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Abstract 

 Improved computational tools are needed to prioritize putative neoantigens within 

immunotherapy pipelines for cancer treatment. Herein, we assemble a database of over 

one million human peptides presented by major histocompatibility complex class I 

(MHC-I), the largest known database of its type. We use these data to train a random 

forest classifier (ForestMHC) to predict likelihood of MHC-I presentation. The 

information content of features mirrors the canonical importance of positions two and 

nine in determining likelihood of binding. Our random forest-based method outperforms 

NetMHC and NetMHCpan on test sets, and it outperforms both these methods and 

MixMHCpred on new mass spectrometry data from an ovarian carcinoma sample. 

Furthermore, the random forest scores correlate monotonically with peptide binding 

affinities, when known. Finally, we examine the effect size of gene expression on 

peptide presentation and find a moderately strong relationship. The ForestMHC method 

is a promising modality to prioritize neoantigens for experimental testing in 

immunotherapy. 

 

Author summary 

 Neoantigens presented by major histocompatibility complex class I (MHC-I) are 

critical to modern cancer immunotherapy strategies, including vaccine design, 

identification of likely responders for checkpoint inhibitors, and CAR-T cell therapies. To 

act as a neoantigen, a peptide must be presented by at least one of the patient’s MHC-I 

alleles. Machine learning classifiers exist to predict this presentation, but increasingly 

available mass spectrometry (MS) data and underexplored machine learning methods 
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offer possibilities for improvement. Herein, we establish the largest known MS database 

of peptides bound to MHC-I and use it to train improved classifiers. We optimize the 

selection of features and examine the information content in each feature. Next, we 

validate the predictor on original data generated for this work, and we compare the 

predicted scores for peptides with chemical affinity data. Finally, we mine our large 

database to investigate the effect size of gene expression on peptide presentation. 

 

Introduction 

Immunotherapy targeting neoantigens is uniquely poised to effect precise, 

powerful treatment of cancer. Among the most promising modalities are adoptive cell 

transfer (ACT), peptide vaccines, and checkpoint blockade. Specifically, ACT, such as 

expanded tumor-infiltrating lymphocytes (TILs), chimeric antigen receptor (CAR)-

modified T cells, and T cell receptor (TCR)-modified T cells, has demonstrated 

remarkable clinical efficacy. For example, cellular therapies targeting CD19 have 

initiated durable complete responses (CR) in patients with follicular lymphoma, chronic 

lymphocytic leukemia, and other B-cell malignancies [1]. However, these therapies also 

carry substantial risk. Lethal reactions, including cytokine release syndrome, 

encephalopathy, and lymphohistiocytosis are strongly associated with the use of CAR-T 

cells [2]. Furthermore, on-target, off-tumor side effects occur when the peptides targeted 

are not private to the tumor. In cellular therapy for melanoma, for example, investigators 

targeted MART-1 and gp100 and noted significant toxicity against the skin, eyes, and 

inner ear [3]. In other cellular therapies targeting HER2 and MAGE-A3, patients 

experienced swift and sometimes lethal cardiopulmonary toxicity attributable to titin 
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cross-reactivity [4]. Hence, clinical utility of immunotherapy targeting public antigens is 

limited by on-target, extra-tumoral action. 

Neoantigens are peptides derived from private mutations within the tumor: they 

are attractive targets because on-target action is limited to the tumor itself. These 

neoantigens are not present during thymic selection, and thus lymphocytes targeting 

these epitopes are possibly present within the endogenous pool of lymphocytes [1]. This 

offers the possibility of reduced costs and complexity compared with engineered 

lymphocytes. Furthermore, neoantigens are more likely to be derived from mutations 

critical to oncogenesis: when the neoantigens do derive from driver mutations, this 

reduces the theoretical risk of antigen escape compared to non-neoantigens [5]. 

Preliminary clinical evidence is promising: one patient with cholangiocarcinoma 

experienced a partial response lasting at least two years after infusion of TILs specific to 

a mutation in her tumor [6]. Beyond targets for cellular infusions, neoantigens also are 

predictive of response to checkpoint blockade: mutational burden in melanoma 

correlates with clinical response to CTLA-4 inhibitors [7]. Clinically, one study 

demonstrated the presence of TILs specific to a neoantigen in a patient’s tumor, and 

immunologic response of those cells rose during treatment with ipilimumab [8]. 

