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Abstract

Genome-wide association studies (GWASs) and other computational biology techniques
are gradually discovering the causal SNPs and gene variants that contribute to
late-onset human diseases (LODs). After more than a decade of GWAS efforts, these
can account for only a fraction of the heritability implied by familial studies, the
so-called “missing heritability” problem.

Computer simulations of an aging population have shown that the risk allele
frequency decreases at older ages because the individuals with higher polygenic risk are
first to become ill. This effect is most prominent for diseases characterized by high
cumulative incidence and high heritability, examples of which include Alzheimer’s
disease, coronary artery disease, cerebral stroke, and type 2 diabetes. The LOD
incidence rate grows exponentially, doubling in incidence between 5 and 8.5 years,
guaranteeing that the cohorts for GWAS studies overrepresent older individuals with
lower polygenic risk scores, whose disease cases are disproportionately due to
environmental causes such as old age itself. This simultaneously leads to diminished
observed heritability and lower GWAS statistical power at older ages; thus, the missing
heritability in GWAS is smaller than currently estimated for these LODs.

This mechanism also explains the relatively constant heritability with age reported
by familial studies for the four most prevalent cancers—breast, prostate, colorectal and
lung—due to a combination of their lower heritability and lower cumulative incidence;
this should also be true for other LODs with similar characteristics. In addition, this
mechanism explains the heritability patterns found by familial studies and in clinical
practice as it relates to predicting LOD familial risks for all of these LODs.

In conclusion, for LODs showing high cumulative incidence together with high initial
heritability, rather than using relatively old age-matched cohorts, study cohorts
combining the youngest possible cases with the oldest possible controls may significantly
improve the discovery power of GWASs.

Author summary

We investigated the change in distribution of risk alleles with age progression under a
model assuming that relative disease liability remains proportionate to individual
polygenic risk. We found that individuals with higher polygenic risk factors become ill
proportionately earlier, and the fraction of higher risk alleles diminishes for the
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remaining unaffected population. This corresponds to diminishing heritability with age
and lower GWAS statistical discovery power for LODs with high incidence. Even
though incidence for all LODs increases exponentially with age, the effect is minimal for
diseases with low prevalence and low heritability, as exemplified by cancer.

High cumulative incidence and high initial heritability are the primary determinants
of risk allele relative frequency decline and consequent diminishing older age heritability
and GWAS statistical power. The effect is very pronounced for a number of prevalent
and highly heritable LODs, including Alzheimer’s disease, coronary artery disease,
cerebral stroke, and type 2 diabetes, in which the cohorts for GWAS studies
over-represent older individuals whose genotype would be considered low risk earlier on
and whose disease is due to old age rather than heightened genetic liability. The
predictive power of GWASs is closer to the real heritability of this population than it is
currently credited with.

Introduction

Throughout the ages, late-onset diseases were considered a bane of the lucky few who
survived to an advanced age. Over the last couple of centuries, continuous improvements
in sanitation, life and work environments, vaccinations, disease prevention, and medical
interventions have extended the average life expectancy by decades.

With a growing fraction of the population being of advanced age, the leading causes
of mortality are now heart disease, cancer, respiratory disease, stroke, and notably
Alzheimer’s disease and other dementias [1]. The need—and with it, the effort being
made—to determine the causes of late-onset diseases is ever increasing, and one of the
targets of medicine has become combating aging in addition to specific age-related
diseases [2].

One of the major goals of computational biology is to identify gene variants that
lead to increased odds of late-onset diseases. The objective is to be able to predict
individuals’ LOD liability and, based on this knowledge, formulate preventive
recommendations and treatments, with the ultimate goal of applying personalized
medical interventions based on the genetic makeup of each unique individual.

With whole-genome sequencing becoming more accessible with every passing year,
GWAS is being applied to all areas of genetics [3]. Nevertheless, polygenic LODs remain
resistant to the discovery of sufficient causal gene variants that would allow for accurate
predictions of an individual’s disease risk [4–6]. This is despite the fact that LODs with
varied symptoms and phenotypes show high heritability in twin and familial studies [7].

GWAS discovery is simpler in the case of Mendelian conditions, which are caused by
one or a small number of large-effect mutations or SNPs [8]. For many of these diseases,
causal gene variants are already well characterized. These variants can be active in a
range of gene dominance, recessiveness or additivity scenarios. Mendelian conditions
can be inherited or appear in a very small number of de novo detrimental mutations.

Natural selection efficiently removes large-effect detrimental mutations, resulting in a
reasonably low genetic load in each person, equivalent to five to eight highly detrimental
recessive mutations. If these were to combine and become homozygous, they could be
harmful or lethal [9–13]. Still, a relatively small fraction of the population is affected by
these conditions. As of May 2018, the OMIM Gene Map Statistics compendium [14]
lists over 6000 genetic phenotypic conditions and close to 4000 gene mutations
responsible for them.

Some LODs, such as macular degeneration [4, 15, 16] are primarily caused by a small
number of high-effect variants. Macular degeneration does not exhibit a significant
incidence in a form of a polygenic late-onset disease version with similar symptoms.
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Therefore, even though these diseases happen late in life, they belong to the Mendelian
disease category and are not classified as polygenic LODs.

The situation is much more complex in the case of polygenic LODs, in which disease
liability may be associated with hundreds of small-effect gene variants or SNPs [8].
Diseases of this type are some of the most prevalent among humankind. They include
cardiovascular disease—particularly coronary artery disease (CAD)—cerebral stroke,
type 2 diabetes (T2D), senile dementia, Alzheimer’s disease (AD), cancer and
osteoarthritis (see S1 Appendix for a review of these LODs).

While computational biologists, sometimes in collaboration with specialist
physicians, analyze sequencing data in an attempt to identify causal variants,
physicians—especially gerontologists—have been working with aging people for
centuries [2, 17]. Recently, Warner [18] stated that “One of the criticisms raised against
genetic studies is that they are far removed from clinical practice.” In this research, we
focus specifically on a conceptual disconnect regarding the heritability patterns
characterizing some of the most prevalent LODs and their consequences for the
discovery and predictive power of GWAS.

A late-onset disease does not develop until later in life. At a young age, the human
organism usually functions as well as it ever will. With time, the organism’s functions
decline, leading to the common image of aging as one of thinning hair and a loss of
pigmentation in what remains, increased wrinkling and altered pigmentation of the skin,
reductions in height, muscle and bone mass, joint pain, and deficits in hearing, sight
and memory [19]. The combination of genetic liability, environmental factors, and the
physiological decline of multiple organism systems leads to individual disease
presentation. Detrimental gene variants may be either protective or exacerbating
factors, compared to the average distribution of common gene variants that defines
human conditions as it applies to polygenic LODs.

GWAS researchers often set an unrealistic expectation that a combination of causal
SNPs—also known as a polygenic score—will, irrespective of the patient’s age,
completely predict an individual’s predisposition to an LOD to a degree matching the
maximum heritability found in familial studies [20,21]. The lost heritability debate, in
the case of LODs, often treats polygenic LODs as if they were binary hereditary
phenotypic features rather than facets of failure processes that arise in the human
body [22] when it is past its reproductive prime and when evolutionary selection is
significantly relaxed compared to younger ages [19].

GWAS can implicate a subset of SNPs that can typically explain between 10 and
20% of the genetic heritability of a polygenic LOD [3].

There are two complementary hypotheses explaining this so-called missing
heritability [23–26]. The first is the hypothesis that LODs are caused by a combination
of a large number of relatively common alleles of small effect [27]. GWAS has been able
to discover only a small number of moderate-effect SNPs, but a large number of SNPs
remain below GWASs’ statistical discovery power. The second hypothesis states that
LODs are caused by a relatively small number of rare moderate- or high-effect alleles
with a frequency below 1% that likely segregate in various proportions into
subpopulations or families [28,29] and are also under the radar of GWASs’ discovery
power.

Both scenarios can contribute to observational facts, but their relative weights vary
depending on the genetic architecture of an LOD [30]. In cases of high detrimentality,
rare high-effect alleles become indistinguishable in their presentation from the OMIM
cataloged conditions and likely will be diagnosed as a separate disease or syndrome. We
think that the population age distribution and individual disease progression of
polygenic LODs can be best understood by considering the aging process itself as an
ongoing loss of function, which can be modulated by the genetic liabilities resulting
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from both common and rare SNPs distributions combined with changing environmental
and lifestyle variables.

While GWAS findings can explain only a fraction of heritability, the systematically
collected SNP correlations provide a good indication of what to expect regarding the
effect sizes and allele frequency distribution of as yet undiscovered SNPs [23]. Many
studies focus on constructing hypotheses, defining the types of gene variants that could
explain the missing heritability, proving why these gene variants are difficult to discover,
and identifying the evolutionary processes that led to the hypothesized and observed
gene variant distributions [4, 5, 7, 25,31,32]. These studies explore the effect sizes and
allele frequencies that GWAS would expect to find for LODs as well as the genetic
architecture of the complex traits and their implications for fitness.

With larger sample sizes, GWASs are uncovering increasing numbers of causal SNPs.
Nevertheless, there are no examples of polygenic LODs in which the majority of causal
SNPs have been found. GWAS is a tool that has now been in use for more than a
decade and continues to make progress [3]. Future tools that may be more successful in
solving this puzzle are bound to appear over time. One relatively new approach is to
create a number of targeted mutations in either human cell cultures or model organisms
and evaluate the consequences for the phenotypes. One method is to introduce
systematically designed mutations using CRISPR/Cas9 [33–35].

Another promising future approach may reverse engineer and classify causal SNPs
using synthetic DNA editing, as proposed by the Genome Project-Write, which intends
to develop technologies that will allow for the synthetization of complete human
chromosomes, nucleotide by nucleotide [36].

One example is the research being conducted in Harvard’s Church Lab, which is
taking the first steps in applying this approach to the human genome [37,38]. It may be
a new method or some new variation of a method in current use, or a combination of
these, that will lead to broad success. Based on the rapid rate of progress, it may take
only a few decades to gain more complete, actionable and predictive LODs genetics
knowledge.

The age-related heritability decline of some LODs has been assumed for decades.
The precise magnitude of heritability change with age is typically not known for most
LODs, and the effects are not understood and often ignored or overlooked. At best, the
effect may be “age adjusted” by GWASs [39] with the goal of removing or averaging out
the effect of aging rather than looking into its consequences more thoroughly.

One of the first geneticists to build a conceptual foundation for susceptibility to
diseases, and the pioneer of the liability threshold approach, was D. S. Falconer in his
studies of inheritance estimated from the prevalence among relatives [40] and his 1967
follow-up study exploring the prevalence patterns of LODs, specifically diabetes [41],
and their decreasing heritability with age. These concepts were not followed up by
systematic research, likely due to the difficulties involved in setting up large familial
studies and perhaps the perceived limited clinical use of this kind of expensive and
time-consuming project. Detailed, high-granularity data on heritability by age are rare
for most diseases.

We collected familial heritability, clinical, and epidemiological statistics for eight
prevalent LODs: Alzheimer’s disease (AD), type 2 diabetes (T2D), coronary artery
disease (CAD), and cerebral stroke, and four late-onset cancers: breast, prostate,
colorectal, and lung cancer. These statistics served as the basis for our analysis and
conclusions.

The research rationale

Over the past decade, thousands of GWAS studies have been conducted, finding genetic
risk variants for many polygenic diseases. The aggregate of these variants for a
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population or an individual is called their polygenic risk for a particular disease. One
could question what happens to individual risk and population polygenic risk as
organisms age, individually or as a statistical age cohort. However, from our
perspective, the following questions are the most interesting: Does individual polygenic
risk remain in the same proportions between individuals when they get older, assuming
we knew their polygenic score for a particular LOD when they were younger? As an
organism ages, does the risk become proportionately larger for all individuals, effectively
meaning a multiplier is applied to each individual polygenic score? If this is the case, is
the multiplier proportional, or does the initial polygenic score ratio become more or less
extreme among older individuals who are diagnosed with or unaffected by an LOD? Or
is it the other way around: does aging result in decreasing genetic risk while overall
frailty and LOD risk increases? Does random environmental noise rather than genetics
account for the rapid age-related increase in LOD incidence that we observe?

