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Abstract 1 

Protein tyrosine nitration, detected as anti-nitrotyrosine immunoreactivity, is considered one 2 

of the most relevant disease biomarkers of oxidative stress. The mechanism of nitration, 3 

target protein and functional consequences remain often unclear. Here we first extend 4 

protein tyrosine nitration from pathology to physiology as additional mechanism of post-5 

translational regulation. We focus on a prominent protein band surprisingly nitrotyrosine 6 

immunopositive under basal conditions in mouse, rat and pig heart and more so in diabetes 7 

and myocardial stress. Upon purification, we identify it as lactate dehydrogenase (LDH) and 8 

its basal nitration depending on NO synthase (NOS) and myeloperoxidase (MPO), 9 

respectively. Surprisingly, we locate LDH nitration by MALDI-TOF mass spectrometry not to 10 

a tyrosine but the C-terminal tryptophan, Trp-324. Molecular dynamics simulations 11 

suggested that Trp-324 nitration restricts the interaction of the active site loop with the C-12 

terminal a-helix essential for activity, which was corroborated by an apparent lower Vmax. In 13 

summary, protein nitration is not merely a disease marker but also a physiological event 14 

involving both the eNOS/NO and the MPO/nitrite pathways. In the case of LDH, to our 15 

knowledge the first protein identified to be basally regulated by nitration, this limits its activity, 16 

which is aggravated under cardiac metabolic stress conditions. 17 
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Significance 1 

Protein nitration is the most widely used disease marker indicating oxidative stress. How 2 

nitration occurs and its functional consequences have remained unclear in many cases. 3 

Here we show that protein nitration is not limited to disease but also occurs physiologically. 4 

We identify a key enzyme of energy metabolism in the heart as a target of nitration and two 5 

mechanisms equally responsible for its formation resulting in lower activity. Thus, protein 6 

nitration does not necessarily indicate a disease process but a physiological protein 7 

modification, e.g. for dynamic regulation of enzymatic activity.8 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 19, 2018. ; https://doi.org/10.1101/348789doi: bioRxiv preprint 

https://doi.org/10.1101/348789


\body 1 

Introduction 2 

Increased levels of reactive oxygen species (ROS), i.e. oxidative stress, is considered a 3 

common mechanism of several cardiovascular and other disease states (1). In concert with 4 

different nitrogen species (2–4), ROS can lead to protein nitration, e.g. tyrosine residues 5 

(NO2Tyr). Tyrosine nitration is the most frequently used and considered the most robust 6 

disease marker of oxidative stress (5–7). Its detection relies mainly on NO2Tyr specific 7 

antibodies (8–10). With respect to the nitrogen source, anti-NO2Tyr immunopositive signals 8 

are generally interpreted as a hallmark of nitric oxide (NO) being scavenged by superoxide 9 

and intermediate peroxynitrite (9, 11, 12), although other mechanisms exist (13). Regarding 10 

the functional consequences of protein nitration few in vitro data exist suggesting mainly 11 

loss of protein function correlating with disease severity (14–17). In vivo data are lacking. 12 

Here, we address three major knowledge gaps in our understanding of protein nitration: 13 

specificity, origin, and disease relevance.   14 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 19, 2018. ; https://doi.org/10.1101/348789doi: bioRxiv preprint 

https://doi.org/10.1101/348789


Results 1 

Development of an anti-nitrotyrosine antibody panel as biomarkers of disease-2 

relevant oxidative stress. We started out by examining a panel of anti-NO2Tyr antibodies 3 

(Fig. 1), including those directed against carrier-linked NO2Tyr or against H2O2/NO2- treated 4 

proteins (see Supplemental Information (SI) Table S1). We tested these both in rodent (rat) 5 

and, for later purification, also in porcine tissues. Surprisingly we obtained signals already 6 

under physiological conditions. The immunoreaction, however, varied greatly in protein band 7 

size and intensity. Two polyclonal (pAb), pAb1 and pAb2, and one monoclonal antibody 8 

(mAb), mAb1, displayed the most robust signals (SI Fig. S1). The specificity of anti-NO2Tyr 9 

antibodies (18–22) is rarely validated, e.g. by antibody pre-absorption with free NO2Tyr (11). 10 

In our case, pAb1 signals were partially blocked by pre-absorption with 3 mM NO2Tyr. mAb1 11 

showed very little non-specific background whilst pAb2 exhibited moderate sensitivity with 12 

high anti-NO2Tyr specificity.  13 

 14 

A prominent nitrotyrosine immunoreactive protein band was detected in mouse, rat 15 

and pig heart under physiological conditions. To conduct a tissue/species screen, we 16 

selected three antibodies, pAb1, pAb2, and mAb1, from our original panel (see SI Table 17 

