Additional File 2: Table 3). Virtually all codRNAs with conserved

regions were translated; in the case of lncRNAs with conserved regions this fraction was 57.1%

(Figure 4b). 

Overall, about 14.1% of the total conserved region in lncRNAs contained ORFs predicted to be

translated  (122  ORFs),  compared  to  5.65%  for  non-conserved  regions  (370  ORFs).  The

enrichment of translated ORFs in conserved regions was highly significant (Figure 4c, Test of
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equal  proportions,  p-value  <  10-5).  A similar  result  was  observed  after  discarding  regions

overlapping other genes in antisense direction (Additional file 1: Figure S3). We also observed

that  the  translated  ORFs  were  more  abundant  in  the  5'  end  than  in  the  3'  end  of  genes,

independently of mouse-human sequence conservation (Additional file 1: Figure S4). This may

be related to the ribosome scanning dynamics, starting at the 5' end of transcripts, and perhaps

also to the higher GC content in this part of the gene (Additional file 1: Figure S8), which may

favor the presence of ORFs  (Vakirlis et al., 2018). The enrichment was consistently observed

across  the  different  lncRNA subtypes,  with  translation  occurring  more  actively  in  antisense

genes than in other lncRNA classes (Figure 4c).  

We next  investigated  if  the putative  translated  ORFs in  lncRNA conserved  regions  showed

signatures of selection at the protein level (Figure 4a). Out of the 93 cases in which we could

recover and align the corresponding human sequences using genomic alignments, 10 showed a

ratio of non-synonymous to synonymous rates (dN/dS) significantly lower than 1 (chi-square

test, p-value < 0.05), indicating that this subset of translated products might be functional. The

size of the new putative proteins ranged from 19 to 128 amino acids and they were located in

uncharacterized lncRNAs (Additional File 2: Table 4). Even though many annotated functional

lncRNAs had ORFs in conserved regions, none of them had significant signatures of selection at

the protein sequence level. For comparison we also analyzed the signatures of selection in 157

conserved and 38 not conserved codRNA genes encoding small proteins (small CDSs, < 100

amino acids). In this case a much higher proportion of the aligned cases (76 out of 124) showed

significant negative selection signatures. These cases included a number of known functional

peptides such as Myoregulin  (Anderson et al., 2015; Yu et al., 2017), Tunar (Lin et al., 2014),

NoBody (D’Lima  et  al.,  2017),  or  CASIMO1  (Polycarpou-Schwarz  et  al.,  2018), originally

annotated as lncRNAs; and other small functional peptides such as Stannin (Buck-Koehntop et

al., 2005; Pueyo et al., 2016), or Sarcolipin (Magny et al., 2013; Wawrzynow et al., 1992).
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We analyzed  PhyloP scores  for  +1,+2,  and  +3  positions  in  codons (see  Methods)  and  we

observed that small CDSs had lower conservation values for nucleotides in the third position,

which has been generally observed for annotated proteins (Pollard et al., 2010). However, only

conserved ORFs with dN/dS-based evidence of negative selection in lncRNAs had the same

bias in the third position (Additional file  1: Figure S9).  We concluded that,  although lncRNA

conserved regions are enriched in putatively translated ORFs, probably only a relatively small

subset of them are producing functional peptides.

Identification of RNA-protein interactions

Analysis  of  fragment  length  on  Ribo-Seq  data  has  revealed  differences  in  the  patterns  of

sequences bound to ribosomes and to small RNAs (Ingolia et al., 2014; Ji et al., 2016). When

analyzing the regions covered by Ribo-Seq reads we found that most codRNAs were covered by

reads with lengths of 30-32 nucleotides, which correspond to ribosome associations. In lncRNAs

the length of the Ribo-Seq reads was more variable, as would be expected if,  in addition to

translated  ORFs,  there  were  non-ribosomal  protein-RNA interactions,  or  ribonucleoproteins

(RNPs). The excess of short (< 30 nt) and long (> 32 nt) reads could be clearly observed in

intergenic lncRNAs and ncRNA host (Figure 5a). Similar patterns of Ribo-Seq read length were

observed in another ribosome profiling experiment from rat when looking at the syntenic regions

(Additional file 1: Figure S10).