It is obvious that individuals with higher polygenic risk have a higher likelihood of
becoming ill earlier. Could this fact explain some of the observed LOD heritability
known from familial studies, clinical observations and GWASs?

We chose to study a model in which the polygenic risk remains constant between
individuals and endeavored to establish how the higher odds of becoming ill of
individuals with higher polygenic liability may lead to a change of risk allele
distribution as the population ages and whether this alone may explain some of the
known observational facts. One way to test our model is to design an aging population
simulation and determine the quantitative change of allele frequency as the population
ages.

More genetically predisposed individuals are more likely to be diagnosed with an
LOD and become “cases” than less predisposed individuals. The allele distribution for a
one-year-older population will contain fewer still-healthy high-risk individuals because
such individuals fall ill with an LOD to which they are more liable in a higher
proportion than lower-risk individuals. The same process continues the next year, and
the next. With age progression, the frequency of higher-polygenic-risk individuals
and—to an extent that we will determine—the frequency of risk alleles will decline. At
the same time, a clinically significant incidence of all LODs, somewhat different for each
LOD, begins at some relatively late age and increases exponentially for decades, as we
will describe later.

While we may not know all underlying causes and cannot reproduce the incidence of
each disease from general principles, we have clinical statistics reporting the incidence of
a number of LODs in five or ten-year age bands. From these statistics, we can discover
functional approximations that we can use in an aging population simulation and
perform all necessary analysis as the simulation progresses.

We performed a set of computer simulations clarifying the change in the risk allele
representation for these LODs as the population ages and determined how and why
these changes affect clinical predictive power and GWAS statistical discovery power
with age, more for some LODs than for others. Consequently, we recommend a
modification to GWAS cohort selection to improve statistical discovery power.

Results

First, we summarize the results of the validation simulations described in Materials and
Methods. The validation simulations were performed, not as a model of a specific
disease, but to determine the behavior of all allele models and the resulting allele
frequency change under simple controlled and comparable-to-each-other incidence
scenarios. Three validation simulation scenarios implemented constant, linear, and
exponential incidence rate change.
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These simulations confirmed that a change in the population’s mean polygenic score
and a change in the cases’ mean polygenic score, viewed as instantaneous values for
each age, are dependent on the cumulative incidence and the magnitude of initial
genetic model heritability. If mortality is not included, they are not dependent on the
shape of incidence progression with age S1 Fig and are qualitatively similar between the
genetic architectures S2 Fig.

This means that, when the same level of cumulative incidence is reached with any
incidence pattern, the allele distribution for diagnosed cases and for the remaining
unaffected population is identical.

50 60 70 80 90 100

−2

0

2

4

age, years

𝛽

Cases
Cases SD band

Population SD band
Population

Fig 1. Polygenic score
difference between newly
diagnosed individuals and the
remaining population:
coronary artery disease IVA
example
Common low-effect-size alleles (scenario
A); β = log(OddsRatio). SD band is a
band of one standard deviation above and
below the cases and the unaffected pop-
ulation of the same age. For all highly
prevalent LODs, the mean polygenic risk
of new cases crosses below the risk of an
average person at early onset age. See S4
Fig, representing IVA, and S5 Fig, repre-
senting cohort study for all LODs.

Next, we present the simulation results for the
eight chosen representative LODs. It is important
to note that we used model genetic architectures
for these disease, not a complete GWAS
map of their SNPs, because GWAS-discovered
sets explain only a fraction of their heritability.
For this reason, we ran all the scenarios
and genetic architecture models, from low to high
effect size and common to low allele frequency,
and found the results to be consistent for all
these models. It is also known that these diseases
are associated with a small fraction of high-effect
variants. For example, a fraction of early cases
for late-onset Alzheimer’s disease is associated
with the APOEe4 allele [20,42–45]; this fraction
belongs to a rare high-effect-size allele model that,
as we validated, is characterized by similar allele
frequency change between cases and controls. This
high effect size fraction, however, is not difficult
for GWAS to discover, and indeed APOEe4
was found by much less advanced methods a
decade before GWAS commenced. For this reason,
we focus in this report on low effect size genetic
architecture models (A, B and C), which the
latest consensus considers to be the likeliest hiding
place for GWAS lost heritability; the results apply
to all model genetic architectures described here.

Please refer to Materials and Methods for
a description of individual values analysis (IVA)
and cohort simulation (cohort) for interpretation
of the following simulation results. We found that,
similarly to the validation simulations, the average

LOD polygenic score of the population changes with age.
Fig 1 shows the change in the average polygenic score for IVA cases and controls in

the case of coronary artery disease; see similar plots for all LODs in S4 Fig. The color
bands show a one standard deviation spread for cases and controls, which, in the case of
newly diagnosed cases, represents approximately two-thirds of the diagnoses at each age.
This figure demonstrates how the initially high average polygenic risk of newly
diagnosed cases declines as the most predisposed individuals are diagnosed each year.
The average polygenic score of the unaffected population decreases much more slowly.

At advanced old age, the average polygenic risk of the newly diagnosed is lower than
the risk for an average individual in the population at a young age; this is true for all
four highly prevalent LODs: AD, T2D, CAD, and stroke (S4 Fig).
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Fig 2. Allele frequency difference
between newly diagnosed
individuals and remaining
population of the same age
Common low-effect-size alleles (scenario A);
largest effect variant MAF = 0.5; OR = 1.15.
The MAF cases minus controls value is
used to determine GWAS statistical power; see
Eq (7). Rarer and lower-effect-size (OR) alle-
les are characterized by a lower MAF relative
change; see S6 Fig.

When we look at the allele level, we see
that this change is a consequence of the effect
alleles frequency change, in which the highest
effect alleles show the greatest difference
between the diagnosed and the remaining
unaffected population and also show
the fastest change in frequency difference with
age. This is because statistically, individuals
possessing the higher risk alleles are
more likely to succumb and to be diagnosed
earlier, thus removing the allele-representative
individuals from the unaffected population
pool. Fig 2 shows a summary for the
highest effect allele, MAF = 0.5, OR = 1.15,
for all LODs for the individual scenario (IVA).
Detailed information for multiple alleles with
effect sizes ranging from highest to lowest
for all LODs can be found in S6 Fig. These
figures show the most dramatic change for
AD and T2D—LODs that possess the highest
cumulative incidence and heritability. The

smallest change corresponds to the lowest incidence and heritability LOD: lung cancer.
The cohort simulation shows a much more averaged change for these same scenarios

because cohorts represent accumulative disease diagnoses from earlier ages, while
mortality removes older individuals; see Fig 3 and the more detailed information for all
LODs presented in S7 Fig.
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Fig 3. Allele frequency difference
between cases and controls, by
cohort age
Common low-effect-size alleles (scenario A);
largest effect variant: MAF=0.5; OR=1.15.
The MAF cases minus controls value is
used to determine GWAS statistical power; see
Eq (7). Rarer and lower-effect-size (OR) alle-
les are characterized by a lower MAF relative
change; see S7 Fig.

While the MAF difference between
cases and controls shown in the figures is
illustrative by itself, it is most important for
determining the GWAS statistical discovery
power using Eq (7), Eq (9), and from there
the number of cases necessary to achieve 0.8
(80%) statistical power. From these equations,
it is apparent that GWAS statistical discovery
power diminishes as a complex function
of a square of case/control allele frequency
difference. The change with age of the number
of cases needed for 0.8 GWAS discovery
power is exemplified by CAD in Fig 4.

In the hypothetical IVA case,
the number of individuals required to achieve
GWAS discovery power increases fast. This
is a quite informative instantaneous value of
statistical power; however, neither GWAS nor
clinical studies ever consist of individuals of
the same age, due to the need to have a large
number of individuals to maximize this same

statistical power. The cohort scenario is correspondingly less extreme, as can be seen in
Fig 4. The respective plots for all LODs can be found in S8 Fig and S9 Fig. These plots
show an increase in the number of participants needed to achieve GWAS statistical
power between the lowest effect and frequency to the highest effect and frequency
alleles; this number changes more than one-hundred fold.
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Fig 4. Number of cases needed to achieve 0.8 discovery power for IVA and
a GWAS cohort: coronary artery disease example
Common low-effect-size alleles (scenario A). These two plots show the comparative number of cases
needed to achieve 0.8 GWAS statistical discovery power. The curve representing the individual diagnosed
versus the unaffected population of the same age continues a steep rise in the IVA scenario. The cohort
curve due to the accumulative cases diagnosed at younger ages with an averaged control polygenic risk
score and mortality begins at the same number of necessary cases but rises more slowly and levels out at
older ages. A sample of 9 out of 25 SNPs; MAF (minor (risk) allele frequency); OR (risk odds ratio).
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Fig 5. Relative increase in
number of cases needed for 0.8
discovery power in cohort study
when using progressively older
same-age case and control cohorts
The youngest age cohort for each LOD is de-
fined as the mid-cohort age at which the cu-
mulative incidence for a cohort first reaches
0.5% of the population. We consider this the
minimum cumulative incidence age allowing
for the formation of well-powered cohort stud-
ies. Therefore, the leftmost point on each LOD
line is the reference (youngest) cohort, and as
cohorts age, the cohort case number multiple
required to achieve 0.8 statistical power is rela-
tive to this earliest cohort.
Common low-effect-size alleles (scenario A)
While all alleles display a different magnitude
of cases needed to achieve the required statis-
tical power, the multiplier change with age is
almost identical for all alleles within a genetic
architecture scenario.

This value is very similar among
all eight LODs, and the highest effect allele
for each LOD requires 5· 104–1· 105 cases
for 0.8 GWAS discovery power at younger
ages. The change in allele frequency with
age between cases and controls varies quite
widely among LODs, with the highest being
AD and the lowest lung cancer; see S9 Fig.
Fig 5 summarizes the multiplier—how many
times the number of participants needs to
increase as the cohort is aging—comparing to
the youngest possible cohort age for our eight
LODs. Additional figures detailing each LOD
can be found in Supporting Information; see
S4 Fig and S5 Fig. These cohort results are
simulated with identical mortality for cases
and controls. Mortality has an impact on the
cohort allele distribution. We considered it
necessary to validate more extreme mortality
scenarios—both lower and higher—than one
could expect in a real cohort study. We found
that the results were relatively close to those
presented for equal case/control mortality.
The extreme cases of (a) no mortality
for either cases and controls and (b) double
the mortality of cases compared to controls
produce very similar allele distributions
before the age of 85, while somewhat
diverging at older ages. The double mortality
of cases compared to controls is higher than

the clinically known mortality for the diseases we analyze. While it may have been a
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realistic scenario a century ago before modern health care, it certainly is lower these
days. In addition, as the most extreme validation case, we used a one-year cohort
without mortality. This scenario can also be considered an individual cumulative case.
It takes as cases everyone ill at each age and everyone healthy at that age as controls.
These validation cohort scenarios are summarized in S10 Fig.
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Fig 6. Relative decrease in
number of cases needed for 0.8
discovery power in cohort study
when using progressively older
control cohorts compared to
fixed-age young-cases cohort.
The youngest age cohort for each LOD is de-
fined as the mid-cohort age at which the cu-
mulative incidence for a cohort first reaches
0.25% of the population. We consider this the
minimum cumulative incidence age allowing for
the formation of well-powered cohort studies.
Therefore, the leftmost point on each LOD line
is the reference (youngest) cases cohort. Con-
trol mid-cohort ages are incremental ages, and
as a cohort ages, the cohort case number multi-
ple of fewer cases/controls required to achieve
0.8 statistical power is relative to this earliest
cohort.
Common low-effect-size alleles (scenario A).
While all alleles display different magnitudes
of cases needed to achieve the required statis-
tical power, the multiplier change with age is
almost identical for all alleles within a genetic
architecture scenario; see S16 Fig.

