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Abstract

When two species hybridize, one outcome is the integration of genetic material from
one species into the genome of the other, a process known as introgression. Detecting
introgression in genomic data is a very important question in evolutionary biology.
However, given that hybridization occurs between closely related species, a compli-
cating factor for introgression detection is the presence of incomplete lineage sorting,
or ILS. The D-statistic, famously referred to as the “ABBA-BABA” test, was pro-
posed for introgression detection in the presence of ILS in data sets that consist of
four genomes. More recently, DFOIL—a set of statistics—was introduced to extend the
D-statistic to data sets of five genomes.

The major contribution of this paper is demonstrating that the invariants underly-
ing both the D-statistic and DFOIL can be derived automatically from the probability
mass functions of gene tree topologies under the null species tree model and alterna-
tive phylogenetic network model. Computational requirements aside, this automatic
derivation provides a way to generalize these statistics to data sets of any size and with
any scenarios of introgression. We demonstrate the accuracy of the general statistic,
which we call DGEN, on simulated data sets with varying rates of introgression, and
apply it to an empirical data set of mosquito genomes.

We have implemented DGEN and made it available, both as a graphical user in-
terface tool and as a command-line tool, as part of the freely available, open-source
software package ALPHA (https://github.com/chilleo/ALPHA).

1 Introduction

Hybridization—the interbreeding of individuals from two “different” species, or populations—
has been recognized as an important evolutionary process underlying genomic diversification
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1547433.
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and species adaptation [1, 2, 22, 14, 15, 21, 8, 19, 16, 26]. Immediately upon interbreed-
ing, each chromosome in the hybrid individual has a single source—the genome of one of
the two parents. However, after multiple generations of backcrossing and recombination, the
genomes of descendants of the hybrid individual turn into mosaics of genomic segments, each
having a genealogy that could potentially differ from that of other segments (Fig. 1). The
integration of genetic material from two different species into the genome of an individual is
called introgression.

A B C

Figure 1: Hybridization and introgression. (Left) A phylogenetic network modeling the
evolutionary history of three species (or, populations) A, B, and C. Species C split from the
most recent common ancestor of A and B, and hybridization between (an ancestor of) C and
(an ancestor of) B occurred. (Right) Due to hybridization and backcrossing, the genome
of an individual in species B is a mosaic with different genomic segments having different
genealogies. In particular, the genealogy of the middle segment involves incomplete lineage
sorting.

The discordance among the genealogies of different genomic segments could be used as
a signal to detect introgression. For example, in the case of Fig. 1, the presence of some
genealogies that place B closer to A than to C and others that place B closer to C than to
A could indicate a potential hybridization event between B and C. However, a complicating
factor in introgression detection is that incomplete lineage sorting, or ILS, could also be
at play in cases where hybridization has occurred. ILS occurs when lineages from related
populations fail to coalesce within the ancestral population, giving rise to the possibility that
some lineages coalesce with others from farther populations. Mathematically, this process is
often modeled by the multispecies coalescent [10, 24, 17, 5].

One class of methods for detecting hybridization and introgression, including in the pres-
ence of ILS, is to infer phylogenetic networks from the data of multiple unlinked loci sam-
pled across the genomes. Indeed, several methods were introduced recently for this task
[31, 29, 27, 23, 25, 32, 34, 33]. While providing accurate results, these methods are compu-
tationally very demanding.

A different approach is to use the so-called D-statistic [9, 6], which infers the presence of
introgression based on significant deviation from equality between the frequencies of two site
patterns in a 3-taxon (plus an outgroup) data set (details below). More recently, Pease and
Hahn [18] introducedDFOIL, which extends theD-statistic to detect introgression in a 5-taxon
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scenario (4 taxa plus an outgroup). The extension from three to four taxa involved a detailed
analysis of site patterns and resulted in a set of statistics that, when combined, would aid in
the detection of introgression. However, as stated, that work of Pease and Hahn extended
the D-statistic from three to four taxa. Both the D-statistic and DFOIL are examples of
the use of phylogenetic invariants to detect deviation from the expected frequencies of site
patterns under a neutral coalescent model with no gene flow. Similarly, the HyDe software
package [3] implements an invariants-based method for identifying hybridization [13].

A major question is: Can one devise a statistic that is general enough to apply (the
computational complexity issue aside) to data sets with any number of genomes and any set
of postulated hybridization events?