We searched for candidate  RNP regions by first identifying regions with low Ribo-Seq read

uniformity (< 0.6) with the program Rfoot (Ji et al., 2016), and then checking that the Ribo-Seq

reads spanning these regions had lengths which were more compatible with RNPs than with

ribosome  associations  using  the  previously  developed  FLOSS  methodology  (Ingolia  et  al.,

2014). In particular, we selected RNP candidates with a FLOSS divergence score ≥ 0.35 (Figure

4a and Additional file 1: Figure S11).  This procedure identified  134 conserved regions in 84

genes that had RNP signatures. This included 21 annotated lncRNAs known to be involved in
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different  functional  protein  interactions  (Additional  File  2:  Table  3).  Among them there  were

Malat, Neat1, Meg3, and Miat, known to interact with different protein and splicing factors, and

TERC, which acts as a scaffold for the telomerase complex. We also found 32 uncharacterized

antisense lncRNAs, 12 intergenic lncRNAs, and 19 ncRNA host genes that showed sequence

conservation  in  humans  and  were  associated  with  RNPs  (Additional  File  2:  Table  2). RNP

regions had normalized substitution rates (ko/ke) lower than the simulated sequence evolution

control  (Wilcoxon  test,  p-value  <  10-5),  but  not  different  from conserved  lncRNA regions  in

general.

There was an enrichment of RNP signaures in transcripts with at least one conserved region

when compared to transcripts with no conserved regions (Figure 4b, Conserved versus Not

conserved).  The trend was highly significant for intergenic lncRNAs, with 15% of the conserved

regions  covered  by  putative  RNPs  (Figure  4c).  Among  non-conserved  genes  with  RNP

signatures we identified Firre, a functional lncRNA that interacts with nuclear factors through a

repetitive sequence (Hacisuleyman et al., 2014). In this lncRNA, the predicted RNPs matched

the repetitive sequences. 

The RNP signatures were clearly lower in codRNAs than in lncRNAs. For example, whereas in

lncRNAs read coverage was similar for RNPs and translated ORFs, in codRNAs the translated

ORFs  had  higher  coverage  (Figure  5b).  In  conserved  lncRNA regions,  RNPs  and  ORFs

occupied a similar percentage of the sequence (17.2% and 14.1%, respectively). In contrast, in

conserved  codRNA regions,  RNPs  only  occupied  1.7%  of  the  sequence,  whereas  ORFs

occupied 65.5% (Additional file 1: Figure S12).

DISCUSSION

Here  we  performed  an  evolutionary  analysis  of  the  mouse  transcriptome  and  studied  the

relationship between evolutionary conservation and the presence of regulatory elements and
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Ribo-Seq-related  features.  Several  previous  studies  used  regions  of  predefined  genomic

synteny to identify homologous regions with primary sequence conservation  (He et al., 2015;

Hezroni et al., 2015; Li and Yang, 2017; Mohammadin et al., 2015; Ulitsky et al., 2011). These

studies showed that lncRNAs were less conserved across distant species than protein-coding

genes  (Guttman et  al.,  2009; Marques and Ponting, 2009; Necsulea et  al.,  2014).  However,

genomic conservation does not always imply conserved lncRNA expression and/or functionality.

LncRNAs are known to have a high expression turnover (Kutter et al., 2012; Neme and Tautz,

2016; Ruiz-Orera et al., 2015) and thus lncRNA expression is often species-specific or limited to

very  close  species,  even  when genomic  syntenic  regions  can  be identified  in  more  distant

species  (Hezroni  et  al.,  2015).  In  order  to  circumvent  these limitations here we focused on

sequences expressed both in mouse and human, and which had significant sequence similarity

by BLASTN, denoting common ancestry.  We identified 289 (40.88%) lncRNAs expressed in

hippocampus with homology to human transcripts. Conserved regions in lncRNA were usually

small; they occupied 8.50% of the total mouse lncRNA sequence length. Although these regions

were small, we have to consider that a short region may in some cases be sufficient to carry out

the function of the lncRNA (Quinn et al., 2014). In some cases, exon structures located in the 3’

region  may be  rewired  without  necessarily  affecting  lncRNA and/or  promoter  function,  as  it

occurs with the Pvt1 gene (Hezroni et al., 2015).