The mortality analysis was applied
to one LOD at a time. We did not attempt
to estimate increased mortality for multiple
disease diagnoses. Collerton et al. [46]
followed a cohort of individuals over the age
of 85 in Newcastle, England, and found that,
out of the 18 common old age diseases they
tracked, a man was on average diagnosed with
four and a woman with five, not to mention
a plethora of other less common diseases
and their causal share in individual mortality.
Other genetic architecture models produce
qualitatively similar patterns, specifically
differing in the number of cases needed
to achieve 0.8 statistical power for medium-
and large-effect genetic architecture models.
In Supporting Information, we present
the medium-effect-size alleles (scenario
D); see S11 Fig, S12 Fig, S13 Fig, and
S14 Fig. There, at younger ages, the MAF
difference between cases and controls is larger
for medium-effect-size alleles. The number
of cases and controls needed to achieve 80%
GWAS statistical power for all eight LODs
is approximately five times lower, a direct
consequence of variants’ larger effect sizes.
This result perhaps excludes the scenario
of exclusively medium-effect-size- alleles being
causally associated with the LODs we review
here, because GWAS studies would have
an easier time discovering a large number
of SNPs. From a qualitative perspective, all
reviewed genetic architecture models provide

similar results.
The scenarios simulating the number of cases needed when the case cohort uses the

youngest possible participants with increasingly older control cohorts are presented in
Fig 6, S15 Fig, and S16 Fig.

In the next section, we will discuss and summarize these findings.

Discussion

For each of the LODs other than cancers, the earliest diagnosed individual’s polygenic
risk score is very high, and the higher the heritability, the larger the fraction of higher
risk individuals. This is in line with Pawitan et al.’s [47] genetic architecture model,
which expects higher variance in the polygenic score to achieve higher heritability.

Table 1 shows the mean polygenic odds ratios of diagnosed individuals with age.
While the ages of initial onset and incidence progression, comparing odds ratio for early
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onsets, and the ages of 80 and 100 correspond to Table 1 in S1 Appendix, showing that
predictive power for the four LODs other than cancers is best at younger ages,
specifically < 65 years of age for AD, < 55 for CAD, < 60 for stroke, and < 50 for T2D.
The polygenic score of the earliest cases under the genetic architecture models we used,
particularly for AD, rivals that of the Mendelian genetic diseases.

Table 1. Simulated polygenic score odds ratio of cases compared to initial
population mean

Highly prevalent LODs Cancers
Disease AD T2D Stroke CAD Breast Prostate Colorectal Lung
OR early 1500 320 10 41 4.3 43 (10) 8.7 1.4
OR, 80y 98 1.3 2.8 4.5 2.7 9 (4.1) 5.1 1.4
OR, 100y 0.07 0.3 0.82 0.85 2.2 3.8 (2.5) 3.3 1.3

Note: Prostate cancer heritability is 57% [48]. Shown in braces 42% heritability [49], in line with other
cancers we analyze. The effective hazard ratio after the Eq (15) moderates. The early age is chosen as
the earliest age achieving mid-cohort incidence of 0.25% for the corresponding LODs, as described in
Methods and Materials.

Turning our attention to cancers, we find that even initial onset odds ratios are
relatively low, and these ratios change much less with age than for the above LODs.
Prostate cancer is the only cancer that is somewhat controversial. Its heritability is
reported at 57% by [48], and prostate cancer reaches the highest maximum instance rate
of the four most prevalent cancers reviewed. Therefore, the relative MAF between cases
and controls is likely to be higher than other cancers, according to our model. Yet, the
same article [48] finds that the heritability of prostate cancer remains stable with age.
Possible explanations may be that either this twin study result is somehow biased and
the heritability of prostate cancer is lower than stated in [48], or perhaps this is a
phenomenon specific to the populations or environmental effects of Nordic countries.

Perhaps the earlier familial study [49], which reported a heritability estimate of 42%,
would be closer to the UK population incidence data we used in our simulations. We
ran a verification simulation with 42% heritability, and the values matched the patterns
exhibited by other cancers.

At a very old age, the individuals whose genotype would be considered a low risk at
an earlier age are the ones diagnosed with the disease; see S4 Fig. This confirms the
clinical observation that the major risk factor for LODs is age itself.

Our simulations also support the conclusion that, even at the most advanced age,
there will remain a fraction of population whose genotype makes it very unlikely that
they will be diagnosed with a particular LOD within their lifespan. This also matches
clinical observations. Recent news reports revealed that the oldest known person alive,
and the last person known to have been born in the 19th century, Nabi Tajima, died in
Japan last year at the age of 117. At advanced age, mortality rapidly decreases an
individual’s chances of being diagnosed with an additional LOD, and extremely few live
as long as Tajima.

We mentioned earlier a longstanding observation that the heritability of LODs
decreases with age. This observation, based on prominent examples such as decreasing
T2D, CAD, AD, or stroke heritability with age, could lead to a conclusion that this is a
general rule. For a more thorough review of the chosen LODs, see S1 Appendix,
where [1, 18,20,41–45,48,50–111], and [112] have shown that if we were to make a
general statement that the heritability of LODs always decreases with age, we would not
be quite correct. In S1 Appendix, we describe some notable exceptions.

The LODs with heritability that diminishes with age—Alzheimer’s disease, coronary
artery disease, and type 2 diabetes—exhibit a noticeable and well-known decline in
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heritability in familial studies and when applied to prediction of a person’s liability to a
disease based on parental history. The volume of literature is somewhat smaller for
cerebral stroke, but the conclusions are similar to CAD. The GWAS research shows
better results if younger participants are used in cohort studies; see S1 Appendix.

For three of the four most prevalent cancers, the reported twin heritability has
shown relatively constant heritability with age progression. Determining lung cancer
heritability has proven somewhat more elusive for researchers, and no definitive
conclusions have been published, to a large extent due to the low documented
heritability and substantial environmental component of this disease. We think that our
simulations and the general pattern they exposed explain the reason for these
difficulties.

It is also not inconceivable that the age effect may not be exactly linear and the
relative LOD odds ratios may to a small extent increase with age. Thus, prostate
cancer—and all cancers, for that matter—would show more constant heritability with
age than is justified by case/control MAF and odds ratio changes. If this is so, it
appears that the non-linear effect is relatively minor because it does not cause more
constant heritability for the four highly prevalent LODs other than cancers.

Table 2 combines the heritability and incidence of the LODs with the summarized
simulation results from the cohort simulation (also S5 Fig).

Table 2. Summary of LODs’ heritability and incidence and corresponding
case/control ∆MAF and required cohort size change with age

Highly prevalent LODs Cancers
Disease AD T2D Stroke CAD Breast Prostate Colorectal Lung
Lifetime risk
%

10–20 55 25–30 32–49 12 12 < 4.5 <6.9

Heritability
%

79 69 38–44 50–60 31 57(42) 40 8–18

Maximum in-
cidence %

> 20 2.5 4.4 3.6 <0.5 <0.8 <0.6 <0.6

∆MAF between cases and controls
early 0.020 0.026 0.034 0.032 0.034 0.031 0.034 0.035
age 80y 0.015 0.018 0.028 0.023 0.032 0.024 0.031 0.035
age 100y 0.014 0.019 0.028 0.023 0.032 0.023 0.029 0.036

Cases needed for 0.8 stat power
early 1.4· 105 8.7· 104 5.3· 104 6.0· 104 5.0· 104 6.1· 104 4.9· 104 4.9· 104

age 80y 2.6· 105 1.8· 105 7.9· 104 1.1· 105 5.8· 104 1.0· 105 6.1· 104 4.7· 104

age 100y 3.0· 105 1.7· 105 7.3· 104 1.1· 105 5.9· 104 1.1· 105 6.9· 104 4.5· 104

Cases mult.,
early to 80y

1.9 2.1 1.5 1.8 1.15 1.6(1.35) 1.25 1.0

The values for MAF and cases needed for 0.8 (80%) GWAS statistical discovery power are for the
common alleles, low effect size scenario A. Cohorts span 10 years. For simplicity, we show the allele
with MAF = 0.5, OR = 1.15, the allele that requires the smallest number of cases/controls in this
genotype scenario. “Maximum incidence %” is the largest incidence at older age. “Cases mult.” is the
multiple of the number of cases needed for the 80-year-old cohort to achieve the same statistical power
as the early cohort. In braces, value for 42% prostate cancer heritability.

This table shows a snapshot for a simulated GWAS study with an age span of 10
years near the earliest disease onset and centered on 80 years of age. The table
summarizes the results for the largest-effect allele.

GWAS statistical discovery power is impaired by the change in individual
distribution of the polygenic score. A larger number of cases/controls is needed at older
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ages to achieve the same statistical discovery power. The first four LODs, which exhibit
larger heritability and cumulative incidence compared to cancers, require an increased
number of participants in a case/control study for older ages.

It is notable that, except for AD, which requires 1.5 times more cases at age 100, for
the other three LODs, the number of cases needed does not change significantly after
the age of 80. The cancers show a small increase in the number of participants required
to achieve the same statistical power, with only one outlier: prostate cancer.

The cohort studies benefit from the fact that the diagnosed individuals are
accumulated from the youngest onset to the age of a case in the cohort study.
Comparatively, individual values analysis, in which the individuals diagnosed each year
are compared to all not-yet-sick individuals, shows much faster change in the number of
cases hypothetically needed to achieve the same statistical power; see S4 Fig.

To find a mitigating scenario for the GWAS’ loss of discovery power with increasing
age of participants, we analyzed a scenario in which the age of the cases is fixed at the
lowest reasonably possible cohort age for the eight LODs and the control age is chosen
from increasingly older cohorts. Discovery power improves with increased control cohort
age; see summary Fig 6, S15 Fig, and S16 Fig. As expected, this improvement leads to
a lower number of participants being needed for GWAS when applied to the highest
cumulative incidence and heritability LODs—so much so that about 50% fewer
participants are required to achieve the same GWAS statistical power with control
cohorts aged between 90 and 100 years matched to the youngest case cohorts. In this
scenario, notably (20–25%) fewer participants are also needed to achieve the same
statistical power in cancer GWAS, including lung cancer.

Conclusions

We undertook this research to establish whether any of the observational phenomena,
including decreasing heritability with age for some notable LODs, and the limited
success of LOD GWAS discovery can be explained by allele proportions changing
between cases and controls due to the higher odds of more susceptible individuals being
diagnosed at an earlier age.

We found that these phenomena can indeed be explained and predicted primarily by
the heritability of the LODs and their cumulative incidence progression. By simulating
population age progression under the assumption of relative disease liability remaining
proportionate to individual polygenic risk, we found that individuals with higher risk
will become ill and diagnosed proportionately earlier, leading to a change in the
distribution of risk alleles between new cases and the as-yet-unaffected population in
every subsequent year of age. With advancing age, the mean polygenic risk of the aging
population declines. The fraction of the highest risk individuals diminishes even faster,
as they become ill proportionate to their polygenic risk score or their odds ratio of
becoming ill.

While the number of the most susceptible individuals and the mean population
susceptibility decreases, the incidence of all LODs initially grows exponentially, doubling
in incidence every 5 to 8.5 years, and remains high at older ages, leading to a high
cumulative incidence for some LODs. We explain the increasing incidence rate while
polygenic risk decreases for the as-yet-unaffected population as a consequence of the
aging process itself being the major LOD risk factor.