In this paper, we address this question by showing that the phylogenetic invariants un-
derlying both the D-statistic and DFOIL could be generated automatically by contrasting
gene tree distributions under the null multispecies coalescent [5] and the alternative mul-
tispecies network coalescent [30, 31]. Based on this observation, we devise an algorithm
that automatically generates a statistic for detecting introgression in any evolutionary sce-
nario. It is important to note, though, that as the number of genomes and number of
postulated hybridization events increase, computing the statistic becomes computationally
very demanding.

Our method, which we call DGEN, is implemented in the publicly available, open-source
software package ALPHA [7]. We demonstrate the accuracy of the method on simulated
data sets, as well as its applicability to an empirical data set of mosquito genomes.

2 Methods

2.1 The D-statistic

Consider the species tree (((P1,P2),P3),O) in Fig. 2, which shows the evolutionary history
of three species, or populations, P1, P2, and P3, along with an outgroup O. The significance
of an outgroup in this scenario is that for any genomic site, the state that the outgroup has
for that site is assumed to be the ancestral state of all three species P1, P2, and P3. We
denote by A the ancestral state and by B the derived state.

Assuming all lineages from P1, P2, and P3 coalesce before any of them could coalesce with
a lineage from O, there are three possible gene trees topologies, which are shown inside the
branches of the species tree in Fig. 2, and are given by (((P1,P2),P3),O), (((P1,P3),P2),O),
and (((P2,P3),P1),O). The probabilities of these three gene tree topologies when gene flow
is excluded (but incomplete lineage sorting is accounted for) are, respectively, 1− (2/3)e−t,
(1/3)e−t, and (1/3)e−t, where t is the length, in coalescent units, of the branch that sepa-
rates the splitting of P3 from the ancestor of P1 and P2 [4]. Clearly, the latter two gene
tree topologies (those that are discordant with the species tree) have equal probabilities.
Taking the two patterns BABA and ABBA to correspond to gene trees (((P1,P3),P2),O)
and (((P2,P3),P1),O), then their expected frequencies in the absence of gene flow are equal.

However, when gene flow from P3 to P2 occurs and is modeled as an instantaneous
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Figure 2: Illustration of the D-statistic. (Left) The demographic structure of three
populations, P1, P2, and P3, along with an outgroup O, is shown. Patterns of the three
parsimony-informative mutations (A→B) are shown for bi-allelic sites with states A and B,
each mapped onto a different genealogy. The three genealogies give rise to patterns BBAA,
BABA, and ABBA for the four taxa, respectively, when the taxa are listed in the order
P1-P2-P3-O. The dark green arrow indicated gene flow from P3 to P2, which would result
in excess of pattern ABBA. (Right) The phylogenetic network modeling the evolutionary
history of the populations in the presence of gene flow from P3 to P2, where the gene flow
is modeled as an instantaneous unidirectional event.

event with probability γ (γ here is taken to represent the fraction of genomes in P2 that
originated from P3 through gene flow), then the probabilities of the three gene tree topologies
(((P1,P2),P3),O), (((P1,P3),P2),O), and (((P2,P3),P1),O) become, as derived in [28], (1 −
γ)(1− (2/3)e−t1) + (1/3)γe−t2 , (1/3)(1− γ)e−t1 + γ(1− (2/3)e−t2), and (1/3)(1− γ)e−t1 +
(1/3)γe−t2 , respectively, where t1 and t2 are the branch lengths, in coalescent units, in the
phylogenetic network of Fig. 2. Now, with gene flow accounted for, when γ 6= 0 (and t2 > 0),
the expected frequencies of the two patterns BABA and ABBA are no longer equal. Thus,
denoting by NX the number of times site pattern X appears in a genomic data set, the
D-statistic was defined as [6]

D =
NABBA −NBABA

NABBA +NBABA

, (1)

and the significance of the deviation of D from 0 is assessed. Under no gene flow, we expect
D ≈ 0 (we do not write D = 0 since the counts in Eq. (1) are estimated from actual
data and might not match the theoretical expectations exactly), and in the presence of gene
flow, we expect D to deviate significantly from 0. Furthermore, when D > 0, it indicates
introgression between P2 and P3 (in either or both directions), and when D < 0, it indicates
introgression between P1 and P3.

