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Abstract 13 

Questions: Community weighted mean (CWM) approach analyses the relationship species 14 

attributes (like traits or Ellenberg-type indicator values) to sample attributes (environmental 15 

variables). Recently it has been shown to suffer from inflated Type I error rate if tested by 16 

standard parametric or (row-based) permutation test. Results of many published studies are likely 17 

influenced, reporting overly optimistic relationships that are in fact merely a numerical artefact. 18 

Can we evaluate results of which studies are likely to be influenced and how much? 19 

Methods: I suggest that hypotheses commonly tested by CWM approach are classified into three 20 

categories, which differ by assumption they make about the link of species composition to either 21 

species or sample attributes. I used a set of simulated and one simple real dataset to show how is 22 

the inflated Type I error rate influenced by data characteristics. 23 

Results: For hypotheses assuming the link of species composition to species attributes, CWM 24 

approach with standard test returns correct Type I error rate. However, for the other two 25 

categories (assuming link of species composition to sample attributes or not assuming any link) it 26 

returns inflated Type I error rate and requires alternative tests to control for it (column-based and 27 

max test, respectively). Inflation index is negatively related to the beta diversity of species 28 

composition and positively to the strength of species composition-sample attributes relationship 29 

and the number of samples in the dataset. Inflation index is also influenced by modifying species 30 

composition matrix (by transformation or removal of species). The relationship of CWM with 31 

intrinsic species attributes is a case of spurious correlation and can be tested by column-based 32 

(modified) permutation test.  33 
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Conclusions: The concept of three hypothesis categories offers a simple tool to evaluate whether 34 

given study reports correct or inflated Type I error rate, and how inflated the rate can be. 35 

 36 

Keywords: Ellenberg-type species indicator values; extrinsic attributes; fourth-corner approach; 37 

inflated Type I error rate; inflation index; intrinsic attributes; max test; modified permutation test; 38 

simulated data; species functional traits; species niche centroid approach 39 

 40 

Abbreviations: CWM – community weighted mean; SNC – species niche centroid; 41 

  42 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2018. ; https://doi.org/10.1101/349589doi: bioRxiv preprint 

https://doi.org/10.1101/349589
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

Introduction 43 

A common task of community ecologists is relating species attributes to sample attributes using 44 

the matrix of species composition. Species attributes are characteristics of individual species, like 45 

species functional traits, ecological optima or phylogenetic age, while sample attributes are 46 

characteristics of individual samples, which can be either measured or estimated (environmental 47 

variables) or derived from the matrix of species composition itself (species richness, sample 48 

ordination scores). The matrix of species composition, which connects species and sample 49 

attributes, represents abundances (or presences-absences) of species in community samples. One 50 

way to find out whether there is a link between species and sample attributes is to calculate the 51 

mean of species attributes for species occurring in each sample weighted by relative species 52 

abundances (community-weighted mean, CWM), relate it to sample attributes, e.g. by correlation, 53 

and test this relationship by a relevant test. Here I call this method a CWM approach and use it as 54 

a general term including a wide range of analyses relating CWM of species attributes to sample 55 

attributes, where one or several CWMs and one or several sample attributes are involved. The 56 

mean of species attributes not weighted by species abundances is also included in CWM 57 

approach, since it is identical with CWM calculated on species composition matrix with species 58 

presence-absences instead of abundances. 59 

In vegetation ecology, the two commonly used species attributes are plant traits and 60 

species indicator values. CWMs of plant traits can be related to environmental variables to 61 

demonstrate the effect of environmental filtering on trait-mediated community assembly (Díaz et 62 

al. 1998; Shipley 2010), or to predict changes in ecosystem properties (such as biomass 63 
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production or nutrient cycling; Garnier et al. 2004; Vile et al. 2006), or ecosystem services (like 64 

fodder production or maintenance of soil fertility; Díaz et al. 2007). CWMs of species indicator 65 

values, like those of Ellenberg et al. (1992) or Landolt (1977) for soil reaction, light, temperature 66 

and other factors, are used to estimate habitat conditions from known species composition of 67 

vegetation samples. These estimates are often related to soil, light or climatic variables 68 