Four of the most prevalent LODs—Alzheimer’s disease, coronary artery disease,
cerebral stroke, and type 2 diabetes—exhibit both a high cumulative incidence at older
age and high heritability. On a yearly basis, the difference in the highest-effect allele
frequency between newly diagnosed individuals and the remaining population changes
quite rapidly for these diseases. In a typical cohort design, cohort GWAS statistical
discovery power is less affected than it is in individual values analysis. This is due to
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the fact that GWAS cohorts are composed of individuals whose disease accumulated
from an earlier age up to the time at which they were included as cases in the study
cohort. On the older age spectrum, the mortality of the population ultimately limits the
increase in the number of oldest patients in LOD study cohorts.

Our simulation results show that a GWAS study of any polygenic LOD that displays
both high cumulative incidence at older age and high initial familial heritability will
benefit from using the youngest possible participants as cases rather than age matching
or statistically adjusting or compensating for age. In addition, we conclude that GWAS
cohort studies would benefit from using as controls participants who are as old as
possible. This would allow for an additional increase in statistical discovery power due
to the higher difference in risk allele frequency between cases and controls. While
finding a high number of young cases may be problematic, for most LODs, there is an
ample number of still-unaffected individuals at older ages.

In addition, we find that the expectations placed on the predictive power of GWAS
polygenic scores for diseases with high heritability and high cumulative incidence should
be relaxed. In part, this exaggerated expectation is caused by an obvious perception
bias held by readers of the published familial and twin heritability studies.

Usually, maximal heritability numbers are more likely to attract readers’ notice, and
often only these high numbers are published or discussed. Twin studies, in the rare
cases when they report heritability change with age, show much smaller heritability at
older ages, as we demonstrated in S1 Appendix.

Typically, GWAS reviews use these maximum numbers to set their expectations.
These high heritability values are plainly incorrect for older ages for four of our LODs.
Lower heritability at an older age means that people who have no genetic or familial
susceptibility are increasingly becoming sick with an LOD.

Not all LODs are affected in this way; LODs with low cumulative incidence and low
familial heritability produce a much smaller change in the allele distribution between
affected individuals and the remaining population. Most prevalent cancers have a
reported stable heritability with age, and therefore these GWASs are practically
unaffected by the age of the participant cohorts.

As a final conclusion, for LODs like AD, T2D, stroke, and CAD, adjusting the
cohort selection could lead to achieving the same GWAS discovery power with half as
many participants, rather than, in the worst case scenario, requiring perhaps double the
number of participants with progressively older cohorts with the traditional age
matched cohort design.

Materials and methods

The model definition

Let us shortly review a formal model, which will lead to the population simulation
approach we implemented. One could attempt to determine an individual probability of
succumbing to an LOD based on a polygenic risk score. The environmental effect,
which includes both aging and cumulative external environmental effects, acts as a
multiplier over the genetic component. Therefore, the yearly LOD incidence of
population u can be described by Eq 1:

I(t) =
E(t)

N(t)

N(t)∑
u=1

Gu, (1)

where the yearly incidence I(t) is the fraction of individuals diagnosed with a disease
out of the individuals as yet unaffected at the start of the year and E(t) is the
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environmental effect, a multiplier reflecting increased liability due to the ongoing aging
processes.

For the purposes of this model, we consider the age/environment effect as changing
with age identically for all individuals of the same age. Gu is the genotype liability
distribution for as-yet-undiagnosed individuals u ∈ 1, N . We use the letter u to
symbolize the undiagnosed count. N(t) denotes the remaining unaffected population at
age t, after accounting for previously diagnosed individuals and the accumulated
mortality.

We divide by N(t)—the number of individuals at the beginning of each year—to
obtain the incidence, rather than the number of individuals newly diagnosed with an
LOD within a year. Each individual’s genetic risk is considered fixed from birth. The
genotype mix of the individuals changes with time, not only with the remaining number
of individuals.

In this equation, Gu can be simply understood as a function of probability for each
individual based on that individual’s genotype liability. Then, for each year, the
multiple E(t)·Gu can be understood as each individual’s probability of becoming ill.
With advancing age, the multiplier E(t) increases, as does the probability of becoming
ill. Then, we could try to infer the function E(t).

However, GWASs and clinical studies use odds ratios rather than probabilities.
GWAS also uses a polygenic score for individuals, genotypes, and SNPs. We would have
to determine a representation of probability from a polygenic score. After inferring E(t),
we would run this function against the same population to identify individuals becoming
ill every year, analyze their allele distribution, and draw conclusions based on what we
find. The model function is reasonable, but this inference approach would not be very
straightforward and, if successful, would be open to differences in interpretation and
therefore questions of applicability of the results to the polygenic score while GWAS
and clinical studies operate with odds-ratio-based polygenic scores.

Taking an aging population simulation approach allows us to find individuals
becoming ill and, with them, the corresponding allele distribution between cases and
controls, without intermediate steps and operating directly with the odds-ratio-based
polygenic scores common to GWASs and clinical studies.

Knowing the yearly incidence of an LOD and the polygenic risk scores (ORs) for
each individual based on modeled LOD genetic architecture, we use Algorithm 1 as the
core of our simulations.

for age = 1 to MaxAge do
numberIllThisY ear = I(age)·N // N is unaffected population

for i = 1 to numberIllThisY ear do
HRsum = 0 // will recalculate sum of all HRs

for u = 1 to N do
HRsum = HRsum+ORtoHR(Gu) // calculate the HR total

LOOKUP (add,HRsum, u) // add uth individual to the lookup table

end
rand = RandomNumber(0, HRsum) // pick a random number

ill = LOOKUP (find, rand,N) // found newly diagnosed

N = N − 1 // decrement number of healthy individuals

ProcessAndAnalyze(ill)
end

end
Note: an individual makes a sampling target proportionate to hazard ratio (HR) in the
LOOKUP () table. ORs are converted to HRs similar to [113]. An individual with HR = 15 will
be 150 times more likely to be sampled than an individual with HR = 0.1. ProcessAndAnalyze()
moves newly diagnosed individual from healthy to ill population pool, accounts for allele
distribution, case/control ORs, etc.

Algorithm 1: Sampling individuals diagnosed with a disease proportion-
ately to their polygenic odds ratio and incidence rate.

Descriptively, this algorithm works as follows. We set up a simulation in which each
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next individual to be diagnosed with an LOD is chosen proportionately to the relative
risk of the polygenic odds ratio assigned at birth, relative to all other individuals in the
as-yet-unaffected population. The number of individuals diagnosed yearly is determined
using the model incidence curve that we derive from clinical statistics. In this manner,
we probabilistically reproduce the aging process using a population simulation model
rather than a computational model. As simulation progresses, we track the risk alleles
for all newly diagnosed individuals and the remaining unaffected population and
statistically analyze their representation in the affected and remaining population.

In the next subsection, we will describe the model allele architecture and the
incidence models we use as the parameters of this algorithm.

As this paper makes extensive reference to the incidence of LODs, we should clarify
some of the commonly used terms. A lifetime incidence, also called a cumulative rate, is
calculated using the accepted method of summing the yearly incidences [114]:

Ilifetime =

tmax∑
t=0

I(t), (2)

For larger incidence values, the resulting sum produces an exaggerated result. It may
become larger than 1 (100%), in which case the use of an approximate clinical statistic
called cumulative risk overcomes this issue and is more meaningful. This is much like
compound interest, which implicitly assumes an exact exponential incidence
progression [114]:

CumRisk = 1− e−Ilifetime . (3)

Cumulative risk Eq (3) is also an approximation because, in any practical setting,
the statistic is complicated by ongoing population mortality, multiple diagnoses, and
other factors. In addition, cumulative incidence and cumulative risk can be used to find
values for any age of interest, not only lifetime. When needed in our simulations, we use
the exact diagnosis counts to calculate the precise cumulative incidence for every age.

Allele distribution models and statistical analysis

An in-depth review [47] extensively analyzed models of genetic architecture and through
their simulations determined the number of alleles required to achieve specific
heritability and estimate GWASs’ discovery power. The authors calculated allele
distributions and heritabilities and ran simulations for six combinations of effect sizes
and minor allele frequencies (MAFs). By relying on the conclusions of [47], we were able
to avoid repeating the preliminary step of evaluating the allele distributions needed to
achieve the heritability level for the LODs assessed in this research.

These allele frequencies represent the whole spectrum ranging from common
low-frequency low-effect-size alleles to very rare high-effect high-frequency alleles. In our
simulations, we verify the five most relevant architectures; see Table 3.

Table 3. Genetic architecture scenarios

Scenario MAF Odds ratio
A. Common low 0.073 - 0.499 1.05 - 1.15
B. Modest low 0.0365 - 0.2495 1.05 - 1.15
C. Rare low 0.0146 - 0.0998 1.05 - 1.15
D. Rare medium 0.0146 - 0.0998 1.28 - 2.01
E. Rare high 0.0073 - 0.0499 1.63 - 4.05

Allele distributions as modeled by [47].
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We also found it handy for repeatable allele tracking, rather than generating the
continuous random spectrum of allele frequencies and effect sizes, to follow the [47]
configuration and discretize the MAFs into five equally spaced values within the defined
range, with an equal proportion of each MAF and an equal proportion of odds ratios.
For example, for model A, the MAFs are distributed in equal proportion at 0.073, 0.180,
0.286, 0.393, and 0.500, while the OR values are 1.15, 1.125, 1.100, 1.075, and 1.05.
Having multiple well-defined alleles with the same parameters facilitated the tracking of
their behaviors with age, LOD, and simulation incidence progression.

We calculated an individual polygenic risk score as a sum of all alleles’ effect sizes,
which is by definition a log(OR) (odds ratio) for each allele, also following Eq (4) Eq (5)
from [47]:

log(OR) =
∑
k

aklog(ORk), (4)

where ak is the number of risk alleles (0, 1 or 2) and ORk is the odds ratio of additional
liability presented by the k-th allele. In our publication figures, for brevity, we also use
the notation β (β = log(OR)).

Variance of the allele distribution is determined by:

var = 2
∑

pk(1− pk)(log(ORk))2, (5)

where pk is the frequency of the k-th genotype [47].
The contribution of genetic variance to the risk of the disease is heritability:

h2 =
var(g)

var(g) + π2/3
, (6)

where π2/3 is the variance of the standard logistic distribution [115].
For each allele in our simulated population, we track the allele frequency, which

changes with age for cases and controls. The difference between these MAFs gives the
non-centrality parameter λ for two genetic groups [8, 116]:

λ = N ∗ p1 ∗ p2 ∗ (β1 − β2)2, (7)

where N is the overall population sample size and p1andp2 the fractions of cases and
controls. We use p1 = p2 = 0.5, or an equal number of cases and controls, throughout
this publication. β1 and β2 are the case and control mean log(OR) for an allele of
interest.

Having obtained NCP λ from Eq (7), [116] recommends using SAS or similar
statistical software to calculate the statistical power, using the following SAS statement:

StatPower = 1− PROBF (FINV (0.99999995, 1, N − 4), 1, N − 4, λ) . (8)

We converted this equation to its R equivalent, which we use to process the
simulation output, as follows:

StatPower = 1− pf(qf(PSign, 1, N − 4), 1, N − 4, λ) , (9)

where PSign = 0.99999995 corresponds to 5· 10−8 significance level. We validated the
outputs of our conversion with the Online Sample Size Estimator (OSSE) [117]. This
equation returns statistical power based on a case/control number and the NCP as
calculated above.

For the purposes of our simulation, we used an equal number of cases and controls.
To find the number of cases needed for 80% GWAS discovery power, having the
(β1 − β2), we iterated the value of N using a rapid convergence R routine until the value
of StatPower was equal to 0.8 with an accuracy better than ±0.01% for each age and
allele distribution of interest.
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Incidence functional approximation used in preliminary validations

To determine the effect of disease incidence with age progression on allele frequencies in
the population and the difference in allele frequencies between the newly affected and
remaining unaffected populations, we used three incidence dependencies with age.

1) Constant incidence:
I(t) = a, (10)

where a is a constant representing a horizontal line, and we chose yearly incidence
values of 0.0015, 0.005, and 0.02 (0.15% to 2%).