To extend the D-statistic from the scenario depicted in Fig. 2 to the case of five taxa
(four populations and an outgroup), Pease and Hahn [18] identified sets of site patterns that
are expected to have equal frequencies under a no gene flow scenario but different frequencies
when gene flow occurs. Next we show how to derive a general D-statistic that applies to
a species phylogeny and any set of gene flow events, thus overcoming the need to derive a
specialized D-statistic for individual evolutionary histories.
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2.2 Towards the General Case

Let X be a set of taxa X1, X2, . . . , Xn, where Xn is assumed to be an outgroup whose state
A for a given bi-allelic marker is assumed to be the ancestral state. Then, for a given marker,
a site pattern s is a sequence of length n where si (1 ≤ i < n), the state of the site in the
genome of Xi, is either A or B.

Let G be the set of all rooted, binary gene trees on the n taxa X1, . . . , Xn. For a site
pattern s, there might be multiple trees in G that are compatible with s; that is, trees on
which the pattern s could have arisen in the presence of a single mutation (the infinite-sites
assumption). We denote by G(s) the set of all trees in G that are compatible with pattern
s. While the size of G only depends on the number of taxa n, the size of G(s) for a given s
also depends on the number of ancestral versus derived alleles represented in s. For a given
s with n total taxa and β taxa having the derived state (a ’B’ instead of a ’A’ in the site
pattern), the size of G(s) will be the number of rooted, binary trees on β taxa times the
number of rooted, binary trees on n− β + 1 taxa. Given a species phylogeny Ψ, we have

P (s|Ψ) =
∑

g∈G(s)

P (g|Ψ) (2)

where P (g|Ψ) is the probability mass function (pmf) of [4] when Ψ is a species tree and the
pmf of [28] when Ψ is a phylogenetic network.

Assuming independence among sites, the expected number of occurrences of site pattern
s in a genomic data set given species phylogeny Ψ, denoted by E(n(s)), is given by n·P (s|Ψ).
Using this notation, a general statistic for detecting introgression proceeds as follows. Let Ψ
be the species tree that corresponds to the evolutionary scenario of no gene flow. Let Ψ′ be
the phylogenetic network that is obtained by adding to Ψ the gene flow events (instantaneous
events represented by horizontal edges) to be tested on Ψ. For example, the phylogenetic
network in Fig. 2 is obtained by adding the gene flow event from P3 to P2. A general
D-statistic, DGEN, is then computed as follows:

1. Let S be the set of all distinct parsimony-informative site patterns.

2. Parameterize Ψ and Ψ′ so that they define probability distributions on gene tree topolo-
gies.

3. For every site pattern s ∈ S, compute P (s|Ψ) and P (s|Ψ′).

4. Let P tree(S) be the partition of set S induced by the equivalence relations {(s1, s2) :
P (s1|Ψ) = P (s2|Ψ)}.

5. Let Pnetwork(S) be the partition of set S induced by the equivalence relations {(s1, s2) :
P (s1|Ψ′) = P (s2|Ψ′)}.

6. Let S ′ ⊆ P tree(S) where Y ∈ S ′ if and only if Y 6⊆ Z for any Z ∈ Pnetwork(S). In other
words, Y is an element of S ′ if it consists of a set of site patterns that all have equal
probabilities under Ψ but not equal probabilities under Ψ′.
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7. Let U = {(TY , BY ,MY ) : Y ∈ S ′, TY = argmax{Y ∩Z:Z∈Pnetwork(S),Y ∩Z 6=∅}P (s|Ψ′) and BY =
argmin{Y ∩Z:Z∈Pnetwork(S),Y ∩Z 6=∅}P (s|Ψ′)} where s is an arbitrary element of Y ∩Z, and
MY = Y − (TY ∪BY ). Put simply, site pattern probabilities that were previously equal
in the tree case become totally ordered in the network case and can be divided into
sets based on their new relation to one another. In other words, as an equivalence class
Y ∈ S ′ is refined by the elements of Pnetwork(S), TY and BY are the two subsets of
site patterns in Y with the highest and lowest probabilities, respectively, and MY is
the set of remaining site patterns.

8. DGEN =
(∑

(T,B,M)∈U NT −NB

)
/
(∑

(T,B,M)∈U NT +NB + 2NM

)
where, as above,

NT is the number of times site patterns in T appear in the genomic data set (and
similarly for NB and NM).