Neoantigens also permit targeted peptide-based vaccines. In mice, injections of 

neoantigens caused comparable clinical response to checkpoint blockade [9]. Despite 

this promising preliminary evidence, identifying neoantigens consistently for these 

therapies remains elusive and complex. 

Toward clinical application of neoantigen-based therapy, the exome of the tumor 

is first sequenced and compared to the exome of germline cells (typically the blood), 
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yielding a set of private mutations within the tumor. These mutations are converted into 

putative neoantigens, peptides of approximately 8-12 amino acids (most typically length 

9). This list of putative neoantigens is too extensive for exhaustive testing for clinical 

therapy. One approach to determine which few of these putative neoantigens truly are 

presented and possibly immunogenic in the tumor, is to use mass spectrometry (MS) to 

examine the entire tumoral immunopeptidome. This method, though highly accurate and 

thorough, is costly and time-intensive. Furthermore, it requires a relatively large amount 

of sample from the patient (up to 1cm3), which cannot always be obtained [10]. Thus, a 

more efficient method is needed to guide therapy. 

In silico prediction is another method to guide neoantigen-based therapies. This 

technique takes as input a list of the potential peptides derived from private mutations 

and prioritizes them by likelihood of presentation. Of course, prediction must be tailored 

to the patient’s specific alleles of human leukocyte antigen (HLA) A, B, and C, which 

code for MHC-I. Each variant of MHC-I has a distinct preference for a binding motif: 

hence, the specific alleles determine the space of possible peptides presented within 

the tumor. Multiple predictors are publically available to rank potential neoantigens. 

One widely used approach is NetMHC [11,12]. This method uses artificial neural 

networks (ANN) as its underlying machine learning framework. For training data, 

NetMHC uses affinity data measured from in vitro assays. A related predictor, 

NetMHCstabpan, uses the half life of the MHC-peptide complex in vitro [13]. However, 

these data limit the application of NetMHC and NetMHCstabpan to neoantigen 

prioritization: actual presentation in vivo is contingent on other processes unrelated to 

chemical affinity. These include proteasomal processing, abundance of proteins 
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containing specific sequences, and biological half-life [14,15]. Hence, NetMHC and 

NetMHCstabpan are suboptimal for neoantigen prioritization because of their reliance 

on chemical training data.  

Increasingly available MS datasets are more suitable for training predictors of 

peptide binding: because these data describe epitopes actually presented in vivo, they 

account both for chemical affinity and biological processes required for presentation. 

Furthermore, sampling the immunopeptidome does not require a priori peptide 

synthesis or selection, and this reduced bias increases the theoretical likelihood of 

discovering novel motifs and true binders [14]. Two publically available methods make 

use of MS datasets: NetMHCpan is an ANN-based predictor trained on both affinity data 

and MS data [16]. MixMHCpred is trained only on MS data, and it employs position 

weight matrices (PWMs) established by a mixture model for each allele [10]. 

Though these methods are trained on appropriate MS data, there has been 

insufficient exploration of alternative features and machine learning frameworks. Indeed, 

the developers of MixMHCpred did not attempt to optimize the machine learning 

framework of the method [10]. Though NetMHCpan uses ANN, it relies upon BLOSUM 

encoding as input features, and additional biochemical features and sequence 

representations have the potential to improve performance [16]. Herein, we investigate 

various features and machine learning methods trained on public MS data to optimize 

predictors of peptide binding. 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 18, 2018. ; https://doi.org/10.1101/349282doi: bioRxiv preprint 

https://doi.org/10.1101/349282


 

 7 

Results 

Database characteristics 

 The total number of peptides collected from the Proteomics Identifications 

Database (PRIDE), SysteMHC Atlas, and other published data (see methods) was 

1.03E6. To our knowledge, this is the largest database of its type to date. Of these 

peptides, 5.7E5 (55%) are nine amino acids in length (Fig S1). MHC-I alleles tend to 

have a strong preference for peptides of length nine, making this length the priority for 

classification. Of the nonamers, 2.9E5 (51%) were reported in polyallelic samples. We 

deconvoluted these peptides using MixMHCpred, with 2.8E4 peptides discarded due to 

unavailable predictions for the given alleles and 4.3E4 peptides discarded due to a 

confidence in allele assignment of less than 95%. We then pooled the peptides by 

allele, merging the deconvoluted peptides with the peptides from monoallelic sets and 

from datasets already presented as deconvoluted using NetMHC. During this pooling, 

we included only unique peptides (3.3E5 peptides were duplicates). The total number of 

unique nonamers assigned to alleles was 1.6E5. 