2) Linear incidence:
I(t) = b t, (11)

where b is a slope of the linear progression with intercept 0, and we chose slope values of
0.003, 0.01, and 0.04. This means that incidence starts at 0 and increases to an
incidence equal to 0.3%, 1%, and 4%, respectively, at 100 years of age to match the
cumulative incidence of 1) above.

These values were chosen to simplify the evaluation via simulation. We ran the
simulation with mortality 0, and the values were chosen so the cumulative incidence is
the same%)—0.44 (44%)—at 100 years of age for the highest of either the constant or
linear incidence progression.

3) In addition, we used an evaluation exponential incidence progression:

I(t) = 3.05· 10−5e0.1178t, (12)

fitted to achieve a similar cumulative incidence at the most advanced age.
In all five scenarios from Table 3, the values of the case and control means and

standard deviation/variance are identical when the cumulative incidence reaches the
same level.

We validated two heritability scenarios, 30.5% and 80.5%, corresponding to the
genetic architecture scenarios set out in Table 3; see Table 4.

Table 4. Linear and constant incidence validation scenarios

A B C D E
Scenario 1. Variants: 400 625 1375 50 25

Achieved heritability: 0.3068 0.308 0.3075 0.296 0.3142
Scenario 2. Variants: 3725 5850 12775 500 225

Achieved heritability: 0.8047 0.8064 0.8049 0.8078 0.8048

The allele architecture scenarios are defined in Table 3. The target heritability is 0.305
(30.5%) for validation scenario 1 and 0.805 (80.5%) for validation scenario 2 due to the
genetic architecture model requiring multiples of 25 variants.

Validating allele distribution change in model genetic architectures using
systematic incidence progressions

We ran a set of validation simulations to verify the behavior of the model genetic
distributions for the three types of incidence progression described above. The
validation simulations based on the constant, linear and exponential incidence rates
confirmed that both of the mean polygenic scores, for the population and for the cases,
viewed in the individual values analysis for each age depend on the cumulative incidence
and the magnitude of heritability, with neither being dependent on the shape of
incidence progression with age.
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We found from the validation simulations that the cumulative incidence, regardless
of the incidence progression pattern, produces virtually identical polygenic score
distribution for cases and the remaining unaffected population; see the genetic common
allele low effect size plotted in S1 Fig.

Between the genetic architectures, there is also a relatively small difference in the
polygenic scores of the population and the cases; see S2 Fig. As can be seen, the
low-effect-size scenarios A, B, and C, progressing in allele frequency from common to
rare, are practically indistinguishable from each other.

The higher-effect-size architectures (D and E) show a slightly larger fraction of
higher-polygenic-score individuals or, more precisely, a slightly larger representation of
higher- and low-polygenic-score individuals. The qualitative picture is close to identical
among all five scenarios.

LOD incidence functional approximation

Next, we apply the simulations to eight of the most prevalent LODs: Alzheimer’s
disease, type 2 diabetes, coronary artery disease, and cerebral stroke, and four late-onset
cancers: breast, prostate, colorectal, and lung cancer.

First, we describe the functional approximation of the clinical incidence data we
used for our simulations. The LODs incidence progression with age is presented in Fig 7.
The initial incidence rate (fraction of population newly diagnosed per year) increases
exponentially with age. This exponential growth continues for decades. Then the
growth in older cohorts may flatten, as in the case of T2D [57]. In the case of cerebral
stroke and CAD, the clinical studies indicate a slowdown of the incidence for individuals
over the age of 85; accordingly, we used a constant level for the exponential
approximation 13 [118].

Alzheimer’s disease, on the other hand, continues exponentially past the age of 95,
reaching incidences above 20% [58]. Cancer progression reaches only a small fraction of
the incidence levels of the above mentioned LODs, even for the four most prevalent
cancers. Generalizing to other cancers, the incidence is much lower for more than a
hundred of the less prevalent cancer types.

To evaluate each LOD’s allele redistribution with age, it was necessary to
approximate the yearly incidence from much rougher-grained statistics. We wrote an R
script (see S1 File) to automate the determination of the best fit for logistic and
exponential regression from the clinical incidence data. The script also calculated
lifetime incidence from our functional approximations; it closely matched the disease
clinical statistics presented in the Supplementary Information tables.

The incidence approximation I(t) is represented mathematically by Eq (13). a, b,
and c are exponential approximation parameters, i and s are the linear regression
intercept and slope, respectively, and t is time in years.

I(t) =

{
aebt + c, until intersection with the line, below

i+ st, thereafter
(13)

A logistic approximation of the clinical data is shown as a red line on Fig 7. It is
characterized by the following equation:

I(t) =
a

1 + e(c−t)/b
+ d, (14)

The incidence rate in the logistic curve slows faster than the incidence rate in the
exponential curve and also approximates the incidence rate with age. It follows a similar
pattern, with an initial exponential rise and a logistic inflection point happening at
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Fig 7. LOD clinical incidence rates and functional approximations
Two functional approximations of clinical data: exponential followed by linear and logistic. The R script
automating NLM (nonlinear model) regression for both approximation curves is available in Supporting
Information.

quite advanced ages. Thus, the clinical data and corresponding approximations show
the higher representation of older people in the patient cohorts.

For all LODs, we observed decades-long initial exponential sections in the incidence
curve. The exponent conforms to a relatively narrow range of doubling the incidence
rate, fitting between 5 and 8.5 years. While the absolute incidence rate differs
significantly, the exponent constant multiplier a, which is equivalent to the linear
regression intercept for log(a) in the I(t) function, mainly controls the rise, or the initial
incidence onset, of the incidence rate Fig 7.

The logistic approximation produced a good, simple fit for seven of the eight
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diseases. While we could also have used the logistic approximation for breast cancer,
the exponential-plus-linear approximation showed a better fit and was therefore used
instead.

Using the model from [47] outlined in Table 3, scenario A, with the common
low-effect variants above, the number of variants needed for the above LODs is
summarized in Table 5.

Table 5. Heritability of analyzed LODs and an example required numbers
of common low-effect variants scenario A

Highly prevalent LODs Cancers
AD T2D CAD Stroke Prostate Colorectal Breast Lung

Heritability 0.795 0.69 0.55 0.41 0.57 0.40 0.31 0.095
Variants 3575 2125 1175 625 1250 600 400 100

Note: due to the genetic model using evenly spaced variants and MAFs, as described
above, the counts of variants are necessarily in multiples of 25.

The polygenic scores of the simulated population are based on odds ratios built
using the logit model [47]. If an LOD is characterized by low incidence within an age
interval, and the odds ratio is close to 1, odds ratio values are practically identical to
hazard ratio or relative risk. For example, [119] treat OR and RR as equivalent in case
of breast cancer in their simulation study. For higher values an OR usually significantly
exceeds RR. We use an adjustment formula by [120] approximating OR to hazard ratio
subject to our modeled incidence for the LODs under consideration using equation:

HRu =
ORu

1 + I(t)· (ORu − 1)
, (15)

where HRu and ORu are the estimated hazard ratio for polygenic score OR of uth
unaffected individual.

The simulation design

The simulation design employs several steps that are common in population genetics
simulations. The gene variants pool is built as outlined above and summarized in
Table 3 for an appropriate scenario from Table 4 or Table 5. The population individuals
were allocated and, based on the genetic architecture model chosen, the polygenic score
was generated for each individual.

To track the GWAS statistical discovery power, for the final simulation runs, the
same nine representative variants were tracked for all LODs simulated.

Each simulation run was iterated through all eight LODs and analyzed two scenarios:
a per-year-of-age population individual values analysis and a simulation of a GWAS
clinical study with a population consisting of individuals of mixed ages.

Individual values analysis and cohort simulation

It can be expected from this observation that the higher an LOD incidence and
heritability, the faster the fraction of the highest-polygenic-score individuals will
diminish with age and, progressively at an earlier age, lower-polygenic-score individuals
will represent the bulk of the LOD cases.

While the general principle is now determined from the validation simulations, the
LODs are characterized by a wide range of heritability and progression pattern of
incidence rates with age. For example, T2D and breast cancer start their incidence rise
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relatively early but reach quite different levels at older age, while colon cancer and AD
start later and also reach quite different incidence and cumulative incidence levels; see
Fig 7.

In the absence of mortality, both due to general frailty and other LODs, the
incidence progression leads us to believe that, sooner or later, depending on the
incidence magnitude, the majority of the population would be diagnosed with every
LOD. In reality, this does not happen because of the ongoing mortality from all causes.

We performed two main LOD simulation types:
1. The individual values analysis of polygenic scores and risk allele

frequency for individuals diagnosed with disease at each specific age and
the remaining population at this age. For brevity, we also interchangeably use
“IVA” in this publication. The individual values analysis uses one-year age slices, as
follows.

First, the mean and variance of the polygenic score for the whole population were
calculated. Then, for each year, the step of determining (sampling out) the individuals
who had become ill that year followed. Based on the required incidence value for each
year, several individuals were picked from the unaffected population through randomly
sampling the population with a probability proportionate to the individual’s polygenic
score odds ratio, as summarized in Algorithm 1.

When completed, these individuals became the cases for the relevant year’s
individual values analysis, and the mean and variance of their polygenic score were also
calculated and recorded. Note that mortality does not need to be applied to this
simulation scenario because it affects the future cases and controls in equal numbers,
and accounting for mortality would only result in a smaller population being available
for analysis.

In addition, the specified variants of interest were also counted for cases and controls
and later used to estimate GWAS statistical power.

The process continues this way until the maximum desired simulation age is reached.
2. A simulated cohort study for each of these diseases. For the sake of

brevity, we also use “cohort” throughout this publication.
The clinical study cohort simulation performs an analysis identical to that described

above. The difference is that we simulate GWAS clinical studies with a patient age span
of 10 years, which is a typical cohort age span, although any age span can be chosen as
a simulation parameter. We use the mid-cohort age in our statistics, which is the
arithmetic half-age of the cohort age span. In the first simulation year, a population to
equal one-tenth of the complete population goes through the steps described for IVA.
Each year, an additional one-tenth starts at age 0, while the previously added
individuals age by one year. This continues until all 10 ages are represented. This
combined cohort proceeds to age and be subject to the disease incidence rate and
mortality according to each individual age.

Mortality was applied, with a probability appropriate to each year of age, to both
accumulated cases and controls. As the population ages, both the case and control pool
numbers would diminish. For validation, we ran additional simulations with (a) double
mortality for cases compared with the unaffected population, (b) no mortality for either
cases or controls, and (c) a one-year age span cohort with no mortality for either cases
or controls. Take, for example, a cohort study that includes a 10-year span, say,
between 50 and 59 years old. The cases for the cohort are composed from individuals
who were diagnosed with an LOD at any age either younger than or including their
current age, producing a cumulative disease incidence over all preceding years of age.
For example, some of the individuals that are cases now, at age 59, may have been
healthy at age 58. Some of the controls in our cohort at age 51 may or may not be
diagnosed at an older age, which would qualify them as cases for this cohort, but they
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are currently younger and healthy. Therefore, we do not know the extent to which
younger controls differ from cases, except for the fact that they are not currently
diagnosed—not unlike a real study cohort.

We can expect a quite smoothed pattern of polygenic score change if we watch this
cohort aging. As a result, the corresponding GWAS discovery power can be expected
not to change as dramatically as it does for the individual values analysis.

The youngest age cohort for each LOD is defined as the mid-cohort age at which the
cumulative incidence for a cohort first reaches 0.25% of the population. We consider
this the minimum cumulative incidence age allowing for the formation of well-powered
cohort studies.

Data sources, programming and equipment

We used population mortality numbers from the 2014 US Social Security “Actuarial Life
Table” [121], which provides yearly death probability and survivor numbers up to 119
years of age for both men and women.