9. Similar to [18], calculate the χ2 goodness of fit (df=1) using

χ2 =

 ∑
(T,B,M)∈U

NT −NB

2/ ∑
(T,B,M)∈U

NT +NB + 2NM

 .

Applying this algorithm to the case illustrated in Fig. 2, we have

• P tree(S) = {{BBAA}, {BABA,ABBA}}.

• Pnetwork(S) = {{BBAA}, {BABA}, {ABBA}}.

• Step (6) returns S ′ = {{BABA,ABBA}}.

• Step (7) returns U = {({BABA}, {ABBA})} which, indeed, is the D-statistic in the
case of three taxa.

In Step (2) of the algorithm, we parameterize Ψ (and Ψ′) by trying branch lengths
(in coalescent units) in the set of values {0.5, 1.0, 2.0, 4.0} and the set S ′ (in Step (6)) is
determined based on the sets of site patterns whose equality does not break across the
different settings of branch lengths. For the inheritance probability, we set it to 0.9.

In Step (7), if for an element (T,B,M) of U , we have |T | 6= |B|, we remove (arbitrarily)
elements from the larger of the two sets to make them of equal size. Here, |T | is distinguished
from NT as |T | represents how many site patterns are contained in set T (the cardinality of
set T), whereas NT represents the occurrence of the site patterns in T in an actual multiple
sequence alignment.

For the χ2 test, we used a threshold of 0.01 on the p-value to determine significance. That
is, if the p-value is smaller than 0.01 we considered support for introgression to be statistically
significant; otherwise, it is not. Given that our formulation bases its determination of whether
introgression is present or not off of significant deviations of DGEN away from zero, sign
changes are treated equivalently and thus one could equivalently choose to take the absolute
value of DGEN. In our implementation of DGEN we have chosen to leave the sign. More
information on this is given in the discussion section.
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Why not contrast the site pattern distribution to the known distribution of
gene trees? One question that might arise is: Why do we not use a χ2 test to compare
the two distributions—the empirical one and the theoretical one; that is,

χ2 =
∑
s

(Ns − ns)
2

ns

,

where the sum is taken over all distinct site patterns s, Ns is the observed count of site pattern
s, and ns = n · P (G(s)|Ψ). The problem with this approach is that to compute ns, we need
knowledge of the parameters (branch lengths) of the species phylogeny, which are unknown
in this case. One potential remedy to this limitation is to first estimate the species tree
parameters from the data, say under maximum likelihood, and then use this parameterized
model to compute the ns frequencies. However, it is unknown how the estimated parameters
compare to the (unknown) true values when gene flow had occurred but the assumed topology
in the estimation is a tree. In our solution above, this problem is remedied by not focusing
on the parameter values in an absolute sense, but rather use arbitrary settings to find the
site patterns whose relative frequencies change between a model of no gene flow and another
with gene flow.

3 Results

3.1 Simulations

We first studied the performance of our method on the five-taxon scenario studied in [18]
and given by species tree Ψ1 in Fig. 3. All simulations share the same values for several
parameters. As in [18], we have a constant fixed population size of Ne = 106 and recombina-
tion rate of r = 10−8. We also use a fixed mutation rate of µ = 7× 10−9. In our simulation
pipeline, we first generate gene trees for a 50kbp multiple sequence alignment using ms [11],
followed by simulating the sequences under the Jukes-Cantor model of evolution [12] using
seq-gen [20]. In other words, the sequences are evolved under a finite-sites model. The pa-
rameter values were chosen primarily to accomplish the two goals of being similar to relevant
past work as well as being biologically relevant. An example of the full commands for this
pipeline, before adding any reticulations is as follows:

