
i
i

i
i

i
i

i
i

Posted online June 15, 2018 bioRxiv, 2018, 1–5

YamAdam: a hyperparameter-free gradient descent optimizer
that incorporates unit correction and moment estimation
Kazunori D Yamada 1,2∗

1Graduate School of Information Sciences, Tohoku University, Sendai, Japan 2Artificial Intelligence Research Center,
National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan

ABSTRACT

In the deep learning era, gradient descent is the most
common method used for optimizing neural network
parameters. Among the various mathematical optimization
methods, the gradient descent method is the most
naive. Adjustment of learning rate is necessary for quick
convergence, which is normally done manually with gradient
descent. Many optimizers have been developed to control
the learning rate and increase convergence speed. Generally,
these optimizers adjust the learning rate automatically in
response to learning status. These optimizers were gradually
improved by incorporating the effective aspects of earlier
methods. In this study, we developed a new optimizer:
YamAdam. Our optimizer is based on Adam, which utilizes
the first and second moments of previous gradients. In
addition to the moment estimation system, we incorporated
an advantageous part of AdaDelta, namely a unit correction
system, into YamAdam. According to benchmark tests on
some common datasets, our optimizer showed similar or
faster convergent performance compared to the existing
methods. YamAdam is an option as an alternative optimizer
for deep learning.

INTRODUCTION

There are many iterative mathematical optimization methods,
including the gradient descent method, the Newton method,
the quasi-Newton method, and the conjugate gradient method.
The Newton method is a fast convergent method that utilizes
the Newton direction to update parameters. The Newton
direction is calculated using the gradient and Hessian of the
objective function

θt+1←θt−H−1
t gt, (1)

where t stands for time, and θt, Ht and gt stand for parameter
vector, Hessian, and gradient vector at time t, respectively.
The Newton method converges quadratically and offers faster
convergent performance compared to first-order methods like
the gradient descent method. The Newton method is able to
reach an optimal value within a single iteration if the objective
function is expressed by a quadratic equation. However,
the Newton method has several disadvantages. For example,

∗To whom correspondence should be addressed. Tel: +81 22 795 5856; Email: kyamada@ecei.tohoku.ac.jp

convergence may not occur if an initial parameter value is
not close to an optimal value. The Hessian must also be
positive definite, and the calculation cost for the inverse of the
Hessian is large. The quasi-Newton method was developed to
solve these problems. This method attempts to approximate
a Hessian with an alternative matrix, rather than directly
calculating it, and converges superlinearly.

In contrast to these complex methods, the gradient descent
method is a more naive mathematical optimization method.
Normally, convergence with gradient descent is not fast and is
linear. Yet, because implementing the gradient descent method
is easy and it exhibits global convergence, it is used frequently
with neural networks, including deep learning. The update rule
for gradient descent is

θt+1←θt−αgt, (2)

where α stands for the learning rate (step size), which decides
the magnitude of the parameter update from the previous
value to the current value. Adjustment of the learning rate is
very important in order to efficiently search for an optimal
value with the gradient descent method. If the learning rate
is too large, an optimal value cannot be reached because
oscillation around the optimal value will occur. If the learning
rate is too small, a tremendous amount of time is required
to reach the optimal value because the update magnitude
is small and many updates are needed. Since the gradient
descent method is used frequently, various strategies for
improvement have been devised. For example, the stochastic
gradient descent (SGD) method attempts to avoid falling into a
local minimum by stochastically sampling data and repeatedly
updating parameters with the sampled data. In recent deep
learning, SGD is the de facto standard for parameter updates.
Another strategy for improving gradient descent or SGD is
using an optimizer. Many SGD optimizing methods have
been developed. These optimizers essentially attempt to
control the SGD learning rate. The most naive method is
the bisection method, where the learning rate is updated by
dividing the previous value by two when the number of
updates reaches a predefined value. The Momentum method
incorporates a momentum term into the parameter update.
The momentum term literally works as a moment and helps
update the direction toward the previously updated direction.
This method was also further modified to incorporate an

c⃝ 2018 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 17, 2018. ; https://doi.org/10.1101/348557doi: bioRxiv preprint 

https://doi.org/10.1101/348557
http://creativecommons.org/licenses/by-nd/4.0/


i
i

i
i

i
i

i
i

2 bioRxiv, 2018

acceleration term [1]. AdaGrad is an adaptive method that
collects the square of the previous gradient and gradually
decreases the learning rate [2].