S1). Three proteins were consistently detected under basal conditions and with apparent 18 

molecular weights of 70, 45 and 38 kDa, of which the latter gave the by far the strongest 19 

signal in heart (Fig. 2A). Pre-incubation with free NO2Tyr or NO2BSA (3 mM) or nitro-group 20 

reduction (21), at least partially, blocked the pAb1 dependent signal.  Therefore, subsequent 21 

efforts were directed at identifying the nature of the NO2Tyr positive 38 kDa protein and its 22 

site of nitration. 23 

 24 

Upon purification, the 38 kDa nitrated protein was identified as LDH with lower Vmax. 25 

Using porcine heart, we isolated the NO2Tyr immunoreactive 38 kDa protein by ion 26 
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exchange (Q Sepharose, QS) and affinity (Blue Sepharose, BS) chromatography (Fig. 2B). 1 

The partially purified 38 kDa protein was stained by colloidal Coomassie Blue and subjected 2 

to peptide mass fingerprinting using MALDI-TOF MS. Based on the NCBIprot database most 3 

ions present in the spectrum of tryptic peptides matched LDH as the primary protein 4 

component of the sample (Fig. 2C).  5 

Next, we tested the effect of nitration on the enzyme activity by nitrating cardiac LDH 6 

in vitro with increasing amounts of H2O2/NO2-. Indeed, higher nitration levels of LDH (NO2-7 

LDH) (Fig. 2E) correlated with decreased Vmax (Fig. 2F) and unchanged KM. Our data 8 

suggest therefore that protein nitration is not only a physiological event for cardiac LDH, but 9 

also modulates enzyme activity by lowering Vmax. 10 

 11 

Nitrated LDH is increased in diabetes and myocardial stress. To investigate whether 12 

NO2-LDH is further increased in response to metabolic stress, we investigated heart extracts 13 

from rat models of streptozotocin-induced short-term (ST) and long-term (LT) diabetes 14 

mellitus (23) as well as a doxorubicin (DoxoR) induced mouse model of cardiac stress (24) 15 

(Fig. 3A). Diabetic rats were sacrificed 3 (ST) and 16 (LT) weeks after inducing diabetes at 16 

week 10. Using the pAb1, NO2-LDH signals were significantly increased in all three models 17 

when compared against healthy controls (Fig. 3B/C). Immunosignals of pAb1 pre-absorbed 18 

with NO2Tyr or anti-LDH wildtype antibody did not show any significant change. In both 19 

diabetes mellitus models and doxorubicin-treatment animals, levels of cardiac LDH were 20 

unchanged versus controls, indicating that indeed the NO2-LDH/LDH ratio was increased. 21 

 22 

Cardiac LDH nitration is lowered in eNOS-KO and MPO-KO mice. We next wanted to 23 

address our second goal, to understand the mechanistic origin of the nitrogen in NO2-LDH. 24 

Usually, it is assumed that protein nitration derives from peroxynitrite from the reaction 25 

between •NO and O2•- (25). However, another major source, not involving de novo NO 26 
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synthesis is frequently overlooked, i.e. MPO-catalyzed nitration using nitrite in the presence 1 

of hydrogen peroxide (26) (Fig. 4A). To analyze this in vivo, we had to switch to mouse 2 

models, i.e. eNOS-KO and MPO-KO lines. Indeed, we observed that NO2-LDH signals in 3 

heart tissue were not only reduced in eNOS-KO but also in MPO-KO mice when compared 4 

to their respective WT litter mates (Fig. 4B). These results therefore indicated that both 5 

pathways contribute to basal nitration of cardiac LDH. 6 

 7 

Further MALDI-TOF mass spectrometry analysis of the nitration site identifies the 8 

nitrated residue as tryptophan and not tyrosine. A similarly frequent assumption about 9 

NO2Tyr immunosignals is specificity with respect to the nitrated amino acid. Other nitration 10 

target amino acids, however, have been reported, most prominently tryptophan (27–29). To 11 

identify the physiologically nitrated LDH residue(s), heart tissue was homogenized and 12 

subjected to 2D-PAGE in-gel digestion prior to MALDI-TOF MS analysis. Surprisingly, 13 

signals consistent with a nitrated tryptophan at position 324 of peptide 319-328 14 