ms 5 1 -t 14000 -T -r 2000 50000 -I 5 1 1 1 1 1 -ej 1.0 2 1 -ej 1.0 4 3 -ej 1.2

3 1 -ej 1.5 5 1 | tail +4 | grep -v // > treefile

seq-gen -mHKY -l 50000 -s .028 -p 50000 < treefile > seqfile

We then added a migration event between P1 and P3 at time 0.5, with varying migration
rates, and calculated our DGEN statistic on the resulting genomic data sets; results are
shown in Fig. 3. As the results show, DGEN performs very well at determining the presence of
introgression in data sets. In particular, when the data evolved with no migration (migration
rate 0), the DGEN values hardly deviate from 0, and when the migration rate is non-zero, the
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Figure 3: 5-taxon simulation results. (Left) A 5-taxon species tree. The two most recent
divergence events are set at 1.0 coalescent units, the divergence time of the ancestor of all
in-group taxa (P1–P4) is set to 1.2 coalescent units, and the time of the root node is set
to 1.5 coalescent units. A migration event between P1 and P3 at time 0.5 was added to
species tree. (Right) Values of DGEN on data sets with varying migration rates. Each point
corresponds to a DGEN value whose p-value was lower than 0.01 obtained from a different
data set simulated under the same settings. The dark dots correspond to the mean and the
lines correspond to 1 standard deviation around the mean.

method detects the presence of introgression with a strong deviation from 0. These results
are consistent with the performance of DFOIL [18].

Next, we considered cases beyond that of five taxa (i.e., cases not possible with either
the D-statistic or DFOIL). We conducted simulations that show the effect of migration rate
and time of the migration event on the performance of DGEN, as shown in Fig. 4.

As the results show, the DGEN statistic performs very well at detecting introgression in
this case as well. In particular, as the migration rate increases, so does the accuracy of the
method. For a migration rate of 10−6 or higher, the method detects, with high significance,
the presence of introgression. In the cases of extremely low migration rates (10−7 and 10−8),
the method tends to indicate slight deviation from a no-introgression scenario.

As for varying the time of the migration event, the accuracy of the method is what one
would expect. As the time between the migration event and the divergence event increases
(the time of the migration event decreases), the power to detect introgression is much higher.
That power starts decreasing as the migration event becomes more ancient and, as a result,
less signal is present for its detection.

3.1.1 Multiple Reticulations

The question we set out to investigate next is: Given that the D-statistic is designed to work
under the assumption of a single gene flow event, how does it perform when there is more
than one event? Fig. 5 shows a typical scenario for the D-Statistic, Scenario S1, in which
the standard 4-taxon backbone tree has a single reticulation from P3 to P2. The following
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Figure 4: Simulation results on 6-taxon scenarios. (a) The network used for analyzing
the effects of varying migration rate of a reticulation. The results of the corresponding DG
values and the number of data sets where the DGEN values were significant (p-value smaller
than 0.01) are shown in (b) and (c), respectively. (d) The network used for analyzing the
effects of varying the time of the migration event. The results of the corresponding DG
values and the number of data sets where the DGEN values were significant (p-value smaller
than 0.01) are shown in (e) and (f), respectively.
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Figure 5: The standard D-Statistic scenario followed by four scenarios where an additional
reticulation is added. S1 adds the first reticulation which is held constant throughout all
scenarios and has M=0.1. The added reticulations in S2 through S5 have M=0.5.

four scenarios add an extra reticulation with a high migration rate. The effect of adding
these reticulations on the value of the D-Statistic are shown in Fig. 6.
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Figure 6: D-Statistic values for scenarios with a “hidden” reticulation. The scenar-
ios S1–S5 are shown in Fig. 5.

As expected, the S1 case yields the best results, followed by the S2 case with a weaker
D value. All other statistic values demonstrate that even in the presence of a significant mi-
gration with introgression from P3 to P2, multiple introgressions can cause that information
to be lost from inference. These results show that it is important to account for multiple
reticulations simultaneously, which our DGEN statistic allows for given that by its design it
is not restricted to any specific number of reticulations.

3.1.2 D-Statistic Subsetting

When data sets with more than four taxa are to be analyzed by the D-statistic, a workaround
is to subset the set of taxa into groups of four genomes (one outgroup and three in-group
taxa) and conduct D-statistic analyses on each subset independently. Our method, being
general, allows for analyzing the data set without any subsetting. The question we set out
to investigate here is: Does subsetting and running the D-statistic on individual 4-taxon
subsets equate to running DGEN on the full data set? To answer this question, we considered
the evolutionary scenario of Fig. 7.
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Figure 7: The effect of subsetting on the detectability of introgression. (Left) A 6-
taxon evolutionary history with two migration events. (Right) The values of the D-statistic
on subsets of four taxa, and DGEN on the full data set.