AdaDelta [3] is a more sophisticated method and is
currently one of the best optimizers available, as it it
improves on the performance of AdaGrad. The basic idea
behind AdaDelta is that it incorporates a unit mismatch
correction function between the update values and original
parameters. Matching units is naturally ensured with second-
order methods like the Newton method, though vanilla SGD,
AdaGrad, and other methods fundamentally lack this feature.
The update rule of AdaDelta is described by Algorithm 1.
AdaDelta no longer has a learning rate.

Algorithm 1 AdaDelta update rule
Require: Objective function f(θ), Initial parameter θ0

β=0.95, ϵ=10−6

1: v0=0, s0=0, h0=0
2: for t=0 : t<T do
3: gt←∇f(θt)
4: vt+1←βvt+(1−β)g2t
5: st+1←βst+(1−β)h2t
6: ht+1←

√
st+1+ϵ
√
vt+1+ϵ

gt

7: θt+1←θt−ht+1
8: end for
9: return θT

Here, ϵ is a small value to avoid division by zero and β is a
hyperparameter to control parameter updates. In the context
of unit correction, the most important variable is s. As shown
in line 5, the unit s corresponds to square root of h2, i.e., the
parameter update h. Also, h and θ are of the same unit, thus
there is no unit mismatch between the update and parameters.

Adam [4] is another good optimizer that improves on
AdaGrad. The update rule of Adam is described by Algorithm
2. Here, ϵ is a small value to avoid division by zero, α is
the learning rate, and β1 and β2 are the hyperparameters that
define the smoothing coefficient of the exponential moving
average. The fundamental idea behind Adam is attempting to
adjust the learning rate dependent on learning progress. In the
update rule, mt in line 4 and vt in line 5 approximate the first
moment and second moment, namely the mean and variance
of the gradient from the first update to time t. By dividing
the mean by the variance of the previous gradient information,
when the gradient fluctuates near a local minimum, the update
size will grow smaller to be able to fall into the minimum.
In the opposite situation, the magnitude of updates will be
larger, resulting in acceleration of convergence. This idea is
similar to that of the Newton method, in which if an alteration
of the gradient, namely Hessian, is larger, the magnitude of the
update will be smaller. The convergence performance of SGD
with Adam is quite fast and Adam is currently one of the most
popular optimizers.

As described earlier, optimizer performance has gradually
improved through incorporating the features and merits of
previously developed optimizers. In this study, we developed
a novel optimizer by incorporating a beneficial feature of
AdaDelta (the unit correction system) to Adam. In addition,
we implemented an adjustment system for the smoothing

Algorithm 2 Adam update rule
Require: Objective function f(θ), Initial parameter θ0

α=0.001, β1=0.9, β2=0.999, ϵ=10−6

1: m0=0, v0=0
2: for t=0 : t<T do
3: gt←∇f(θt)
4: mt+1←β1mt+(1−β1)gt
5: vt+1←β2vt+(1−β2)g2t
6: m̂← mt+1

1−βt+1
1

7: v̂← vt+1

1−βt+1
2

8: h=α
m̂√
v̂−ϵ

9: θt+1←θt−h
10: end for
11: return θT

coefficient for the exponential moving average of update
information based on previous update information, resulting
in removal of all hyperparameters.

ALGORITHM

Algorithm 3 shows the update rule for the optimizer we
developed: YamAdam (Yamada modified Adam). YamAdam
does not have any hyperparameters.

Algorithm 3 YamAdam update rule
Require: Objective function f(θ), Initial parameter θ0

Sigmoid function ϕ(x), ϵ=10−6

1: m0=0, v0=0, s0=0, h0=0, β0=0
2: for t=0 : t<T do
3: gt←∇f(θt)
4: mt+1←βtmt+(1−βt)gt
5: vt+1←βtvt+(1−βt)(gt−mt)

2

6: st+1←βtst+(1−βt)h2t
7: ht+1←

√
st+1+ϵ
√
vt+1+ϵ

mt+1

8: βt+1←ϕ

(
∥ht∥1+ϵ

∥ht+1∥1+ϵ

)
−ϵ

9: θt+1←θt−ht+1
10: end for
11: return θT

In the algorithm, the first and second moment information is
stored as an exponential moving averages with the smoothing
coefficient, βt in line 4 and 5. These values are estimations of
the mean and variance of the gradient, respectively. In line 6,
the square of the update value is stored in a similar manner as
above. A novel update value is calculated using these values
in the equation in line 7. The smoothing coefficient of the
exponential moving average is then calculated in line 8 based
on the current and previous update values. If the next update
size is smaller, βt will be larger, causing the following gradient
information to be considered less important. Conversely, if the
next update size is larger, the following gradient information