(Ellenberg et al. 1992; Schaffers & Sýkora 2000), used for ecological interpretation of 69 

compositional changes in unconstrained ordination (Persson 1981) or ecological differences 70 

between groups of samples representing different vegetation types or treatments (Chytrý et al. 71 

2009). Other, more specific examples include relating the community specialization index to 72 

environmental variables (Clavero & Brotons 2010; Fajmonová et al. 2013; Carboni et al. 2016), 73 

or attempts to verify whether plant biomass can be estimated from tabulated plant heights and 74 

species composition as the mean of species heights weighted by their cover in a plot (Axmanová 75 

et al. 2012). 76 

The CWM approach is also used in other fields, like biogeography (relating grid-based 77 

means of species properties, such as animal body size, to macroclimate or diversity; Hawkins & 78 

Diniz-Filho 2006), hydrobiology (relating trophic diatom index based on weighted mean of 79 

diatom indicator values to measured water quality parameters to assess its reliability; Kelly & 80 

Whitton 1995), or paleoecology (one of the transfer functions used to reconstruct acidification of 81 

lakes from fossil diatom assemblages preserved in lake sediments is based on weighted means of 82 

diatom optima along the pH gradient; ter Braak & Barendregt 1986; Birks et al. 1990). 83 
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The recent paper of Peres-Neto et al. (2017), focused on CWM approach, revealed 84 

several surprising facts. First, and perhaps the most important finding, is that standard tests 85 

analysing CWM-sample attributes relationship have inflated Type I error rate, returning more 86 

optimistic results than is warranted by the data. “Standard tests”, in the meaning used in current 87 

paper, include parametric tests like t-test for correlation and F-test for regression or ANOVA, or 88 

permutation tests randomising sample attributes (equivalent to randomising rows in the species 89 

composition matrix). Second, CWM correlation without applying weights has rather bad 90 

mathematical properties, and dominance of a single species can revert the sign of correlation 91 

even if the true trait differences are minimal (see also a dandelion example in Šmilauer & Lepš 92 

2014 and worked example in Appendix S1 of ter Braak et al. 2018). Third, the CWM approach is 93 

numerically related to the seemingly different fourth-corner problem (Legendre et al. 1997), 94 

which relates species and sample attributes via the species composition matrix without explicitly 95 

calculating weighted means of species attributes. Fourth, the ‘max test’ (Cormont et al. 2011), 96 

which solves the problem of inflated Type I error rate in the fourth-corner approach (ter Braak et 97 

al. 2012), does the same in the CWM approach. The max test undertakes two independent 98 

permutation tests, one testing species attributes-species composition link and the other sample 99 

attributes-species composition link, and chooses the higher P-value as a result. In conclusion, 100 

Peres-Neto et al. (2017) suggested to apply max test in all CWM analyses, and possibly replace 101 

the CWM approach with the more efficient fourth-corner approach. 102 

Findings of Peres-Neto et al. (2017) will undoubtedly cause a revolution in the analysis of 103 

trait-environment, and generally, species attributes-sample attributes relationship; the max test 104 

should be included into the toolbox routinely used methods analysing trait-environment 105 
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relationship, and fourth-corner approach should be more attention than it had so far. It is also 106 

quite relevant to expect that scientific literature using CWM approach with standard tests is 107 

flooded by overly optimistic studies reporting significant relationships between various species 108 

and sample attributes which in fact are merely an analytical artefact. However, use of CWM 109 

approach has a long tradition in ecology, and quite often calculating CWM of species attributes 110 

and relating them to sample attributes is practical or required by theory. Many studies defining 111 

our current empirical knowledge about the trait-environment relationship or efficiency of 112 