(SADTLWGIQK) of LDH (NO2Trp-LDH) were detected (Fig. 5A). We cannot exclude 15 

nitration of other peptides of LDH that were below our level of detection. Nevertheless, our 16 

results strongly point to NO2Trp being detected by the supposedly anti-NO2Tyr pAb1. 17 

 18 

NO2Trp-LDH molecular dynamics simulations suggested higher restriction of the 19 

activity-essential interaction of the active site loop with the C-terminal a-helix. Since 20 

we did observe a Vmax effect on NO2-LDH, we wanted to investigate whether there is a likely 21 

structural correlate for this via Trp-324. We therefore modeled the nitration into the structure 22 

of tetrameric and binary human LDH, and then performed molecular dynamics simulations. 23 

For distance metrics of human LDH and key structural components refer to Fig. 5B. The 24 

root-mean squared fluctuations (RMSF) of all atoms in each residue were averaged across 25 

the four subunits in each combined 3.5 µs trajectory (SI Fig. S2). Subtracting the wildtype 26 
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tetramer (WT) RMSF from the T4N (tetramer with NO2Trp-324 residue on each subunit) 1 

highlighted differences in mobility between the dynamics of the WT compared with NO2Trp-2 

LDH (Fig. 5C). Positive values in the resulting graphs indicated greater mobility of residues 3 

in T4N compared with WT and vice versa. Moreover, distance histograms (Fig 5D/E) show 4 

an increased mobility in the binary complexes compared with the ternary, expressed as a 5 

broadening of the histograms. 6 

 We found that NO2Trp-LDH weakened the interaction between a-H and the active 7 

site loop. This decoupling led to a greater population of closed and “over-closed” states of 8 

the T4N active-site loop. By corollary, in WT LDH, the open active-site loop states are partly 9 

stabilized by interaction with the a-H helix. Therefore, nitration of LDH is expected to 10 

decrease LDH activity, consistent with our enzyme-kinetic findings (see Fig. 2D-E).  11 
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Discussion 1 

We here close three major knowledge gaps in our understanding of protein nitration: 2 

specificity, origin, and disease relevance. With respect to the specificity of protein nitration, 3 

a vast heterogeneity of proteins are detected by supposedly uniform anti-NO2Tyr antibodies. 4 

Moreover, tryptophan nitration (NO2Trp) was a cofounding factor of our apparent NO2Tyr-5 

immunosignals. Protein NO2Trp formation has been described in isolated proteins treated 6 

with H2O2/NO2- in vitro (30–33), peroxynitrite-exposed cells (34), and as physiological 7 

modification during aging in rat heart mitochondria (28). Trp is an alternative target of 8 

nitration that deserves more attention (35, 36) and immunosignals by anti-NO2Tyr antibodies 9 

should rather be interpreted as NO2Tyr/ NO2Trp signals unless purified and chemically 10 

validated. Rebrin et al. (28) reported Trp nitration of succinyl-CoA:3-ketoacid CoA 11 

transferase (SCOT), which could not be reproduced by Wang et al. (37). Whether Trp 12 

nitration has a functional consequence on SCOT remained unclear because both activation 13 

and inactivation were observed (28). In hindsight, SCOT nitration is also the first 14 

documented example where Trp nitration has been mistaken as Tyr nitration based on 15 

cross-reactivity of a supposedly NO2Tyr specific antibody (38), and many more of these 16 

examples may exist in the literature. 17 

With respect to the origin of the nitrating nitrogen in NO2Tyr/ NO2Trp positive proteins, 18 

we show that both eNOS/NO and MPO/nitrite pathways, and possibly others, need to be 19 

equally considered and that the a priori assumption that NO2Tyr immunosignals indicate NO 20 

scavenging by superoxide is not valid. 21 

With respect to disease relevance, probably our most relevant finding is that protein 22 

nitration is a physiological event. This represents a similar dogma shift as for ROS formation, 23 

which also should not be a priori considered as oxidative stress and a disease marker. Thus, 24 

both ROS and reactive nitrogen and protein nitration represent physiological events, even 25 

though they may be upregulated in disease as we show for diabetes and cardiac stress. 26 
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Not many specific functional consequences have been described for protein nitration. 1 

Assuming Trp nitration and activity modulation of both LDH (decreasing activity) and SCOT 2 

(increasing activity) would occur, this may be a protective mechanism, allowing the heart to 3 

better utilize ketone metabolism for energy production at a time when other metabolic 4 

processes may be diminished (27, 28). Molecular dynamics simulations were performed on 5 

NO2-LDH, aiming to understand the impairment of the enzyme activity (see Fig. 5). While 6 

differences in activity between WT and T4N of a factor of two is significant in physiological 7 

terms, it corresponds to minor changes in the free energy states in the catalytic process. 8 