Disease incidence data from the following sources were extensively used for analysis,
using the materials referenced in S1 Appendix for corroboration: Alzheimer’s
disease [58,122–124], type 2 diabetes [57], coronary artery disease and cerebral
stroke [118], and cancers [59,77].

To run simulations, we used an Intel i9-7900X CPU-based 10-core computer system
with 64GB of RAM and an Intel Xeon Gold 6154 CPU-based 36-core computer system
with 288GB of RAM. The simulation is written in C++ using MS Visual Studio 2015.
The simulations used a population pool of 2 billion individuals for the LOD simulations
and 300 million for validation simulations, resulting in minimal variability in the results
between runs.

The cohort simulations were built sampling at least 5 million cases and 5 million
controls from the living population; this is also equivalent to 0.25% of the initial
population. This means that the cohort study would begin its analysis only when this
cumulative incidence was reached. Conversely, the analysis would cease when, due to
mortality, the number of available cases or controls declined below this threshold. For
all LODs, this maximum mid-cohort age was at least 100 years and, depending on LOD,
up to a few years higher. This confirms that, as we describe in the Discussion section, in
younger cases and older controls cohort recommendations, it is feasible to form control
cohorts up to 100 years of age.

The simulation runs for either all validation scenarios or for a single scenario for all
eight LODs took between 12 and 24 hours to complete. The final simulation data,
additional plots and elucidation, source code, and the Windows executable are available
in Supporting Information. Intel Parallel Studio XE was used for multi-threading
support and Boost C++ library for faster statistical functions; the executable can be
built and function without these two libraries, with corresponding execution slowdown.
The ongoing simulation results were saved in comma separated files and further
processed with R scripts during subsequent analysis, also available in S1 File.
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Supporting information

S1 Appendix. LODs heritability patterns with age based on familial,
GWAS, and clinical studies A review of the clinical, GWAS, and familial studies of
polygenic LOD heritability within the typical age range of disease onset leads to
grouping LODs into two broad categories: decreasing heritability with age and
increasing or relatively constant heritability with age. We review these categories in
detail, focusing primarily on eight of the most prevalent LODs we analyze in our
simulations.

S1 Appendix
LOD heritability patterns with age based on familial,
GWAS and clinical studies

If we were to make a general statement that the heritability of LODs always decreases
with age, we would not be entirely correct. A review of the clinical, GWAS and familial
studies on polygenic LOD heritability within the typical age range of disease onset leads
to a grouping of LODs into two broad categories: those with decreasing heritability
with age and those with increasing or relatively constant heritability with age.

Next, we review these categories in detail, focusing primarily on eight of the most
prevalent LODs we analyze in our simulations. We use these categories to organize the
observational knowledge so we can apply this knowledge to the main article simulations
and in turn verify the simulation results.

LODs with decreasing heritability with age

There is a large number of highly environmentally affected LODs that exhibit
decreasing heritability with age . Three are some of the highest lifetime risk
diseases: coronary artery disease, cerebral stroke, and type 2 diabetes; see Table 6
summarized from [63,109,112], and [54].

Table 6. Population statistics of LODs characterized by decreasing
heritability with age

Statistic Alzheimer’s CAD Stroke T2D
Lifetime risk, USA (%) 10m, 20w 49m, 32w 25m, 30w 55
Mortality assigned, USA (%) 4.2 23.1 5.2 2.9
Heritability (%) 79 50–60 38–44 69
Best predictability, age < 65 < 55 < 60 < 50

Lifetime risk numbers, when marked, ”w” for women, ”m” for men.

As early as 1967, Falconer [41] noted that ”the increase of incidence associated with
a variable age of onset can be due to either an increase of the mean liability or an
increase of the variance of liability. Consideration of the changes of liability that
individuals may undergo as they grow older shows that an increase of variance with
increasing age is to be expected, and since the additional variance is likely to be mainly
environmental, a reduction of the heritability is to be expected.” Falconer further pointed
out that ”the heritability of liability to diabetes, estimated from the sib correlation,
decreases with increasing age. For people under 10, heritability is about 70 or 80%, and
it drops to about 30 or 40% in people aged 50 and over. The decrease of the heritability
is attributable to an increase of environmentally caused variation. The increased
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environmental variation is not enough to account in full for the increasing incidence, so
there is probably also an increase of the mean liability with increasing age.”

In the 1960s, the distinction between autoimmune Mendelian type 1 diabetes and
late-onset polygenic type 2 diabetes (T2D) was not known, but it was suspected that
there may be two distinct mechanisms. However, this conclusion of an increase in
liability with age, and accordingly blurred heritability, is observed for T2D and other
LODs.

The greatest heritability for T2D is observed in the 35–60 (0.69) year age of onset
group [51]), and heritability dropped to only 0.31 when the upper age range was
increased to 75 (making the age range 35–75). In the over-60 group, the ”environmental”
component is the primary cause of new T2D cases. The environmental component in
this case includes systemic and tissue-specific deterioration with age and the cumulative
external environmental effects with increased time duration. Just as Falconer did 60
years earlier, the authors note that T2D heritability decreases with age, and liability
may be more accurately predicted in younger individuals.

One review [104] cites two studies that corroborate the authors’ view. One concludes
that recalculating the genetic risk for T2D by splitting a cohort by age below and above
50 years using 40 T2D risk SNPs finds that the risk factor values are higher in the
younger group [61]. Meanwhile, [51] correlates the heritability and familiality of T2D
with quantitative traits and finds a very significant drop in heritability over the age of
60.

The conclusion is that, for reliable GWASs, younger is better: T2D patients under
the age of 60—or, even better, under the age of 50—should be chosen. Regarding the
variant types that are most likely associated with T2D, [68] finds that, with a high
degree of certainty, they can attribute T2D liability to common variants, not rare
high-effect variants.

Nielsen et al.’s cardiovascular disease (myocardial infarction) study [91] provides
implicit confirmation of decreasing heritability with age. The predictive power of
parental history is as follows: paternal RR = 3.30 for ages <50 and RR = 1.83 for ages
>50; maternal RR = 3.23 for ages <50 and RR = 2.31 for ages >50.

Schulz [97] finds that familial history is the best predictor of ischemic stroke for
individuals under the age of 60, with an overall OR of 1.73. Relative OR compared to
the under-60 cohort was 0.95 for the 60–70 age band and 0.77 for individuals over the
age of 75.

A review based on Framingham’s study [98] supplies very useful information about
parental history of stroke. Even though the grouping on the parental side is stroke
under 65, on the descendant side, there are statistics showing RR both below and above
65 years of age. For descendants whose parents had a stroke before age 65, the stroke
RR was determined. Overall, RR = 3.79 under 65 years and 2.21 over 65 years;
ischemic stroke HR = 5.45 under 65 years and 2.47 over 65 years. Additional implicit
information from this data, which supports the same conclusion, is listed in [125].

The heritability patterns for these diseases are summarized in Table 8. There is
qualitative and, increasingly, quantitative knowledge about the progressively declining
heritability of these diseases at ages above 50, as well as the decreasing associated
familial and GWAS predictive power; see [55, 63, 91, 97, 98], and [68]. These studies find
that familial history is the better predictor of next-generation disease only when the
parental generation participants are relatively young; see [51,61,104], and Table 6.

An environmental effect on the heritability of cardiovascular disease and T2D with
age is evident [41,92], including influences such as spousal environment [73].

In addition, T2D is a major co-morbidity factor for CAD and cerebral stroke, as well
as causally correlated adiposity and hypertension, which are by themselves associated
with CAD and cerebral stroke and other LODs. In the presence of T2D, these diseases
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develop years and even decades earlier than the typical onset ages [57]. For instance,
twin studies on the heritability of BMI (a co-morbidity often preceding T2D) show the
highest heritability of 85% at 18 years of age, after which heritability slowly declines
throughout the lifespan [66].

It must be noted that the majority of diseases are influenced to various degrees by
environmental factors. The three diseases we just reviewed show incomparably higher
environmental influence than Alzheimer’s disease (AD). For AD, not only lifestyle but
also painstakingly developed medications can barely influence the progression of the
disease. In contrast, CAD, cerebral stroke and T2D are often considered by the medical
community as primarily influenced by lifestyle and environment [57,64,80,82].

In conclusion, the highly prevalent LODs exhibiting high environmental correlation
with onset ages also show decreasing heritability with age. This is combined with an
exponential incidence increase with age. In the case of CAD and cerebral stroke, the
exponential incidence rate increase proceeds beyond 80 years of age.

Another type of LOD showing heritability that declines with age can be described as
a mode of failure with aging. Alzheimer’s disease begins relatively late, but from there,
its incidence rises exponentially to extremely old age [58]. The heritability of
Alzheimer’s disease is estimated at 80% from twin studies [20]; the heritability is
79% [126] at approximately 65 years of age and diminishes with increasing age, as
indicated both by familial and GWAS studies [20,42,43].

A clinical study documenting the association between the APOE genotype and
Alzheimer’s disease [44,45] reports the change in odds ratio with age of APOE e4/e4
and APOE e3/e4 carriers, which we summarize for the Caucasian population in Table 7.

Table 7. Alzheimer’s disease odds ratio by age and APOE alleles, relative
to e3/e3 allele carriers

APOE allele / Age (y) 55 60 65 70 75 80 85 90
e4/e4 OR 14.1 15.0 14.3 12.1 9.5 6.1 3.7 2.0
e4/e3 OR 3.5 3.7 3.8 3.6 3.3 2.7 2.3 1.7

Values summarized from [44].

Another review [20] concludes that the typical age at onset is 68.8 years for APOE
e4/e4 carriers, 75.5 years for e3/e4 carriers, and 84.3 years for carriers without e4.
Moreover, the APOE e4 effect is age dependent, giving a broad stroke assessment that
the e4 allele effect is most prominent between 60 and 79 years and gradually diminishes
after 80 years of age. This fits well with the assessment [44] summarized in Table 7.

In Table 8, we summarize the information in the literature about the decreasing
heritability of the LODs referenced above.

The model presented in [58] hypothesized that if the AD incidence curve could be
delayed by five years, the overall prevalence of AD would be half the projected rate,
assuming unchanged mortality from other causes. AD prevalence in this study is limited
by applying a 1.4 mortality multiplier to AD patients compared with the unaffected
population.

While AD progression is difficult to influence with lifestyle changes or medications,
AD incidence at comparable ages has decreased by about 30% since the 1980s in many
Western countries [56,111] due to undetermined causes. As life expectancy increases,
AD lifetime incidence and prevalence are expected to regain ground.

In conclusion, AD shows an exponentially increasing incidence rate up to the most
advanced ages, while also displaying heritability that declines with age.
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Table 8. Heritability and risk statistics for decreasing heritability with age
LODs

Disease Heritability/risk,
younger age

Heritability/risk, older
age

AD e3/e4 [44] OR=3.8, 65y OR=1.7, 90y
AD e4/e4 [44] OR=15.0, 60y OR=2.0, 90y
CAD paternal [91] RR=3.30, < 50y RR=1.83, > 50y
CAD maternal [91] RR=3.23, < 50y RR=2.31, > 50y
Stroke [97] OR=1.63, < 60y OR=0.77, > 70y
Stroke all [98] RR=3.79, < 65y RR=2.21, > 65y
Stroke ischemic [98] RR=5.45, < 65y RR=2.47, > 65y
T2D [51] h2 = 0.69, 35-60y h2 = 0.31, 35-75y

∆T = age difference; OR = odds ratio; RR = relative risk; h2 = heritability

LODs with stable heritability with age

We group LODs with relatively constant heritability with age and infrequent types of
LODs with increasing heritability with age in this category. As found in the reviewed
literature, the increase in heritability, when observed, is moderate. We find that the
diseases showing slightly increasing heritability with age are those affecting the skeletal
system, for instance, osteoarthritis, particularly of large joints such as the hip or lower
back. One study [101] shows that both the incidence and heritability of advanced
osteoarthritis of the hip and lower back increase with age.