The cell lines in the database spanned B-cell lymphoblasts, breast cancer, 

leukemia, lymphoma, glioblastoma, melanoma, fibroblasts, embryonic kidney cells, and 

colon carcinoma. The clinical samples included peripheral blood mononuclear cells, 

melanoma, meningioma, and lung cancer. The number of MHC-I alleles was 82, 

including 65 alleles resolved to four digits and 17 alleles resolved to two digits. We had 

26 HLA-A alleles, 40 HLA-B alleles, and 16 HLA-C alleles. 
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Feature selection 

We began by finding the optimal combination of features considered. Namely, we 

considered hydropathy, blosum62 sequence encoding, one-hot (sparse) sequence 

encoding, presence of an aromatic residue, mass, and charge at physiological pH. We 

chose these features by a combined review of biochemical and MHC-I binding predictor 

literature [10,12,17]. In particular, we chose the aromatic feature due to experimental 

evidence of allosteric networks regulating the conformation of MHC-I binding grooves in 

a selected allele [10].  

To identify the optimal feature combinations, we built random forest classifiers for 

all 82 alleles across 63 possible feature subsets, sizes one to six. For the training set, 

we used a 1:1 ratio of randomly generated nonamers from SwissProt to true binders. 

For the test set, we used a 99:1 ratio of these random decoys to true binders. We 

employed precision in the top 1% of predictions (Prec1%) and area under the precision 

recall curve (AUPRC) to measure performance, and we calculated mean performance 

across 82 alleles on the test set (Fig 1). 

A number of feature sets yielded excellent performance, with sparse encoding 

present in all ten of the top ten feature sets for both AUPRC and Prec1%, and with 

blosum62 encoding present in 0/10 for both. Hydropathy was present in 7/10 for both, 

and mass, charge, and aromaticity were present in 6/10 for both. Based on this 

analysis, we chose the combination of hydropathy, presence of aromatic rings, sparse 

encoding, and mass (HASM): this combination yields performance within the top 1% of 

maximal Prec1% values and AUPRC values, and it has one fewer feature than the top 
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performer (HCASM), reducing the likelihood of overfitting. The final random forest 

classifiers use the HASM feature combination. 

Comparison to existing predictors on test data 

Using the combination of hydropathy, presence of an aromatic ring, sparse 

encoding, and mass features, we trained a random forest model for each allele. For 

these models, we used 1000 trees, gini impurity, and the square root of the total number 

of features as a maximum. Decoy peptides of length nine were again generated 

randomly from SwissProt for a 1:1 class balance during training and 99:1 class balance 

during testing. 

Our final set of random forest (RF) classifiers achieved an average Prec1% of 

0.69 and AUPRC of 0.73 across test sets by five-fold cross validation. We compared the 

performance of our RF classifiers to other publically available classifiers—NetMHC 

(Prec1% 0.54, AUPRC 0.51), NetMHCpan (Prec1% 0.64, AUPRC 0.65), 

NetMHCstabpan (Prec1% 0.46, AUPRC 0.41), and MixMHCpred (Prec1% 0.70, 

AUPRC 0.74). The results across all alleles by five-fold cross-validation on the test sets 

are shown in Fig 2. By the Mann-Whitney U Test, our RF-based method outperformed 

NetMHC, NetMHCpan, and NetMHCstabpan. There was no significant difference 

between the RF method and MixMHCpred. 

It was expected that, by this methodology of testing, the performance of our 

method could not exceed that of MixMHCpred for two reasons. First, many of the data 

in our database also were used to train MixMHCpred (MMP). Hence, some peptides 

assigned to our test set (drawn at random from the data) were likely included in the 

training set during the development of MMP. Second, we relied upon MMP to 
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deconvolute 51% of our peptides, and we discarded all peptides without available MMP 

predictions or with a confidence of less than 95% in the assignment. Thus, the test 

dataset is biased in favor of high-certainty peptides for MMP and also contains peptides 

included in the training of MMP. Given these conditions, it is remarkable that this new 

method performs at a level that is statistically indistinguishable from MMP. 