Previous studies found that lncRNAs conserved across different species were more constrained

than  species-specific  lncRNAs  (Kutter  et  al.,  2012;  Wiberg  et  al.,  2015) or  that  sequences

presumably evolving under no constraints  (Marques and Ponting, 2009). It was also reported

that  putative  low-accessibility  nucleotides  from  secondary  structure  elements  showed  a

depletion of polymorphisms when compared to other exonic and intronic sequences (Pegueroles

and Gabaldón, 2016). Here we estimated the nucleotide substitution rate (k) from mouse and

human lncRNA aligned regions, and compared it to the expected one for sequences evolving

under no constraints. We found that, in general, conserved regions in lncRNAs had significantly

lower substitution rates than neutrally evolved sequences. This finding is consistent with the
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existence of  evolutionary  constraints  in  lncRNA conserved regions;  those  positions  that  are

important for the function of the transcript will tend to change less than expected by chance.

However,  we  also  have  to  consider  that  the  mutation  rate  may be  quite  heterogeneous in

different genomic locations and that this may generate biases that are not related to selection

and which are difficult to model.

We found that lncRNA conserved regions were frequently located in the 5' end of transcripts and

that they frequently overlapped with putative promoter sequences. This is in line with previous

observations that  promoters of  conserved mammalian lncRNAs tend to  show low sequence

divergence  (Derrien  et  al.,  2012;  Guttman et  al.,  2009).  This  pattern  may  be  explained  by

selection acting to maintain the expression of the gene, but there may also be a certain degree

of  ascertainment  bias,  as  homology  searches  will  favor  the  detection  of  transcripts  with

conserved promoters even if selection is not acting. 

In  many  cases,  regions  other  than  promoters  were  conserved  and  associated  with  low

substitution rates. This included 95% of the transcripts hosting small RNAs, which are expected

to contain functional RNA molecules, but also 27% of the intergenic and 42% of the antisense

lncRNAs. As it has been previously observed that lncRNAs often contained ribosome profilign

signatures (Aspden et al., 2014; Bazzini et al., 2014; Guttman et al., 2013; van Heesch et al.,

2014; Ingolia et al., 2011; Juntawong et al., 2014; Ruiz-Orera et al., 2014), we hypothesized that

evoutionary conservation could be related to the presence of translated ORFs or non-ribosomal

ribonucleoprotein particles in the transcripts. We analyzed the patterns of Ribo-Seq in a mouse

hippocampus dataset and observed a Ribo-Seq bias towards the 5’ end fraction of both coding

and non-coding transcripts. Remarkably, our approach found a very significant enrichment of

Ribo-Seq reads in lncRNA conserved regions.  The findings were consistent  across different

expression ranges and species, strengthening our conclusions.
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The presence of Ribo-Seq signal in lncRNAs has been previously proposed to be the result of

the ribosome scanning of 5’ UTR sequences and the translation of numerous ORFs (Calviello et

al., 2016; Ji et al., 2015; Ruiz-Orera et al., 2014), especially in the 5’ end of the RNA (Ingolia et

al., 2014). Population analyses on single nucleotide polymorphisms led to the conclusion that

many ORFs produce neutral peptides, but some of them are conserved across different species

and might translate functional small peptides and proteins (Bazzini et al., 2014; Ruiz-Orera et al.,

2018). Small peptides are usually difficult to detect as the small size may hinder the detection by

proteomics (Slavoff et al., 2013). As a result, some annotated lncRNAs have only recently been

found to translate small functional proteins. This includes cases of lncRNAs previously reported

to be functional at the non-coding level, as Tunar/Megamind  (Lin et al., 2014) or Mrln (Anderson

et al., 2015; Yu et al., 2017). Here we detected an enrichment of ORFs in conserved regions,

which is biased towards the 5’end of the transcript, with antisense lncRNAs showing the highest

enrichment. We found at least 10 cases in which the encoded peptide is likely to be functional,

and which deserve further investigations. In many other cases the ORFs translated peptides that

did  not  showed signs  of  functionality,  as  recently  observed  for  many species-  and lineage-

specific transcripts  (Ruiz-Orera et al., 2018). It is also possible that, in some cases, the  ORF

may have differed extensively between mouse and human due to the rewire of non-conserved 3'

end exons (Almada et al., 2013). The results are also consistent with the hypothesis that some

some translated sequences in lncRNAs might be regulatory ORFs that influence the stability of

the transcript  (Carlevaro-Fita et al., 2016; Johnstone et al., 2016); in some cases the putative

regulatory ORFs may derive from ancient protein-coding genes (Hezroni et al., 2017). In contrast

to  lncRNAs,  most  small  proteins  translated  by  protein-coding  genes  showed  evidence  of

selection at the protein level. This included several recently discovered micropeptides, such as