Ellenberg-type indicator values have been published, and many studies will use this approach in 113 

future. What to do with that? How to recognise whether inflated Type error rate influences the 114 

results of certain study or not and if yes, how strong is the influence? Moreover, if CWM 115 

approach is used in future studies, is it always necessary to replace the standard tests by the max 116 

solution? These are some of the questions I will attempt to answer here.  117 

First, I briefly review the use of CWM approach in vegetation ecology, its conceptual link 118 

to other methods analysing the relationship of sample and species attributes via a matrix of 119 

species composition, and current knowledge about the problem of inflated Type I error rate. 120 

Second, I suggest studies using CWM approach to be classified into one of the three categories, 121 

based on underlying assumptions about the link of species or sample attributes to species 122 

composition. Two of these categories return inflated Type I error rate in case that CWM 123 

approach is tested by the standard test, but only one of these categories requires the use of the 124 

max test as the only way to control for correct Type I error rate. Third, I acknowledge that 125 

sample attributes are of two types, extrinsic (measured independently of species composition 126 

matrix) and intrinsic (derived from species composition matrix), and discuss a special case of 127 
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CWM correlation with intrinsic species attributes. Finally, I use simulated community data to 128 

explore how is the rate of Type I error in standard CWM analysis influenced by data 129 

characteristics like beta diversity of species composition matrix, the strength of the link between 130 

sample attributes and species composition, and the number of samples in the dataset, and then 131 

show the same effect using a real vegetation dataset. 132 

 133 

Theory and Methods 134 

CWM approach in the context of other methods 135 

Three objects are involved in the calculation of CWM approach: a vector of sample attributes (e, 136 

e.g. environmental variables), a matrix of species composition (L, abundances or presences-137 

absences of species in samples, with samples as rows and species as columns), and a vector of 138 

species attributes (t, e.g. species traits); naming convention of variables follows Peres-Neto et al. 139 

(2017). CWM of species attributes is calculated as �� � � ���
�

���

�� , where S is the number of 140 

species in a community, pij is the relative contribution of species j to the total abunance of i-th 141 

sample, and tj is the value of species attribute (“trait”) for the species j. Relative species 142 

proportion pij can be calculated as ���/� ���
�

���

 , where lij is the abundance (or other measure, 143 

such as biomass or presence-absence) of species j in the i-th sample and the denominator is the 144 

sum of abundances for all species. The absolute values of pij (and consequently also the absolute 145 

value of CWM) will be different if the denominator in the formula (� ���
�

���

� sums species 146 
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abundances across all species recorded in the data set, or only those for which the values of 147 

sample attribute (tij) is available (and disregarding the others; see more in Discussion). Similar 148 

equations (with different notations) are reported in a number of studies, e.g. in Garnier et al. 149 

(2004) for CWM of species functional traits or in Diekmann (2003) for CWM of Ellenberg 150 

indicator values. CWM is either weighted or unweighted by (absolute or relative) species 151 

abundances, which is equivalent to saying that it is calculated on the matrix of species 152 

composition using raw (or relative) species abundances (weighted version) or presences-153 

absences (unweighted version). Additionally, CWM can be also weighted by species amplitudes 154 

if these are available, where species with narrower amplitudes have a higher weight than species 155 

with broader amplitudes. This approach requires extending the CWM formula for amplitude 156 

parameter (Zelinka & Marvan 1961), and while commonly used in hydrology (e.g. diatom or 157 

saprophytic index, Kelly & Whitton 1995), it is rarely applied in vegetation ecology (but see 158 

Peppler-Lisbach 2008 using it for Ellenberg indicator values) and will not be further discussed 159 

here. 160 

CWM is related to environmental variables (or other sample attributes) by a wide range 161 

of methods like correlation (called CWM correlation in the further text), regression or ANOVA, 162 

or more complex methods like mixed effect models, ordination (CWM-RDA and RLQ method, 163 

Kleyer et al. 2012; Dolédec et al. 1996) or correlation on distance matrices (Pillar et al. 2009). 164 