It is evident that younger cases are more environmentally and less genetically
correlated. For example, osteoarthritis at a younger age is often due to trauma rather
than genetics [18,52]. At the age of 60, the genetic and environmental components are
both close to 50%, and by the age of 70, the heritability increases to 75% and stays
close to this level into the 90s. Heritability is even higher and increases with advanced
age for osteoarthritis of the spine at multiple locations [103].

We note that the increase in heritability for these diseases is relatively modest and
extends from an initially high level. Many osteoarthritis-affected structures and
corresponding diagnoses, with different ages of maximum incidence and heritability by
sex and age, do not follow this pattern [102].

The osteoporosis findings are similarly varied, with studies finding no heritability of
pathology for some bone structures and strong heritability for others [93]. Specifically,
the osteoporosis associated with bone breaks is very heritable and shows a slight
increase in heritability into older age [99]. This is explicable by the fact that, for
osteoporosis, the main risk component—the shape and size of the bone—is strongly
heritable. Genetics in this case determines the early developmental stages of an
organism, when the structures take shape. Similar reasoning applies to osteoarthritis,
which is related to defects in collagen and connective tissue formation. The malignancy
happens after many decades of life, when wear, deterioration and diminishing repair
capacity cross the threshold leading to pathology.

In conclusion, we find that some LODs based on early development of an organism’s
structures may display strong heritability late in life and even increasing diagnostic
heritability as aging progresses. GWAS has found only a small set of SNPs that provide
very limited risk prediction for these diseases [18,81]. Apparently, the research cannot
be impeded by the increasing heritability with age of the GWAS study cohorts.

Relatively stable heritability with advancing age is a distinguishing feature of cancers.
Accurate information about heritability at different ages is not sufficiently explored for
most cancers. Fortunately, during this decade, a number of studies has shed light on the
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age-related heritability of three out of the four most prevalent cancers, and these allow
us to extrapolate the expectations to the fourth: lung cancer.

The lifetime risk of developing any type of cancer in the US is 38% for women and
40% for men [79], and the 2016 fraction of mortality death directly attributed to cancer
was 21.8%, the second-highest after heart disease [1]. In the UK, the corresponding
numbers are higher, at 47% and 53%, respectively [50,59], with the higher likelihood
perhaps attributable to the UK’s longer life expectancy. Each specific type of cancer
constitutes a small fraction of overall lifetime risk, with breast, prostate, lung, and
colorectal cancer being the four most prevalent.

Next, we summarize the latest heritability and incidence research for these four
cancers.

Breast cancer (BC) Breast cancer (BC) is a well-researched cancer, with
studies delving into all aspects of BC. Like prostate cancer, the two largest genetic
predictors for BC are mutations in the BRCA1 and BRCA2 genes. The BRCA1/2 genes
are involved in the homologous repair of double-stranded DNA breaks, working in
combination with at least 13 known tumor suppressor proteins [71]. Defects in
BRCA1/2 proteins disable homologous double-stranded DNA break repair, and the cell
falls back on the use of imprecise non-homologous repair mechanisms; this leads to the
accumulation of mutations, eventually leading to cancer. BRCA1/2 mutations are the
most important predictor of breast cancer. The review by Haley [71] states that the
frequency of BRCA mutations varies with geographic location and ethnicity, ranging
from a 0.02% mutation carrier rate in some populations to 2.6% in the Ashkenazi
Jewish population due to ancient founder mutations. Other founder mutations have
been reported in the Dutch, Swedish, French Canadian, Icelandic, German, and Spanish
populations. In Ontario, Canada, for instance, the frequency of mutation carriers is
0.32% for BRCA1 and 0.69% for BRCA2 [95].

An early study [67] analyzing families with at least four cases of BC found that the
disease was linked to BRCA1 in 52% of cases and BRCA2 in 32% of cases (with only
16% remaining for other causes). Taking into account ovarian cancer in addition to BC
resulted in 81% of cases being due to BRCA1, while 76% of cases in families with both
male and female BC were due to BRCA2.

The lifetime risk of BC for women both in the US and the UK is 12% [59,79]. As
Haley [71] summarized, carriers of BRCA1 have a lifetime risk of developing BC equal
to 60–70%, and an additional 40% risk of developing ovarian, fallopian, or primary
peritoneal cancers. For BRCA2 carriers, the risks are 45–55% for BC and 25% for
ovarian cancer. These numbers closely correspond to the aforementioned study [67].

Moller et al. [88] present in-depth breast and ovarian cancer heritability by age data
for BRCA1/2 carriers. The study shows that the genetic liability, while exhibiting a
slight downward trend, remains relatively constant and exceeds the common
environmental component at all ages.

One of the most recent studies [77] provides further clarification, stating that BC
incidences increase rapidly in early adulthood until the ages of 30 to 40 for BRCA1
carriers and until the ages of 40 to 50 for BRCA2 carriers, and thereafter remain at a
relatively constant incidence rate of 2–3% per year until at least 80 years of age; see
Table 9. Our calculations based on this data show that the initial incidence ramp-up is
exponential before turning into the constant horizontal incidence rate approximation; a
logistic approximation also fits. The exponential doubling rate, until it reaches the
constant incidence level, is also consistent with all other diseases we reviewed, showing a
five-year doubling incidence time for BRCA1 and eight years for BRCA2 (the BRCA1
calculation, based only on two data points, is less accurate). A much earlier review
study [53] collects the same kind of statistics as [77] and arrives at similar conclusions.
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Table 9. BRCA1/2 carriers incidence rate by age, data from [77]

Gene ≤20 21-30 31-40 41-50 51-60 61-70 71-80
BRCA1 (%) 0 0.59 2.35 2.83 2.57 2.50 1.65
BRCA2 (%) 0 0.48 1.08 2.75 3.06 2.29 2.19
BRCA1 cum risk (%) 0 4 24 43 56 66 72
BRCA2 cum risk (%) 0 4 13 35 53 61 69

Moller et al.’s study [88] finds a somewhat lower lifetime BC risk of 8.1% in Nordic
countries compared to 12% in the US and estimates heritability at 31%.

In addition to BRCA1/2, [86] and [71] also list a number of high penetrance gene
mutations—the TP53, PTEN, STK11, and CDH-1 gene mutations—giving a lifetime
probability of cancers in general of about 90% and specifically a female breast cancer
probability above 50%.

Several rare gene mutations are also associated with a breast cancer relative risk in
the range of 1.5–5.0: CHEK2, PALB2, ATM, BRIP1CHEK2, PALB2, ATM, and
BRIP1. In aggregate, the above high-effect mutations are correlated with only
approximately 10% of hereditary breast cancers [71,95].

To date, GWAS attempts to find common polygenic variants of low effect size have
had only limited success. One review study [127] outlines the history and
accomplishments of breast cancer GWAS over a decade of research. The most recent
high-powered consortium study [87] included 122,977 cases and 105,974 controls of
European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. The
study verified 102 previously reported SNPs, finding that 49 of them were reproducible.
The study also found that the majority of discovered SNPs reside in non-coding areas of
the genome. The discovered set of polygenic SNPs allows for the explanation of
approximately 4% of heritability on top of the 14% explained by known high-penetrance
SNPs, bringing the predictive power to 18%. This GWAS estimates the familial
heritability of breast cancer at 41%—a possible exaggeration because it significantly
exceeds the 31% estimated by [88] and the 27% estimated by [89].

Breast cancer conclusions: The familial heritability studies and BRCA1/2
clinical studies show that breast cancer heritability is relatively constant over the age of
40 for both mutations. A number of high-penetrance gene mutations can explain an
additional fraction of heritability, totaling 10–14%.

The GWAS study described above [87] also finds that multiple SNPs located in
non-coding areas are correlated with the candidate gene promoters and activity modifier
areas. This improves the possibility that the common variant component may be able to
explain a larger fraction of heritability. It appears at this time, based on Moller et al.’s
statistics [88], that breast cancer heritability for the polygenic component may also be
relatively constant after the age of 40 or may only slightly decline with age.

Prostate cancer (PC) The effects and risks of the BRCA1/2 genes and their
mutations described in the breast cancer section apply in a very similar way to the PC
incidence.

A study by Le Carpentier ( [78]) found that lifetime PC risks are approximately 20%
for BRCA1 mutations carriers and 40% for BRCA2 mutation carriers, while, overall,
BRCA1/2 is associated with only 2% of all PC cases. In addition, BRCA1/2 accounts
for 10% of male breast cancer cases. The lifetime risk of male breast cancer in mutation
carriers is estimated be 5–10% for BRCA1 mutations and 1–5% for BRCA2 mutation
carriers. Therefore, compared to breast cancer, BRCA1/2 mutations are associated with
a smaller fraction of heritability.

The lifetime risk of PC in men is estimated at 6% for Danish cohorts and 12% for
Finnish, Norwegian, and Swedish cohorts. The lifetime risk of developing PC in the US
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and the UK is 12% [59,79]. PC heritability is estimated at 57% [48,89] and 42% by an
older study [49].

The Nordic twin study [48] presents strong evidence that the heritability of PC
remains stable or even slightly increases between the ages of 65 and 100. The fraction of
PC attributed to high detrimentality mutations is low, similar to breast cancer. Known
rare high-effect-size variants such as BRCA1/2, ATM, and HOXB13 explain only
10–12% of heritability [78,84,106,110]. Recently, Eeles et al. [65], using an imputed
meta-analysis for 145,000 men, reported that the GWAS polygenic score they obtained
explains 33% of the familial relative risk.

Wu [110] concluded that the search for the missing heritability may be better served
by high-coverage WGS; however, due to the cost and complexity, it is not currently
feasible to obtain this much high-quality data. In the absence of more predictive genetic
data, Wu [110] notes that the best predictor for PC is age itself.

Prostate cancer conclusions: The conclusions for PC heritability are very much
the same as for breast cancer. While the heritability is higher than that of BC, it
appears even more constant to slightly increasing with age, notwithstanding the smaller
number of known large-effect rare mutations that can be used to explain the heritability
of PC.

Colorectal cancer (CRC) The lifetime risk of developing CRC in the US is
4.1% for women and 4.5% for men [79]. In the UK, the corresponding numbers are 5%
and 7% [59].

The Nordic twin studies [69,89] estimate CRC heritability at 40%. A number of
studies includes a separate classification for colon cancer with a heritability of 15% and
rectal cancer with a heritability of 14%, while the combined percentage is more than
double the individual ones. This example may be showing that, while subdivisions exist
in the medical diagnoses that may make a difference for surgical or treatment purposes,
and while even the carcinogenicity manifestations may differ between subareas of the
organ, from the perspective of the heritability of the liability, they are inherited as a
single condition.

CRC heritability is also relatively constant between the ages of 50 and 95 in twin
studies [69]. Compared to the two previously reviewed cancers, there is a larger number
of identified predisposing mutations and syndromes, such as Lynch syndrome, familial
adenomatous polyposis, Peutz–Jeghers syndrome, juvenile polyposis syndrome,
MUTYH-associated polyposis, NTHL1-associated polyposis, and polymerase
proofreading-associated polyposis syndrome [62,74].

Graff et al.’s study [69] concludes that although a small number of genetic variants
have a substantial effect on CRC, a considerable portion of its heritability is thought to
result from multiple low-risk variants. De [62]) concur that penetrant high-effect gene
variants are found in 5–10% of CRC cases. A GWAS review [96] finds that more than
50 SNPs have been identified as credibly associated with CRC risk, yet these only
account for a small proportion of heritability. In GWAS, common genome-wide variants
are able to account for 8% of heritability.

Colorectal cancer conclusions: The conclusions are much the same as for BC
and PC.

Lung cancer (LC) The lifetime risk of developing LC in the US is 6.0% for
women and 6.9% for men [79]. In the UK, the corresponding numbers are 5.9% and
7.6% [59].