Nbdy (D’Lima et al., 2017). As the ribosome profiling data we analyzed was from neural tissues,

the newly discovered micropeptides are likely to be enriched in neural functions. The analysis of

different  tissues  and  conditions  might  reveal  new  functional  small  peptides  that  are  not

expressed or  translated in  hippocampus.  For  example,  we did  not  find expression of  some

recently  characterized  small  functional  peptides  such  as  Apela  (Pauli  et  al.,  2014),  Spaar
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(Matsumoto et al., 2016), Dworf (Nelson et al., 2016), or Mymx (Zhang et al., 2017), which are

expressed in other tissues (Ruiz-Orera et al., 2018).

Although we found many translated ORFs in lncRNAs, many Ribo-Seq reads were distributed

along the transcript with low three-frame periodicity and uniformity, two parameters that are used

to predict protein translation (Ji et al., 2015). These reads are often the result of non-ribosomal

RNA-protein interactions and do not correspond to true 80S footprints. Two different methods

have been proposed for the identification of such ribonucleoprotein particles (RNP) signatures:

FLOSS, which is based on deviations from the expected RNA length covered by ribosomes

(Ingolia et al., 2014) and Rfoot, which selects regions on the basis of low uniformity of the reads

(Ji  et al.,  2016).  We reasoned that protein-RNA interactions should display the two types of

signatures to be sufficiently reliable, and designed a specific pipeline that integrated the two

approaches. The method selected 21 functionally characterized lncRNAs, including intergenic

loci  as  Malat,  Neat1, or  TERC,  and  19  loci  known  to  host  small  RNA elements,  such  as

microRNAs or snoRNAs, as well as 44 new unknown candidates. These lncRNAs will be an

interesting  resource  for  characterizing  novel  functional  RNA-protein  interactions,  as  they

displayed the same level of sequence constraints than functionally characterized lncRNAs. We

also found a significant number of RNPs within non-conserved regions; this could be due to

promiscuous  RNA-protein  interactions  (Davidovich  et  al.,  2013),  the  existence  of  young

functional lncRNAs (Durruthy-Durruthy et al., 2015; Heinen et al., 2009; Rigoutsos et al., 2017),

or lncRNAs that only contain repetitive, very small, or poorly conserved sequences, as observed

for  the  functionally  characterized  ncRNA  Firre (Hacisuleyman  et  al.,  2014) or  for  some

secondary structure elements detected in Neat1 (Lin et al., 2018). 

This study has shown that mouse and human conserved lncRNA sequences show significant

evolutionary constraints and a more than two-fold enrichment in ribosome profiling (Ribo-Seq)

signatures with respect to non-conserved regions. This includes a number of putative functional

micropeptides  as  well  as  lncRNAs  that  contain  protein-RNA interaction  domains.  When  we
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consider translated open reading frames, protein-RNA interaction signatures, putative promoter

regions and overlapping antisense exons, our analysis covers 77.4% of the annotated mouse

lncRNA sequences with significant homology to human transcripts (Additional file 1: Figure S12).

This study integrates disparate data into a common evolutionary framework and builds testable

hypotheses about the functions of many lncRNAs.

EXPERIMENTAL PROCEDURES

Identification of conserved and non-conserved regions in the mouse transcriptome

We retrieved genome sequences,  gene annotations,  and regulatory regions (core promoters

elements) from Ensembl v.89 for mouse  (Flicek et al., 2013). We excluded pseudogenes and

sense intronic  lncRNAs, as the latter  could  represent  unannotated regions of  protein-coding

genes. In order to avoid spurious conservation matches due to the presence of repeats and

transposable  elements,  we  masked  repetitive  sequences  with  RepeatMasker  (Smit,  AFA,

Hubley, R & Green). The masked regions comprised 11.30% of codRNA and 11.56% of lncRNA

total sequence. We retained those sequences that had a minimum length of 200 nucleotides and

a non-masked sequence length of at least 100 nucleotides or 25% of the total transcript length.  