Feature importance analysis  

We next wondered about the information content of each feature. To measure 

this, we calculated the mean reduction in Gini impurity at nodes using each feature 

across all trees in each ensemble. We then averaged this quantity arithmetically across 

all classifiers (Fig 3). Information is higher, on average, in the hydropathy and mass 

features than the sparse encoding. Positions two and nine contain substantially more 

average information within the hydropathy, aromaticity, and mass features, and the 

information for one-hot encoding is higher for positions two and nine compared to other 

positions. To rule out the potentially confounding influence of deconvolution, we 

repeated the analysis using only mono-allelic data: findings were similar (Fig S2). The 

importance of these features is corroborated biologically: most known MHC-I alleles 

prefers characteristic amino acids found at two and nine, the canonical anchor residues 

[18]. 

Validation on never-before-seen data 

 A more rigorous, realistic test is the application of classifiers to data that is both 

new (never seen by any classifier) and polyallelic (requiring ranking while taking into 

account multiple alleles). We performed an experiment to elute ligands bound to MHC-I 

in an ovarian carcinoma cell line (SK-OV-3), identify them using mass spectrometry 
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(see Methods). We obtained 694 high-confidence peptides. We mixed the 534 resultant 

nonamers computationally with a 99-fold excess of random decoys. To each classifier, 

we provided the HLA alleles (obtained from Adams et al.) and the list of mixed true 

peptides and random decoys [19]. Prec1%—calculated with five different sets of decoys 

mixed in—was higher than all other methods tested (Fig 4). Our classifier outperformed 

MixMHCpred, NetMHC, NetMHCstabpan, and NetMHCpan. These results demonstrate 

the promise of RF and these features to supercede existing methods of epitope 

prioritization. 

Comparison with other machine learning methods 

We evaluated several other methods of machine learning, including deep artificial 

neural networks, but we consistently noted lower performance than random forests (Fig 

S3). All classifiers were trained on the same database and tested on our new data from 

ovarian carcinoma cells with 99-fold excess of random decoys, using the established 

four feature sets (HASM). ForestMHC consistently performed better, with a mean 

Prec1% of 0.59 across five different sets of random decoys. Deep neural networks 

(mean Prec1% 0.41), convolutional neural networks (mean Prec1% 0.34), and support 

vector machines (mean Prec1% 0.07) did not perform as well. The especially low 

performance of the SVM is expected given the importance of nonlinear interactions 

among residues in establishing the specificity for binding by MHC-I. Furthermore, RF’s 

outperformance of convolutional and deep neural networks—other nonlinear methods—

demonstrates the potential utility of this machine learning technique in peptide binding 

classification. 
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Correlation of RF score with affinity 

We next wondered how the RF scores related to experimentally measured 

affinity data. Using all nonamers with available IC50 data on the Immune Epitope 

Database, we generated RF scores using our predictors and assessed the correlation 

with IC50 values (Fig 5). The relation is of moderately high monotonicity, with a mean 

Spearman’s coefficient of -0.59 (range: -0.16, -0.79) across 22 alleles, weighted by 

number of entries. The relationship is weakly linear, with a mean Pearson’s coefficient 

of -0.27 (range: -0.09, -0.73). 

This type of relationship—monotonic, but not necessarily linear—is sensible for 

these two quantities: while the IC50 measurements contain only information about ligand 

binding, MS elution datasets contain information about whether the peptide is actually 

found bound to MHC-I biologically. The latter process is complex and depends on 

proteasomal processing and abundance of source proteins, among other factors. 

Furthermore, chemical affinity data require a priori selection of epitopes to test, which 

limits the space of the immunopeptidome explored [14]. 

Effect of gene expression on peptide presentation 

 Previous studies suggest that peptides derived from proteins coded by highly 

expressed genes are more likely to be presented by MHC-I [15,20]. Using our large 

database, we sought to validate this claim. Using mRNA gene expression data for each 

cell line and clinical sample, or for its closest proxy, we compared the expression of 

genes that code for peptides presented by MHC-I to those that do not (Fig 6). The 

mean Cliff’s d value was 0.60 (range: 0.47, 0.76) when unweighted and 0.59 when 

weighted by the number of genes successfully mapped from proteins. Hence, mining 
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our large database corroborates previous findings that gene expression has a large 

positive effect on presentation by MHC-I. These data may prove predictive as features 

in future iterations of ForestMHC. 