The catalytic cycle of LDH is a well understood ordered bi-bi reaction mechanism where 9 

substrate and product enter and leave the active-site, with concomitant closing and opening 10 

of the active-site loop, after cofactor binding. Detailed kinetic characterization of LDH from 11 

Bacillus stearothermophilus (39) and Plasmodium falciparum (40) has revealed this loop 12 

movement to be a rate limiting step in the reaction mechanism. Any perturbation of this 13 

delicately balanced conformational change is expected to compromise the catalytic activity 14 

of the enzyme. We suggest that conformational movement of the active-site loop in cardiac 15 

LDH is also a rate limiting step and the weakening of the interaction between this loop and 16 

the a-H helix in T4N (as described in our results) is responsible for the impaired catalytic 17 

activity. 18 

 In conclusion, cardiac LDH appears to be the first protein basally regulated by 19 

nitration and not only a loss-of-function biomarker of metabolic stress. NO2-LDH has a lower 20 

Vmax and the nitration is further increased under cardiac metabolic stress. Furthermore, in 21 

vivo NO2Tyr immunoreactivity not necessarily reflects Tyr nitration or solely NO scavenging. 22 

Instead, it may indicate nitrite/MPO-dependent Trp nitration and physiological signaling. This 23 

has wide implications on re-interpreting previous data using NO2Tyr immunoreactivity as a 24 

biomarker and on our understanding of nitration as a physiological protein modification and 25 

signaling mechanism.  26 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 19, 2018. ; https://doi.org/10.1101/348789doi: bioRxiv preprint 

https://doi.org/10.1101/348789


Material and Methods 1 

Detailed experimental procedures are provided in SI Materials and Methods.  2 
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Footnotes 1 

 2 

Footnote 1. Several publications on protein NO2Tyr immunoreactions report the use of 3 

NO2Tyr concentrations of up to 10 mM to block the signal and demonstrate specificity; this 4 

exceeds the solubility of NO2Tyr. Moreover, these saturated solutions are highly acidic and 5 

require buffering to ensure that any blockade of an immunosignal is due to competition with 6 

free NO2Tyr and not due to pH-induced antibody denaturation. 7 

 8 
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Figures and figure legends 1 

 2 

Figure 1. Experimental outline for an anti-NO2Tyr antibody-based biomarker detection 3 

approach. Central panel: Antibody panel screening, an anti-NO2Tyr antibody panel was 4 

tested in porcine and rat tissues under physiological conditions. Different antibodies might 5 

recognize different nitrated proteins (green and orange antibodies) or one antibody might 6 

detect more than one nitrated protein (blue antibody). Right panel: A 38 kDa band was 7 

especially prominent and, subsequently, purified in large mammals and identified via 8 

MALDI-TOF as LDH. NO2-LDH activity was also assessed. We identified the nitrated residue 9 

and simulated the effect of the nitration in the protein structure and mechanism using human 10 

LDH. Left panel: Different rodent models, as well as knock-out mouse models were used to 11 

elucidate the effects of NO2-LDH in disease, diabetes and myocardial stress, and the 12 

enzymatic sources of reactive nitrogen species (RNS) leading to LDH nitration, respectively. 13 
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Figure 2. Screening of different native tissue homogenates identifies a 38 kDa band 1 

in heart as major physiologically NO2Tyr-immuno positive protein. Further 2 

purification and MALDI-MS analysis identified the 38 kDa band as LDH. (A) 3 

Immunopositive pig and rat tissues from Fig S1 were further analyzed by SDS-PAGE under 4 

reducing conditions (dithiothreitol) and subsequent western blot. The band pattern was 5 

different for all three polyclonal (pAb) or monoclonal (mAb) antibodies: pAb1, mAb1 and 6 

pAb2. The most intense NO2Tyr immunopositive protein band at approximately 38 kDa 7 

(p38nt) was detected using pAb1 in heart. (B) p38nt was purified from porcine heart 8 

homogenate by affinity (Blue Sepharose) followed by ion-exchange (Q-Sepharose) 9 

chromatography. Purification steps were tracked via protein nitrotyrosine detection using 10 

pAb1. (C) Purified cardiac p38nt was cut out from the gel, digested with trypsin and analyzed 11 
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by mass spectrometry and peptide mass fingerprint analysis. Most peptide ions detected 1 

were matched to lactate dehydrogenase: 11 ions matched to LDH (g) out of a total of 20 2 

detected, with 5 ions matching to the next best protein assignment, malate dehydrogenase 3 