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 17, 2018. ; https://doi.org/10.1101/348557doi: bioRxiv preprint 

https://doi.org/10.1101/348557
http://creativecommons.org/licenses/by-nd/4.0/


i
i

i
i

i
i

i
i

bioRxiv, 2018 3

will be regarded as more important. In this system, the
smoothing coefficient acts as momentum, where the influence
of current gradient information on the accumulated gradient
information will change depending on update intensity. Lastly,
the parameter vector is updated by the equation in line 9.

SIMULATION EXPERIMENTS

To benchmark the performance of our optimizer, we
conducted two simulation experiments in which the
convergent performance with logistic regression and four
layer multilayer perceptron (MLP) were tested on various
datasets.

Methods
Benchmark datasets As benchmarks, we utilized three
datasets: the Modified National Institute of Standards and
Technology (MNIST) dataset [5], the Letter Recognition (LR)
dataset, and the Sensorless Drive Diagnosis (SDD) dataset
[6]. The number of attributes of each instance on the datasets
is 784, 16 and 48, the dimension of output vector is 10, 26
and 11 and the number of instances is 70,000, 20,000 and
58,509 respectively. From the datasets, first 60,000, 15,000
and 40,000 instances were used as training datasets, and the
remaining 10,000, 5,000 and 18,509 instances were used as
validation datasets, respectively.

Network architectures For the simulation, we designed a
logistic regression model and a four-layer MLP, consisting of
an input layer, two middle layers, and an output layer. The
unit number for the middle layers was set to 500. For both
architectures, output vectors were the outputs of the softmax
function and the models were for multi-class classification.
We used ReLU as the activation function for middle layers
and suitable optimized initial parameters [7] were used. We
used Theano version 0.8.2 (University of Montreal) with
Python version 3.5.2 as the framework for implementing the
architectures.

Parameters of compared optimizers For vanilla SGD and
AdaGrad, the learning rate α was set to 0.01. For AdaDelta,
the smoothing coefficient for the exponential moving average
β was set to 0.95. For Adam, the learning rate α, the
smoothing coefficients for the exponential moving average β1
and β2 were set to 0.001, 0.9, and 0.999 respectively.

Benchmark procedure For each method, the training losses
for epochs 1 to 50 were recorded 10 times while randomly
changing the initial parameters. The mean training loss values
of the 10 trials were plotted as lines on a scatter plot.

Computational environment The benchmarks were conducted
on an Intel(R) Xeon(R) CPU E5-2680 v2 @2.80 GHz with
64GB RAM with a Tesla K20m (NVIDIA) as part of the
NIG supercomputer at ROIS National Institute of Genetics in
Japan.

Results and discussion
Logistic regression As shown in Figure 1, we conducted
a performance benchmark with five methods: vanilla SGD

Epoch

T
ra

in
in

g
 l
o
s
s

0.8

0.4

0

(a)

(b)

0.6

(c)

0.2

8.0

4.0

0

6.0

2.0

4.0

2.0

0

3.0

1.0

0 10 20 30 40 50

T
ra

in
in

g
 l
o
s
s

T
ra

in
in

g
 l
o
s
s

Vanilla SGD

AdaDelta
AdaGrad

Adam
YamAdam

Figure 1. Comparison of optimizers on logistic regression. The
performance of each optimizer was benchmarked on (a) MNIST, (b) LR, and
(c) SDD datasets.