 

Discussion 

Herein, we have established a new random-forest approach to prioritize putative 

neoantigens for experimental investigation. Our method outperforms other methods on 

new data not found in the training set of any classifier, and it is a promising option for 

future epitope prioritization. The relative feature importance of positions two and nine 

dovetails well with existing knowledge about anchor positions for MHC-I. The RF scores 

correlate monotonically with IC50 values, and analysis of our large database 

corroborates the positive effect of genetic expression on presentation of derived 

peptides by MHC-I. 

One limitation of ForestMHC is its reliance on wild-type peptides rather than 

neoantigens for training data. Given this constraint, the predictions describe whether a 

given peptide is likely to bind to an allele of MHC-I, not whether that peptide is also 

necessarily immunogenic. In the future, we will evaluate ForestMHC’s ability to identify 

true neoantigen binders. Furthermore, not all peptides presented by MHC-I are of length 

nine, and future work must also include support for peptides of other lengths. Finally, 

there are insufficient MS data to train classifiers for the majority of HLA 1 alleles, and we 

did not train any classifiers to predict binding to HLA 2. As more MS data become 

available, we will continue to extend this coverage. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 18, 2018. ; https://doi.org/10.1101/349282doi: bioRxiv preprint 

https://doi.org/10.1101/349282


 

 14 

Methods 

Dataset and pre-processing 

 We acquired publically available mass spectrometry peptide elution datasets 

from PRIDE (https://www.ebi.ac.uk/pride/archive/) [21,22], SysteMHC 

(https://systemhcatlas.org/) [23], and supplementary files of individual publications, for a 

total of 24 distinct data sets [10, 14, 20, 24-41]. Only datasets with false discovery rates 

of 5% or lower were included. We excluded peptides if their length was not nine amino 

acids or if they included any amino acids outside of the standard set of twenty. We 

pooled mono-allelic data by allele and deconvoluted poly-allelic data using MixMHCpred 

with a p value threshold of 0.05 before pooling [15]. We discarded entries for which 

MixMHCpred predictions were unavailable, and we also discarded duplicate entries for 

a given allele. We trained classifiers only for alleles with 50 or more peptides from MS 

datasets. For class balance during training, we added randomly generated nonamers 

from SwissProt for a 1:1 ratio (uniprot.org). For testing, the ratio of decoys to true 

binders was 99:1 ratio. 

Machine learning frameworks 

 We trained one classifier for each individual allele. For the random forest 

approach, we used 1000 trees, allowed the square root of the total number of features 

at each decision node, and performed bootstrapping. For the convolutional neural 

network approach, we used a modified version of the approach taken by Hu & Liu [42]. 

We encoded each amino acid in twenty channels representing the standard amino 

acids. By layer, we convolved this input with 512 filters (kernel size: 2, stride: 1), derived 

the max pool (kernel size: 2, stride: 2), convolved with 512 filters again (kernel size: 3, 
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stride: 1), flattened, processed by a fully-connected layer (400 units, ReLU activation 

function), discarded using a dropout layer (40% dropout), and finally fed this result into 

two logits. We used cross entropy with softmax to calculate loss. For the deep neural 

network approach, we used two fully connected layers of 500 and 100 units. 

Feature engineering 

 We chose features from among blosum62 encoding, sparse encoding, 

hydropathy score, indicator of presence of an aromatic ring, molar mass, and charge of 

the amino acid at physiological pH. To determine the optimal subset, we conducted an 

exhaustive search of all possible subsets of sizes from one to six, inclusive. We defined 

information per feature as reduction in Gini impurity at nodes using each feature 

(averaged across all trees in the ensemble), and we averaged this quantity across all 

classifiers. 

Performance metrics 

To measure performance of our classifiers, we calculated Prec1% after mixing 

true binders with a 99-fold excess of random decoys from SwissProt. This metric has 

been used by others in the development of classifiers, and it is attractive because of its 

encapsulation of real-world applications for the classifiers [14,15]. That is, the classifiers 

produced herein are designed for prioritization of putative neoantigens for experimental 

testing by immunologic assays. The best measure of a useful classifier, thus, is its 

ability to prioritize truly bound peptides over the noise of random sequences. Hence, we 

established Prec1% as the principal metric. 

As a secondary metric, we chose the AUPRC. Though the AUPRC is less 

directly translatable to the intended use of these classifiers, the metric also is useful to 
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evaluate the relative proportion of true positives within predicted positives [43]. 