We  run  BLASTN  (Altschul  et  al.,  1997) of  the  mouse  annotated  genes  against  a  human

transcriptome sequenced at high depth, and comprising both annotated and novel transcripts,

from a previous study (Ruiz-Orera et al. 2018).  The human transcriptome can be downloaded

from  http://dx.doi.org/10.6084/m9.figshare.4702375.  The BLASTN parameters employed were:

-evalue 10-5, -strand plus, -max_target_seqs 15, -window_size 12. Next, we defined ‘conserved

regions’ in mouse transcripts as the ones showing significant sequence similarity (E-value < 10-5)

in the human transcriptome. Results were consistent when modifying e-value parameters, as the

number of conserved lncRNAs only increased a 4.65% when relaxing the parameter (E-value <

10-4) or decreased a 3.36% when making the parameter more stringent (E-value < 10-6). 
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Overlapping BLASTN hits from different transcripts were merged, so every gene had a unique

set of conserved non-redundant regions. We defined the gene as codRNA if at least one of the

isoforms was protein-coding, otherwise it was defined as lncRNA. We discarded 368 lncRNAs

that had homology to sequences annotated as coding in human, as their status was unclear and

they  might  represent  unnanotated  proteins  or  pseudogenized  lncRNAs.  Additionally,  if  two

conserved regions were separated by less than 100 nucleotides we merged them. This was

justified by the observation that less than 5% of the annotated coding sequences had internal

gaps longer than 100 nucleotides. Using this criterion we were able to recover >95% of total

coding sequence length for the cases in which at least one conserved region was found in the

translated  sequence.  This  last  step  had  only  a  minor  effect  on  the  median  length  of  the

conserved regions in lncRNAs (from 136 nt to 163 nt, Additional file 1: Figure S1). The method

identified conserved regions in 19,779 out of 21,416 protein-coding genes (codRNAs) and 1,594

out  of  9,734  lncRNAs.  Analysis  of  mouse-human  genomic  synteny  alignments  from UCSC

(Schwartz et al., 2003) indicated that about 80% of the mouse lncRNA conserved regions could

be aligned to human syntenic regions, whereas this fraction decreased to about 50% for non-

conserved regions, including many tandem repeats that were masked by BLAST and that are

often over-represented in whole-genome alignments (Hezroni et al., 2015).

We quantified the overlap of conserved and non-conserved regions in codRNAs and lncRNAs

with regions annotated as promoters in Ensembl, which covered about 1.62% of the genome.

These  regions  are  defined  by  performing  peak  calling  from  data  corresponding  to  open

chromatin, histone modification, and transcripiton factor binding assays for several cell lines and

tissues (Zerbino et al., 2015).

Null model for sequences evolving under no constraints
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In order to test for selection in the aligned mouse and human sequences, we simulated the

evolution of sequences along the mouse and human lineages in the absence of selection with

Rose  (Stoye  et  al.,  1998).  As  starting  sequences  we  used  the  annotated  mouse  lncRNA

sequences, as this allowed us to control for sequence composition and GC content.  We used

the following parameters:  HKY model with a TT ratio of 4.26; mouse branch mean substitution

0.34 and indel rate 0.018x2; human branch mean substitution 0.17 and indel rate 0.009x2; indel

function:  [.50,.18,.10,.08,.06,.04,.04].  Mean substitutions and rate  of  insertions and deletions

values were based on previous estimates  (Consortium, 2002; Lunter,  2007; Ogurtsov et  al.,

2004), using a twofold higher mutation rate in mouse than in human.

After the simulations we run BLASTN, using the same conditions as for real sequences, and

recovered the alignments. Up to 59.6% of the mouse simulated sequences had at least one

match in the set of human simulated sequences. This corresponded to the 20.8% of the total

sequence length.

Calculation of substitution rates

We estimated the number of  substitutions per site  (k or  ko)  in BLAST alignments using the

maximum likelihood method ‘baseml’ from the PAML package (Yang, 2007) with model 7 (REV).

If a position was covered by several BLAST hits we chose the one with the lowest E-value. We

discarded  k values  higher  than  5,  as  they  might  represent  computational  artifacts.  As  we

observed that k values deviate from neutrality in simulations of neutrally evolved sequences with

short  length,  we  also  computed  a  normalized  substitution  rate  ko/ke,  being  ke the  expected

neutral rate according to the length of the region after modeling a log-linear regression model for

short (< 300 nt) and long (>= 300 nt) neutrally evolved sequences separately:

    log(kp ; L >= 300) =  -0.468900 - L x 7.865 x 10-5

    log(kp ; L < 300) =  -1.562833 + L x 0.003879

This model was statistically significant for short and long sequences (T-test, p-value < 0.05).
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Classifications of genes based on genomic location or small RNA content

Up to 20% of total sequence length in lncRNAs had exonic overlaps with other genes in the

antisense strand. Therefore, we divided conserved and non-conserved regions into 'overlapping'

and  'non-overlapping',  depending  on  whether  the  region  was  overlapping  with  a  conserved

feature in the other strand (detected by BLAST or annotated as conserved in human in Ensembl

Compara). After classifying regions in these 4 different categories, we finally discarded regions

shorter than 30 nt and were not considered either as part of the gene, as they might be artifact

gaps from homology searches.