(no optimizer), AdaGrad, AdaDelta, Adam, and YamAdam
on the MNIST (a), LR (b) and SDD (c) datasets with
logistic regression. In the results for all datasets, Adam
and AdaDelta exhibited rapid convergence compared to the
other existing methods. These results were expected based
on previous reports [3, 4]. YamAdam also exhibited similar
or better convergent performance than Adam, and similar or
slightly better performance than AdaDelta. The difference
in performance was most obvious with the SDD dataset,
in which YamAdam was best and AdaDelta was second
best. YamAdam incorporates the unit correction system
utilized in AdaDelta, which may positively affect performance
on the SDD dataset. Problem difficulty may be a factor

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 17, 2018. ; https://doi.org/10.1101/348557doi: bioRxiv preprint 

https://doi.org/10.1101/348557
http://creativecommons.org/licenses/by-nd/4.0/


i
i

i
i

i
i

i
i

4 bioRxiv, 2018

contributing to the superior performance of methods that
have the unit correction system. MNIST is a relatively easy
dataset compared to the other two datasets. The accuracies
for each method with MNIST were greater than 0.9, even
for the normal logistic regression architecture. On the other
hand, the accuracies with the SDD dataset were 0.30 – 0.75,
suggesting that the SDD dataset was more difficult than
MNIST. Although there are many factors that contribute to
dataset difficulty, unit mismatching of each attribute in an
instance of the dataset is a possible factor. For example, in
the first instance in SDD, the value of the first element is
−6.4707×10−6 and the 38th is 40.409. Difference in value
magnitude, namely unit mismatch, is mostly unique to the
SDD dataset relative to the other datasets. This may be why
YamAdam performed better on SDD. When we benchmarked
the methods on a standardized SDD dataset, there was reduced
difference in performance.

Four-layer MLP As shown in Figure 2, we conducted similar
experiments with a four-layer MLP. Results showed no
qualitative differences compared to the logistic regression
results for performance with each method, even though more
layers were stacked and the parameters were increased in the
architecture.

CONCLUSION

We developed YamAdam, a novel optimizer. YamAdam is a
hyperparameter-free optimizer that includes a unit correction
system (derived from AdaDelta) and moment estimation
(derived from Adam). Our method exhibited similar or faster
convergent performance compared to the existing optimizers,
especially in computations on a unit-mismatched dataset.
Many different kinds of datasets exist, and our optimizer is
another option for use in deep learning.

ADDITIONAL INFORMATION

Acknowledgements
Computations were partially performed on the NIG
supercomputer at ROIS National Institute of Genetics.

Funding
This work was supported in part by the Top Global University
Project from the Ministry of Education, Culture, Sports,
Science and Technology of Japan (MEXT), KAKENHI from
the Japan Society for the Promotion of Science (JSPS) under
Grant Number 18K18143.

Availability of data and material
The YamAdam source code is available on GitHub
(git@github.com:yamada-kd/YamAdam.git).

Abbreviations
LR: Letter Recognition; MLP: multilayer perceptron; MNIST:
Modified National Institute of Standards and Technology;
ReLU: rectified linear unit; SDD: Sensorless Drive Diagnosis;
SGD: stochastic gradient descent

Epoch

T
ra

in
in

g
 l
o
s
s

0.4

0.2

0

(a)

(b)

0.3

(c)

0.1

4.0

2.0

0

3.0

1.0

2.8

1.4

0

2.1

0.7

0 10 20 30 40 50

T
ra

in
in

g
 l
o
s
s

T
ra

in
in

g
 l
o
s
s

Vanilla SGD

AdaDelta
AdaGrad

Adam
YamAdam

Figure 2. Comparison of optimizers on MLP. The performance of each
optimizer was benchmarked on (a) MNIST, (b) LR, and (c) SDD datasets.

Competing interests
The authors declare that they have no competing interests.

REFERENCES

1. Yurii Nesterov. A method for unconstrained convex minimization problem
with the rate of convergence o (1/kˆ 2). In Doklady AN USSR, volume 269,
pages 543–547, 1983.

2. John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine
Learning Research, 12(Jul):2121–2159, 2011.

3. Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701, 2012.

4. Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 17, 2018. ; https://doi.org/10.1101/348557doi: bioRxiv preprint 

https://doi.org/10.1101/348557
http://creativecommons.org/licenses/by-nd/4.0/


i
i

i
i

i
i

i
i

bioRxiv, 2018 5

5. Yann LeCun. The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/, 1998.

6. Dheeru Dua and Efi Karra Taniskidou. Uci machine learning repository.
2017.

7. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving
deep into rectifiers: Surpassing human-level performance on imagenet
classification. In Proceedings of the IEEE international conference on
computer vision, pages 1026–1034, 2015.

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 17, 2018. ; https://doi.org/10.1101/348557doi: bioRxiv preprint 

https://doi.org/10.1101/348557
http://creativecommons.org/licenses/by-nd/4.0/