Furthermore, the AUPRC better reflects a classifier’s ability to separate highly 

unbalanced datasets compared to the area under the receiver operating characteristic 

curve (AUROC). While the AUROC has a value of 0.5 for a random classifier no matter 

the ratio of negatives to positives, the AUPRC’s value for a random classifier is the ratio 

of the positives to negatives [43]. Hence, with our ratio of cases and controls, the 

AUPRC value would be 0.01 for a random classifier.  

Mean Prec1% and AUPRC were calculated by five-fold stratified cross validation 

on the test set. The test set consisted of 25% of the known binders to MHC Class I 

along with a 99-fold excess of decoys from SwissProt. For each iteration of the cross-

validation, we used the same test set for all classifiers, namely MixMHCpred 1.1, 

NetMHCpan 4.0, NetMHC 4.0, and NetMHCstabpan 1.0. 

SK-OV-3 MHC-I Peptide Identification Methods 

Cell Line and Antibody. We characterized the HLA-1 peptidome of an ovarian 

carcinoma cell line, SK-OV-3 (ATCC HTB-77). W6/32 monoclonal antibody (Bio X Cell, 

Catalog #BE0079) was cross-linked to Protein-A Agarose (Santa Cruz sc-2001) beads 

using dimethyl pimelimidate (D8388 Sigma). 

Purification of HLA-1 Complexes. We conducted the experiment in accordance with 

the procedure outlined by Bassani-Sternberg et al. [15]. Briefly, we lysed a single pellet 

of 3E7 SK-OV-3 cells with 0.25% sodium deoxycholate, 0.2mM iodoacetamide, 1 mM 

EDTA, 1:200 Protease/Phosphatase inhibitors (Thermo), 1mM PMSF, and 1% octyl-β-D 

glucopyranoside (Sigma) in PBS at 4°C for one hour. The lysate was cleared for one 

hour at 20,000 x g prior to immunoaffinity purification of HLA-1 molecules with the 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 18, 2018. ; https://doi.org/10.1101/349282doi: bioRxiv preprint 

https://www.ncbi.nlm.nih.gov/pubmed/25576301
https://doi.org/10.1101/349282


 

 17 

cross-linked W6/32 antibody. We then washed beads with 10 x bead volume of 150mM 

NaCl, 20mM Tris.HCl (buffer A), 10 volumes of 400mM NaCl, 20 mM Tris.HCl, 10 

volumes of buffer A again, and lastly with seven volumes of 20mM Tris.HCl, pH 8.0. 

Next, we eluted HLA-1 molecules by the addition of 500µl of 0.1 N acetic acid at room 

temperature in two steps following a five-minute incubation each time. 

Purification and Concentration of HLA-1 Peptides. We loaded HLA complexes and 

eluted HLA-1 peptides onto a pre-equilibrated Sep-Pak tC18 column (Waters, Milford, 

MA) and washed with excess 1% formic acid. Bound peptides were eluted with 70% 

acetonitrile (ACN) and 1% formic acid before being lyophilized. 

LC-MS/MS Analysis of HLA-1 Peptides. Peptides were reconstituted in 5% formic 

acid and analyzed by LC-MS/MS on a Thermo Orbitrap Fusion Mass Spectrometer. We 

separated peptides by reverse-phase HPLC on a hand-packed column (packed with 40 

cm of 1.8 μm, 120 Å pores, Sepax GP-C18, Sepax Technologies, Newark, DE) using a 

75 minute gradient of 5-25% buffer B (ACN, 0.1% FA) at a 350 nl/min. Peptides were 

detected using a Top20 method. For each cycle, we acquired one full MS scan of m/z = 

375–1400 in the Orbitrap at a resolution of 120,000 at m/z with AGC target = 5x105. 

Each full scan was followed by the selection of up to 20 of the most intense ions for CID 

and MS/MS analysis in the linear ion trap. Selected ions were excluded from further 

analysis for 40s. We also rejected ions with unassigned charge or charge of +1. 

Maximum ion accumulation times were 100 ms for each full MS scan and 35 ms for 

MS/MS scans, and all scans were collected in centroid mode. 