Finally, we classified genes in three different categories: ncRNA host, in the case of genes with

annotated small RNAs in the exonic structure and/or being annotated microRNA or small RNA

host; antisense, in the case of genes having at least one overlapping region, being expressed

from bidirectional promoters (closer than 2 kb to an annotated TSS from a antisense protein-

coding gene) and/or being annotated as antisense in Ensembl; or intergenic otherwise.

Analysis of RNA-seq and Ribo-Seq coverage

We used RNA-seq and ribosome profiling data (Ribo-Seq) from mouse hippocampus obtained

from Gene Expression Omnibus under accession number GSE72064  (Cho et al., 2015).  We

merged sequencing replicates to increase the power to detect translated ORFs. We removed

reads  mapping  to  annotated  rRNAs  and  tRNAs.  Next,  we  mapped  Ribo-Seq  (361  million

mapped reads) and RNA-seq reads (435 million mapped reads) to the mouse genome (mm10)

using Bowtie (v. 0.12.7, parameters -k 1 -m 20 -n 1 --best –strata) (Langmead et al., 2009) and

we extracted P-sites corresponding to Ribo-Seq reads as done in a previous study (Ruiz-Orera

et  al.,  2018).  For  comparison,  we  analyzed  Ribo-Seq data  from rat  brain  (rn6,  373  million

mapped  reads)  and  human  brain  (hg19,  50  million  mapped  reads)  obtained  from  Gene

Expression Omnibus under accession numbers GSE66715  (Cho et al., 2015) and GSE51424

(Gonzalez et al., 2014).
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Next, we assigned strand-specific mouse reads to the different transcript regions if at least 1bp

(RNA-seq) or the computed P-site (Ribo-Seq) spanned the corresponding region. We defined

two metrics: a per-base coverage metric based on the number of reads spanning the region per

kilobase, and a total coverage based on the percentage of sequence covered by reads.

For genes expressed at very low levels the Ribo-Seq signal may become undetectable. In order

to account for this we selected a RNA-seq coverage threshold in which the number of false

negatives (annotated coding sequences not  covered by RiboSeq reads) was lower than 5%

(Additional file 1:  Figure S13, RNA-Seq coverage in region  ≥ 56.38 reads/kb). In conserved

genes, at least one of the conserved regions had to show a coverage above the threshold, or the

whole gene was considered as not expressed. Finally, we eliminated 192 lncRNAs located within

4kb from a sense protein-coding gene and/or with evidence of being part of the same gene using

RNA-Seq data, these lncRNAs may have been unannotated UTRs.

ORF translation in conserved and non-conserved regions

We predicted all translated ORFs (ATG to STOP) with a minimum length of 9 amino acids in the

transcripts with RibORF (v.0.1) (Ji et al., 2015). Only ORFs with a minimum of 10 mapped Ribo-

Seq reads were considered. We used the same score cut-off as in our previosus study (≥ 0.7),

which had a reported false positive rate of 3.30-4.16% and a false negative rate of 2.54% (Ruiz-

Orera et al., 2018).

Next,  we  assigned  translated  ORFs  to  the  different  defined  regions  if  at  least  10% of  the

translated sequence spanned a single region. When multiple ORFs spanned one region, we

selected the longest one as representative of the region. Consequently, a single ORF could span

multiple  gene  regions,  including  also  discarded  ones  because  of  the  short  length  or  low

expression. 
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dN/dS analysis in translated ORFs

We  used  the  UCSC  tool  liftOver  (-minMatch=0.75)  (Tyner  et  al.,  2017) to  extract  the

corresponding ORF genomic coordinates in human. For the cases in which we found a matching

region, we aligned the ORFs with PRANK (Loytynoja and Goldman, 2005) and we checked how

many of these sequences were complete and had the same start-stop codon structure in human,

with  a  resulting  coding  sequence having  at  least  50% of  the length of  the ORF in  mouse.

Besides, alignment should not contain more than 33% of gaps and aligned length should be

longer than 10 amino acids. The remaining ORFs were considered to be truncated.