In the case of the D-statistic, only two out of the ten simulations recovered a significant
non-zero D value, whereas DGEN inferred significant D values for all runs. This further
demonstrates the need for and significance of a method that works directly on a full data
set and accounting for multiple migration events.

3.2 Analysis Of a Mosquito Genomic Data Set

Finally, we present results from a real biological data set with six taxa. In both [8] and [26],
the evolutionary history of the Anopheles gambiae species complex was found to be reticulate.
Both studies found particularly strong signals of introgression in the 3L chromosome in an
area known as the 3La inversion. This reticulation between Anopheles quadriannulatus (Q)
and Anopheles merus (R) is shown in the network of Fig. 8(a) with the other species of An.
coluzzii (C), An. arabiensis (A), An. melas (L), and An. christyi (O).

The results from Fig. 8 (b) show that DGEN does recover the introgressed region around
the 3La inversion in comparison to the rest of the 3L chromosome, consistent with previous
studies. Fig. 8(b) is an example of a figure that can be generated directly through the
graphical user interface of the ALPHA toolkit [7] and is presented as generated directly from
ALPHA. The figures output by ALPHA can be run on the full genome or on variable sized
windows with variable sized offsets between windows. Here the window size used was 500kbp
with a 100kbp offset between windows. The software can also vary the significance cutoff
with which to display values as significant (green) or not significant (red). Here a significance
cutoff value of 0.01 was used, as is used throughout the paper.

4 Discussion and Conclusions

In this paper, we extended the popular D-statistic to general cases of evolutionary histories
of any number of taxa and any number and placement of migration events. What enabled
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OC A Q L R

(a) (b)

Figure 8: DGEN values for the 3L mosquito chromosome. (a) Evolutionary history of
six mosquito genomes. (b) DGEN analysis of the 3L chromosome with window length set to
500kbp and with a 100kbp offset between windows.

this extension is the observation that the “ABBA-BABA” phylogenetic invariant underlying
the D-statistic can be derived automatically by making use of the probability mass function
of gene tree topologies under the multispecies coalescent and multispecies network coalescent
models.

Our simulation results show that the new statistic DGEN and method for deriving and
computing it are very powerful for detecting introgression in various settings. In particular,
we demonstrated that hidden migration events could negatively affect the performance of the
D-statistic, which operates under the assumption of a single migration event. Furthermore,
subsetting a data set of more than four taxa into data sets with four taxa is problematic.
Our DGEN statistic addresses these two issues by enabling the analysis of data sets with
more than four taxa and more than a single migration event. While analyses in the style of
the D-statistic make major assumptions, such as assuming the infinite sites model as well as
ignoring dependence between sites, they are resilient to violations in these assumptions. Our
results further support this given that our simulations violate both of these assumptions,
having been performed under the full coalescent with recombination model with a mutation
model allowing for recurrent mutation.

It is important to note that the D-statistic provides values that could be positive or
negative. The sign of these values give an indication on the directionality of the migration
in the case of four taxa. However, in the case of larger data sets, the sign of the DGEN values
is not easily interpretable in terms of directionality. It is also important to note that the
actual D value is not the quantity of interest; rather, it is the statistical significance of its
deviation from 0. There is of course, however, a strong correlation between the two.

As stated above, the method has been implemented in the ALPHA toolkit, which allows
for conducting DGEN analyses on the command-line as well as through a graphical user
interface.

Finally, while we present the DGEN statistic and its computation as a way of analyzing
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introgression under general evolutionary scenarios, computational complexity will become
prohibitive for increasingly large, complex data sets. In particular, Step (3) in the algorithm
above for computing DGEN entails computing the probabilities of all gene tree topologies
under a species tree and a phylogenetic network model. This calculation is very demanding,
especially in the case of the phylogenetic network. For example, while generating DGEN

for four or five taxa takes approximately ten and forty seconds, respectively, generating it
for six taxa takes thirteen minutes and for seven taxa thirty-eight hours. Fortunately, our
implementation allows a DGEN statistic to only ever need to be generated once for a particular
evolutionary scenario, as the statistic itself is saved to a file that can be used on all current
and future data sets for that scenario. This process of running a previously generated
statistic on a new data set is, of course, computationally trivial. It will be important future
work, however, to address the computational limits of DGEN when going to arbitrarily large
numbers of taxa.
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