Mass Spectrometry Data Analysis of HLA Peptides. We searched data separately 

against two different databases using SEQUEST [44]. One search used a set of 
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>200,000 previously identified MHC-I bound peptides downloaded from the Immune 

Epitope Database (iedb.org) and a null enzyme digestion specificity: that is, only the 

complete sequences as downloaded were considered as potential matches. A second 

search used the complete set of reviewed human protein sequences from Uniprot [45], 

including splice isoforms. This search was performed with “no enzyme” specificity which 

considers all possible peptide sequences >6 amino acids and <3500 daltons total MH+. 

We used a composite database containing the translated sequences of all predicted 

open reading frames of the human genome and their reversed complement to enable 

target-decoy filtering. We used the following search parameters: a precursor mass 

tolerance of ±20 ppm, 1.0 Da product ion mass tolerance, no enzyme specificity, a static 

modification of carbamidomethylation on cysteine (+57.0214), and a dynamic 

modification of methionine oxidation (+15.9949). We filtered peptide spectral matches to 

a FDR of 1% using the target-decoy strategy [46] combined with linear discriminant 

analysis (LDA) using SEQUEST scoring parameters including Xcorr, ΔCn′, precursor 

mass error, and charge state [47]. 

Application of classifiers to SK-OV-3 dataset 

 We established alleles using data from Adams et al [19]. We mixed the true 

binders with a 99-fold excess of decoys generated from SwissProt, and then we applied 

the random forest classifiers for the known HLA alleles. The rank of peptides was 

determined by the maximum of their random forest scores across all six HLA alleles. 

We repeated this testing five times, with different sets of random decoys mixed in each 

time. 

Analysis of effect of gene expression on presentation 
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 We pooled the lists of source genes for presented peptides by cell line or clinical 

samples across studies. Transcriptomes for given cell lines and samples—or, when 

unavailable, closely matched proxies—were from NCBI Gene Expression Omnibus and 

EBI Expression Atlas [48,49]. We used the approach taken by Pearson et al to analyze 

the effect size of gene expression [20]. Cliff’s d value described the effect size; we 

included all samples with more than 50 genes successfully mapped from peptides, and 

we weighted the mean across samples by the number of genes in each sample. 

Correlation of affinity and RF score 

 From the Immune Epitope Database (IEDB, iedb.org), we downloaded all 

existing IC50 data for HLA-A, B, and C [50]. We excluded any allele with fewer than 25 

entries or for which no random forest classifier was available. For the alleles with 

sufficient affinity data and a trained classifier, we generated RF scores and correlated 

them with IC50 values using Spearman’s correlation to evaluate for monotonicity. We 

calculated the mean coefficient by weighting according to the number of entries for each 

allele. 
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Figures 

 

Fig 1. Performance across all combinations of investigated features. We compared 

performance across 63 feature subsets for all alleles, with (a) showing Prec1% and (b) 

showing AUPRC for each feature combination. (H- hydropathy, A- presence of 

aromatic, C- charge at physiological pH, M- mass, S- sparse encoding, B- blosum62 

encoding) 
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Fig 2. RF-based method outperforms existing predictors on unbalanced data. (a) 

AUPRC and (b) Prec1% are greater for RF compared to NetMHC, NetMHCpan, and 

NetMHCstabpan, with no significant difference between MixMHCpred and RF (p > 

0.01). P values are by Mann-Whitney U Test compared to ForestMHC. 
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Fig 3. Mean information by feature mirrors canonical anchor residues. The mean 

information (reduction in Gini impurity) across all classifiers is shown, with the inset 

showing only the feature subset of sparse encoding. Note that the information is higher 

at positions two and nine for the sparse encoding features (each a 20-dimensional 

encoding of each amino acid). For the nine-dimensional features of hydropathy, 

aromaticity, and mass, the mean information content at positions two and nine is 

substantially higher than at other positions. 
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Fig 4. New method outperforms existing classifiers on never-before-seen MS 

data. Precision in the top 1% of predictions for our method is superior compared to 

Prec1% of existing methods on newly generated data from ovarian carcinoma cell 

culture. P values are by Student’s t-test. 
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Fig 5. RF score correlates monotonically with IC50 affinity. (a) Example plot shows 

data from HLA-A29:02. (b) Spearman coefficients for IC50 vs RF score by allele; box 

plot shown is unweighted and shows IQR within box and median by line within. 
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Fig 6. Gene expression has a modestly large positive effect on peptide 

presentation. The Cliff’s d values shown here are for pooled cell lines and clinical 

samples within the database. 
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