The LC pattern of heritability is not easy to ascertain. According to Kanwal [75],
approximately 8% of lung cancers are inherited or occur as a result of a genetic
predisposition. The Nordic twin studies review [89] estimates the LC heritability at 18%
(within a likely range of 0–42%). Heritability studies require controlling for
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environmental factors, particularly tobacco smoking. It is perhaps for this reason that
the Nordic twin studies consortium, which was invaluable in the three other cancer
analyses, primarily restricted itself to analyzing the effects of tobacco smoking on
LC [72].

Factors such as asbestos, industrial smoke and pollutants, high levels of domestic
radon in some areas of the world, or exposure of miners to radon or other sources of
radiation may influence incidence and, if not accounted for, may affect heritability
estimates [60,76,83]. Hereditary mutations of genes that regulate DNA repair, including
BRCA1/2, TP53 and others, also increase the risk of LC, as with almost any cancer [75].

Due to the low heritability of LC, GWAS’ success at identifying predictive common
SNPs has been limited [108]. Some studies explain part of the LC incidence by reference
to causal epigenetic effects [100]. The heritability value of 18% that Mucci et al. [89]
gives has a very broad range. An earlier study [128] noted that tobacco smoking is by
far the largest causal factor for LC, and the heritability of smoking may outweigh any
other LC heritability.

Mucci et al. [89] also considered smoking, but the high value reported by them
exceeds the previous consensus and may need further corroboration. LC perhaps
belongs to the difficult-to-analyze non-additive traits of heritability noted in [129]. We
will consider LC heritability to be closer to 10%.

Lung cancer conclusions: In conclusion, we lack an age-related heritability
pattern for LC, and while we cannot make definitive conclusions, we can hypothesize
that LC follows a similar pattern to the other three cancers we reviewed.

In summary, the heritability patterns of cancers were not systematically investigated
until quite recently. A small number of familial studies [48, 69, 71, 88] and a more recent
study that is especially informative about BRCA1/2 mutations’ incidence with age [77]
finally allowed us to determine that cancer heritability remains relatively constant with
age. Table 10 summarizes the findings of the publications for breast, prostate, colorectal,
and lung cancers. We have not found a study ascertaining lung cancer heritability with
age; data may be difficult to collect due to the relatively low heritability of lung cancer.

Most lung cancer incidence is environmental, and lung cancer does not have specific
highly detrimental mutations that may cause a noticeable fraction of heritability. We
hypothesize that the mostly polygenic fraction of lung cancer heritability is similarly
stable with age, as is the case with the other three cancers we reviewed.

Table 10. Heritability by age patterns for most common cancers

Cancer Breast Prostate Colorectal Lung
Lifetime risk, USA (%) 12 12 4.5m 4.1w 6.9m 6w
Heritability (%) 31 57 40 8–18
Incidence from highly
detrimental mutations (%)

10–14 10–12 5–10 minor

Polymorphic incidence (%) 86–90 88–90 90–95 major
Heritability trend
(50y–100y)

flat / slight
decline

flat / slight
incline

flat likely flat

[53, 67, 71,
77, 86–89,
95]

[48, 65,
78, 84, 106,
110]

[62, 69, 74,
96]

[60,72,75,
76, 83, 89,
100, 107,
108]

Lifetime risk numbers, when marked, ”w” for women, ”m” for men.

Because cancer development is primarily a consequence of mutations and epigenetic
effects leading to unconstrained propagation of the clonal cell population, in the long
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run, cancers are inevitable for most multicellular organisms, including
humans [70,85,90,94,105].

Due to cancer’s constant heritability with age, the effect of age is likely to be
insignificant for GWASs’ discovery of cancer polygenic scores and their corresponding
predictive power. This could also apply to any LOD that follows a similar heritability
pattern that is relatively constant with age.

S1 File. Source code, executable, scripts and configurations. This zip file
contains the simulation executable, the source code and the project for MS Visual
Studio 2015, R scripts and corresponding batch files for producing functional
approximations of clinical incidence and post analysis of simulation results.
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Fig 8. S1 Fig
Validation simulations: constant, linear, and exponential incidence curves
within the same allele architectures, using a constant incidence at a level
of 0.5% per year, linearly increasing incidence with a slope of 0.01%, and
exponentially reaching similar cumulative incidence in a 105-year age inter-
val Within the same allele architecture, the β is identical, subject to the simulation
population stochasticity; β = log(OddsRatio).

41/56

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 11, 2018. ; https://doi.org/10.1101/349019doi: bioRxiv preprint 

https://doi.org/10.1101/349019
http://creativecommons.org/licenses/by-nc-nd/4.0/


Population mean, 31% heritability,
Rare alleles, medium effect size

0 0.1 0.2 0.3 0.4
−0.6

−0.4

−0.2

0

Cumulative incidence

𝛽

Constant
Linearly increasing

Exponential

Population mean, 80% heritability,
Common alleles, low effect size

0 0.1 0.2 0.3 0.4

−2

−1.5

−1

−0.5

0

Cumulative incidence

𝛽

Constant
Linearly increasing

Exponential

Case mean, 31% heritability,
Rare alleles, medium effect size

0 0.1 0.2 0.3 0.4

0.5

1

1.5

Cumulative incidence

𝛽

Constant
Linearly increasing

Exponential

Case mean, 80% heritability,
Common alleles, low effect size

0 0.1 0.2 0.3 0.4

2

4

6

8

10

12

14

Cumulative incidence

𝛽

Constant
Linearly increasing

Exponential

Fig 9. S2 Fig
Validation simulations for five allele architectures The linear and constant inci-
dence patterns give identical results for each allele architecture. The rare medium-effect-
size and even rarer high-effect-size scenarios produce a fraction of higher individual betas
for the same overall population variance; a relative difference is less prominent at 80%
versus 31%. The three identical low-effect-size scenarios produce effectively identical β
patterns; β = log(OddsRatio).
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Fig 10. S3 Fig
Polygenic scores of individuals diagnosed with LOD as a function of age;
IVA Scatter plots show the distributions of polygenic scores for cases diagnosed as
age progresses. β = log(OddsRatio), with mortality, visually implies the underlying
heritability and incidence magnitudes. If the regression line drops diagonally, there is a
combination of high heritability and increasing cumulative incidence. Otherwise, a plot
appears as a relatively symmetrical blob.
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Fig 11. S4 Fig
Polygenic score difference between newly diagnosed individuals and the re-
maining unaffected population; IVA Common low-effect-size alleles (scenario A);
β = log(OddsRatio). SD band is a band of one standard deviation above and below the
cases and the unaffected population of the same age. For all highly prevalent LODs, the
mean polygenic risk of new cases crosses below the risk of an average person at early
onset age.
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Fig 12. S5 Fig
Polygenic score difference between patients and controls in a cohort simula-
tion Common low-effect-size alleles (scenario A); β = log(OddsRatio). SD band is a
band of one standard deviation above and below the cases and the unaffected population
of the same age. The cohort change and difference are less prominent than in IVA due
to the accumulated diagnoses from younger cases with an averaged control polygenic
risk score and mortality.
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Fig 13. S6 Fig
Allele frequency difference between newly diagnosed instances and the re-
maining unaffected population; IVA Common low-effect-size alleles (scenario A).
The MAF cases minus controls value is used to determine GWAS statistical power;
see Eq (7). Rarer and lower-effect-size (OR) alleles are characterized by a lower MAF
relative change.
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Fig 14. S7 Fig
Allele frequency difference between cases and controls; cohort simulation
Common low-effect-size alleles (scenario A). The MAF cases minus controls value
is used to determine GWAS statistical power; see Eq (7). Rarer and lower-effect-size
(OR) alleles are characterized by a lower MAF relative change.
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Fig 15. S8 Fig
Number of cases needed to achieve 0.8 discovery power; IVA Common low-
effect-size alleles (scenario A). The individual-diagnosed-versus-same-age-unaffected-
population curve continues a steep rise in the IVA scenario. A sample of 9 out of 25
SNPs; MAF = minor (risk) allele frequency; OR = risk odds ratio.
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Fig 16. S9 Fig
Number of cases needed to achieve 0.8 discovery power; cohort simulation
Common low-effect-size alleles (scenario A). The cohort curve due to the accumulative
cases diagnosed at younger ages with an averaged control polygenic risk score and
mortality starts at the same necessary cases number as the IVA, but rises more slowly
and levels out at older ages. A sample of 9 out of 25 SNPs; MAF = minor (risk) allele
frequency; OR = risk odds ratio.
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Fig 17. S10 Fig
Number of cases needed for 0.8 discovery power for three LODs with repre-
sentative incidence rate and initial heritability; summary of five LOD vali-
dation simulation types The number of cases needed for 0.8 GWAS discovery power
for the clinical cohort study scenario lies between equal mortality for cases and controls
and double mortality for cases; it is closer to equal mortality for the LODs we review.
The divergence begins after age 85 and is even then relatively modest. “Cohort—double
mortality” cases have a two-times-larger mortality than controls (doubling the value
for mortality from the US “Actuarial Life Table”. “Cumulative—no mortality” is the
most extreme case of a one-year-span GWAS cohort; with no mortality, it requires the
smallest number of cases in GWAS. Note that the logarithmic scale is very different
between the three LODs.
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Fig 18. S11 Fig
Allele frequency difference between newly diagnosed instances and the re-
maining unaffected population; IVA Rare medium-effect-size alleles (scenario D).
The MAF cases minus controls value is used to determine GWAS statistical power;
see Eq (7). Rarer and lower-effect-size (OR) alleles are characterized by a lower MAF
relative change.
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Fig 19. S12 Fig
Allele frequency difference between cases and controls; cohort simulation
Rare medium-effect-size alleles (scenario D). The MAF cases minus controls value
is used to determine GWAS statistical power; see Eq (7). Rarer and lower-effect-size
(OR) alleles are characterized by a lower MAF relative change.
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Fig 20. S13 Fig
Number of cases needed to achieve 0.8 discovery power; IVA Rare medium-
effect-size alleles (scenario D). The individual-diagnosed-versus-same-age-unaffected-
population curve continues a steep rise in the IVA scenario. A sample of 9 out of 25
SNPs; MAF = minor (risk) allele frequency; OR = risk odds ratio.
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Fig 21. S14 Fig
Number of cases needed to achieve 0.8 discovery power; cohort simulation
Rare medium-effect-size alleles (scenario D). The cohort curve due to the accumulative
cases diagnosed at younger ages with an averaged control polygenic risk score and
mortality begins at the same necessary-cases number as IVA but rises more slowly and
levels out at older ages. A sample of 9 out of 25 SNPs; MAF = minor (risk) allele
frequency; OR = risk odds ratio.
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Fig 22. S15 Fig
Relative change in cases needed for 0.8 discovery power in cohort study when
using progressively older control cohorts compared to fixed-age young-cases
cohort Cases’ mid-cohort age is leftmost age (youngest plot point); control mid-cohort
ages are incremental ages. The number of cases needed for 0.8 discovery power is smaller
when using older age controls, particularly for LODs with the most prominent increase in
the number of cases needed for older age cohorts. LODs and LOD cancers show distinct
multiple groupings. Common low-effect-size alleles (scenario A). A sample of 9 out of 25
SNPs; MAF = minor (risk) allele frequency; OR = risk odds ratio.
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Fig 23. S16 Fig
Times fewer the number of cases needed for 0.8 discovery power in cohort
study when using progressively older control cohorts compared to fixed-age
young-cases cohort Cases’ mid-cohort age is leftmost age (youngest plot point); control
mid-cohort ages are incremental ages. The number of cases needed for 0.8 discovery
power is smaller when older controls are used, particularly for LODs with the highest
heritability and incidence. Common low-effect-size alleles (scenario A). A sample of 9
out of 25 SNPs; MAF = minor (risk) allele frequency; OR = risk odds ratio.
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