(MDH, c), identifying p38nt as LDH with a p<0.05. (D) LDH nitration was assessed by 4 

quantitative western blot analysis using pAb1 (n=9). (E) Vmax[LDH] remained unchanged 5 

up to an equimolar peroxynitrite:LDH ratio, and then decreased at a ratio of 10 (n=8). Data 6 

represent means ±SEM.  7 
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 1 

Figure 3. Pathological LDH nitration levels in short-term (ST) and long-term (LT) 2 

diabetic disease models and an oxidative stress myocardial dysfunction model. (A) 3 

Heart homogenates of ST and LT streptozotocin-treated diabetic rats or doxorubicin-treated 4 

mice (DoxoR) were analyzed by SDS-PAGE and immunoblot analysis for LDH nitration 5 

using the pAb1 antibody. (B) In all three animal models, the relative NO2-LDH signal intensity 6 

was increased. In diabetes, the long-term model yielded higher values than the short-term 7 

model, which may indicate either higher nitrosative stress, or, more likely, accumulation of 8 

LDH nitration. The highest increase was observed in the doxorubicin model. Data are 9 

expressed as % of untreated control animals (open bars) and represent means ± SEM of 10 

n=6-18 experiments. 11 
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 1 

Figure 4. In vivo genetic validation of reactive nitrogen species (RNS) sources. (A) 2 

Events leading to oxidized and nitrated LDH. RNS (represented as NO2-/H2O2/ONOO-) can 3 

nitrate LDH, resulting in decreased Vmax. (B) Cardiac tissue was obtained from endothelial 4 

nitric oxide synthase (eNOS) and myeloperoxidase (MPO) knock-out (KO), and the 5 

respective wild-type (WT), mice. Basal nitration of LDH (p38nt) was analyzed by immunoblot, 6 

and immunosignals quantified densitometrically. Data are expressed as % of control (i.e., of 7 

the respective WT animals) and represent means ± SEM of n=3-5 animals. NO2-LDH 8 

depended on both eNOS and MPO. 9 
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Figure 5. Identification of LDH Trp-324 as physiologically nitrated and oxidized. The 1 

interaction of the active site loop with the C-terminal a-helix is essential and restricted 2 

in NO2Trp-LDH. (A) Rat heart homogenate was subjected to 2D-PAGE and Coomasie 3 

staining; spots were subjected to in-gel digestion and MALDI-TOF MS analysis. Left panel: 4 

Mass spectrum derived from a spot corresponding to rat LDH over the range m/z 600 to 5 

2700. Right panel: An expansion of the same spectrum over the range m/z 1170 to 1230, 6 

showing peptide ions assigned primarily to the peptide 319-328 (319SADTLWDIQK328), 7 

and its oxidized and nitrated derivatives. Major peptide ions are labeled with their observed 8 

m/z values and corresponding LDH mature protein amino acid intervals, as assigned by 9 

Mascot™, and additionally by manual comparison to predicted values calculated from the 10 

LDH sequence and oxidative and nitrative modifications. The ions correspond to the peptide 11 

319-328 Trp (W)-nitrated species (319-328 + NO2) and its typical high energy 12 

decomposition product (319-328 + NO2-O), as well as ions corresponding to the 13 

characteristic family of Trp oxidation forms, hydroxytryptophan (319-328 + Ox), didehydro-14 

hydroxytryptophan (319-328 + Ox-2H), dihydroxytryptophan (319-328 + 2Ox), and 15 

kynurenin (319-328 + Ox-C). Other peptide ions display single (+ Ox) and double (+ 2Ox) 16 

oxidation, or didehydrogenation (- 2H). (B) Distance metrics mapped onto the crystal 17 

structure of WT (1I0Z). Color scheme: b-K--b-K loop, dark blue; a-helix, pink; active-site 18 

loop, green; a-2G, light blue; pyruvate, grey; NADH, cyan. Residue Trp-324 is shown in 19 

space filling. (C) Plot of the differences between T4N and WT backbone RMSF per residue 20 

(T4N – WT) in the binary complex. Structures are highlighted using the same color scheme 21 

as previously described plus the juxtaposed loop to the C-terminal a-helix which is 22 

highlighted in light orange. (D – E) Histograms of the distribution of distances. Blue WT; Red 23 

T4N. Metrics m:LH (107:CB-326:CB) showing the juxtaposition of the active-site loop and 24 

a-C-terminal helix and m:LO (103:CA-243:CB) showing the open/closed state of the active-25 

site loop. 26 
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