Next,  we used CODEML of  the PAML package  (Yang, 2007) to compute a dN/dS ratio per

complete ORF and we tested whether this ratio was significantly different from 1 by running a

fixed omega model. We found 10 mouse and human conserved ORFs in lncRNAs with dN/dS

significantly lower than 1, with an adjusted p-value < 0.05.

PhyloP codon analysis in translated ORFs

We used  the  GenomicScores  package  (v.  1.2.2)  available  at  Bioconductor  (Puigdevall  and

Castelo, 2018) to compute the average PhyloP score per codon position (+1, +2, +3) in different

sets of translated ORFs. PhyloP is a set of phylogenetic p-values for multiple alignments of 59

vertebrate genomes to the mouse genome. GenomicScores round PhyloP scores using a lossy

compresion algorithm. We checked if there was a lower conservation in the third position, as it

has been observed in functional proteins (Pollard et al., 2010) due to the degeneracy of the third

nucleotide in many codons.

Analysis of RNA-protein complexes

We used Rfoot (v.0.1) and FLOSS to analyze how many regions in lncRNAs might be involved in

RNA-protein complexes (RNPs). Rfoot is a tool that analyzes Ribo-Seq data to identify regions

that  lack read periodicity  and have low read uniformity,  and which may correspond to  non-

ribosomal  ribonucleoprotein  associates  (Ji  et  al.,  2016).  FLOSS is  a  tool  that  analyzes  the

22

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 16, 2018. ; https://doi.org/10.1101/348326doi: bioRxiv preprint 

https://doi.org/10.1101/348326
http://creativecommons.org/licenses/by-nc-nd/4.0/


distribution of Ribo-Seq read lengths and measures the magnitude of disagreement between

distributions to separate ribosome and non-ribosome signals (Ingolia et al., 2014).

We  identified  putative  RNA-protein  interaction  regions  by  selecting  60nt  windows  showing

uniformity < 0.6 with a minimum of 10 reads, as done in the original study  (Ji et al., 2015).

Moreover, we subtracted predicted ORF sequences with a RibORF score ≥ 0.5 and/or read

periodicity ≥ 0.66. As ribosome-protected UTR regions could be present in the selected regions,

we computed  a FLOSS score  per  region  and  we defined  as  RNPs the  ones in  which  the

divergence score from ribosome-protected regions was ≥ 0.35.  This  threshold  was selected

because  only  5% of  CDS  regions  showed  a  score  above  0.35.  Subsequently,  we  merged

overlapping regions into a single RNP. This combined approach found RNP associations in 95%

of a control set of snRNAs and snoRNAs with 10 or more Ribo-Seq reads, and in only 20% of

the 5' UTRs with the same number of Ribo-Seq reads. 

Evidence of functionality in lncRNAs

We obtained a list of 30 functional mouse lncRNAs expressed in hippocampus by selecting all

cases present in  lncRNAdb  (Quek et  al.,  2014) and adding four  additional  known lncRNAs:

Pantr1  (Goff et al.,  2015),  Firre (Hacisuleyman et al.,  2014),  TERC (Feng et al.,  1995),  and

Norad (Lee et al., 2016).

Statistical tests and plots

Plots and statistics was performed with the R package (Team, 2013).

SUPPLEMENTAL INFORMATION

Additional file 1: File with supplementary information (tables and figures).
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Additional file 2: Excel file with properties of the defined lncRNA regions and genes, a list of

functionally characterized lncRNAs, and peptide sequences in mouse and human for the 10

functional micropeptides.

Additional  file  3:  BED file  with the coordinates of  the lncRNA regions (‘exon’ field),  the 492

translated sequences (‘ORF’ field) and the defined RNA-protein interactions (‘RNP’ field).
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FIGURE LEGENDS

Figure  1.  Transcriptome-wide  identification  of  conserved  sequences,  promoters,  and

Ribo-Seq associations. 

A. Fraction of mouse genes that showed conservation in human using BLASTN (Conservation),

that overlapped with annotated promoter regions (Promoter), or that were covered by Ribo-Seq

reads (Ribo-Seq). The percentage of genes with at least one feature, and the total sequence

covered,  are  indicated.  Data  is  for  expressed  codRNAs  and  lncRNAs  in  hippocampus

(sequences with  a  minimum RNA-Seq coverage of  56.38 reads/kb).   B.  Analysis  of  feature

coverage in equally-sized fractions of the genes, from 5' (p1) to 3' (p5).  Grey bars represent the

mean proportion  of  a  shuffled control  where the  different  features  per  gene were  randomly

shuffled  along  the sequence  1000  times.  Error  bars  represent  the  standard  error  of  the

proportion.
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Figure 2. Effect of conservation across lncRNA types. 

A.  Number  and  fraction  of  different  categories  based  on  position  and  sequence  features.

Antisense:  Exonic  overlap,  expression  on  a  bidirectional  promoter,  and/or  annotated  as

antisense; ncRNA host: Genes with at least one found small RNA sequence in the exonic region;

intergenic: rest of genes. Conserved genes are enriched in antisense and ncRNA host genes. B.

Percentage  of  total  sequence  that  is  covered  by  Ribo-Seq  reads  (1  or  more  reads),  and

annotated promoter cores, for conserved and non-conserved regions in codRNAs and lncRNAs.

Conserved lncRNA regions showed a significantly higher proportion of all features compared to

not conserved regions or expected randomly (Test of equal proportions; * p-value < 0.05; *** p-

value < 10-5). Error bars represent the standard error of the proportion. Categories: A: Antisense;

I: Intergenic; H: ncRNA host.
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Figure 3. Distribution of normalized substitution rates (ko/ke) between human and mouse

sequences with BLAST-based homology. The number of substitutions per site was estimated

(ko) in the regions with BLAST hits with baseml under the REV nucleotide substitution model and

normalized by dividing it  by the expected  k  under neutrality for different length intervals (ke).

Neutral  conserved:  simulated  neutrally  evolving  sequences  with  BLASTN  matches  (2,736

regions); lncRNA: lncRNAs with BLASTN matches; A: Antisense (179 regions); I: Intergenic (47

regions); H: ncRNA host (27 regions); functional lncRNA: set of 90 regions from 27 lncRNAs with

annotated functions in lncRNAdb; codRNA: protein coding transcripts with BLASTN matches

(13,034 regions).
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Figure 4. Identification of translated open reading frames and ribonucleoproteins.

A. Workflow to identify translated open reading frames (ORFs), putative functional proteins, and

ribonucleoproteins (RNPs). Ribosome profiling (Ribo-Seq) reads are mapped to candidate gene

regions and ORFs with a RibORF score >= 0.7 are defined as translated. Rest of regions with

Rfoot uniformity score < 0.6 and FLOSS score >= 0.35 are defined as RNPs. Next, human ORF

syntenic regions are extracted with LiftOver and aligned with PRANK, when possible. Truncated

alignments are those ones in which less than 50% of the ORF was aligned, or the gap limit is

exceeded (33% or 10-nt). Finally, non-truncated alignments are checked for purifying selection

signatures with Codeml to identify putative functional peptides or proteins (dN/dS ratio < 1; Chi-

square test of dN/dS ratio,  p-value < 0.05).  B. Percentage of conserved and not conserved

codRNAs and  lncRNAs that  contain  at  least  one translated  open reading  frame (ORFs)  or

ribonucleprotein  (RNPs).  Conserved  genes  show  an  enrichment  in  ORFs  and  RNPs.  C.

Percentage  of  total  sequence  that  is  covered  by  open  reading  frames  (ORFs),  and
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ribonucleproteins  (RNPs),  for  conserved  and  non-conserved  regions.  CodRNA and  lncRNA

regions showed a significantly higher proportion of ORFs compared to not conserved regions or

expected randomly (Test of equal proportions; * p-value < 0.05; *** p-value < 10 -5). Error bars

represent the standard error of the proportion. Categories: A: Antisense; I: Intergenic; H: ncRNA

host.

Figure 5. LncRNAs have more heterogenous Ribo-Seq read length.

A.   Fraction of sequence covered by Ribo-Seq that contains reads from a specific length for

conserved  and  not  conserved  regions  in  different  categories  of  lncRNAs.  While  antisense

lncRNAs resemble codRNAs in the read distribution, intergenic and ncRNA host regions contain

a higher proportion of short and long reads corresponding to non-ribosome associates. B.  Ribo-

Seq  read  density  for  regions  predicted  as  ribonucleoproteins  (RNP),  translated  sequences

(ORF) and other regions covered by Ribo-Seq. ORFs in codRNAs have a higher read density

than the rest of sequences (***. Wilcoxon test, p-value < 10-5)
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