The strength and the direction of the relationship between CWM and sample attributes are 165 

quantified by relevant statistic (model parameters or effect size), and the significance of this 166 

statistic is often tested. The test is either parametric (e.g. t-test for correlation), or permutation 167 
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with the test statistic generated by reshuffling sample attributes (equivalent to permuting rows in 168 

species composition matrix, hence row-based permutation test, Fig. 1a). 169 

Alternative methods analysing pairwise relationships of individual species attributes to 170 

individual sample attributes via the matrix of species composition include species niche centroids 171 

approach (SNC; ter Braak & Looman 1986) and the fourth-corner approach (Legendre et al. 172 

1997). While in the CWM approach sample attributes are related to the (weighted) mean of 173 

species attributes, in SNC approach the species attributes are related to the (weighted) mean of 174 

sample attributes (“niche centroids”). The fourth-corner approach (or the “fourth-corner 175 

problem”), in contrast, is not explicitly calculating weighted means of species or sample 176 

attributes, but combines all three objects (e, t, and L) by inflating the original data tables (Dray 177 

& Legendre 2008). The original algorithm by Legendre et al. (1997) considered only presence-178 

absence data in species composition matrix and introduced four different permutation tests, each 179 

aiming to test the different ecological hypothesis. Dray & Legendre (2008) extended the method 180 

also to quantitative species composition data and introduced universal two-step permutation test, 181 

later replaced by max test (ter Braak et al. 2012). 182 

The fourth-corner problem, CWM and SNC approaches are in fact mathematically 183 

closely related (Peres-Neto et al. 2017). The fourth-corner statistic r is equal to the slope of the 184 

weighted linear regression between SNC of environmental variable and trait (Dray & Legendre 185 

2008) or CWM of trait and environmental variable (ter Braak et al. 2018), in the case that the 186 

regression is weighted, and traits with environmental variables are weighted standardized prior to 187 

calculation. Also, the weighted correlation of CWM of traits and environmental variable or SNC 188 
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of environmental variable and trait is related to the fourth-corner’s r, and can be recalculated to 189 

each other using ratios between weighted standard deviations of CWM and traits, or SNC and 190 

environmental variable, respectively (equation 15 in Peres-Neto et al. 2017). Weights mentioned 191 

above are derived from the species composition matrix L, as either total species abundances in 192 

samples (row sums in L) or sums of individual species abundances across all samples (column 193 

sums of L). Row sums of L are used as weights in CWM regression and correlation and to 194 

weighted-standardise environmental variable in the regression, and the column sums of L are 195 

used as weights in SNC regression and correlation and to weighted-standardise traits in 196 

regression. Note that two conceptually different types of weights are mentioned in the context of 197 

CWM (and also SNC) method. Abundances of individual species in individual samples (both 198 

CWM and SNC can also be calculated unweighted, equivalent to calculating them on matrix of 199 

species composition L with species presences-absences instead of abundances), and plot or 200 

sample weights, calculated as row sums or column sums of species abundances in matrix L, 201 

respectively (and used as weights in weighted regression and correlation and to weighted 202 

standardize environmental variables and traits if necessary). Thus, if using the term “weighted” 203 

in case of CWM (or SNC) approach, it is advisable to specify which of the weights are meant.  204 

 205 

Inflated Type I error rate of standard test in CWM approach 206 

As mentioned above, Peres-Neto et al. (2017) showed that CWM approach might return overly 207 

optimistic results with inflated Type I error rate, falsely indicating the link between species and 208 

sample attributes where there is none. In fact, several previous studies indicated that testing 209 
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CWM-environment relationship is possibly problematic. Pillar et al. (2009) used column-based 210 

permutation test to asses link between CWM and environment using correlation between 211 

distance matrices in the study discriminating trait-convergence and divergence patterns in 212 

community assembly; they argue that “[t]he null model should retain most of the real data 213 

structures except for the one that is to be tested”. Jansen et al. (2011) calculated the relationship 214 

between mean Ellenberg indicator values or mean trait values and environmental variables and 215 

tested it by randomization test with permutation of species attributes, arguing that “[d]ue to the 216 

non-random co-occurrence of species in relevés... the correlation of mean trait values to 217 

measured site conditions can also be achieved by chance”. Zelený & Schaffers (2012) warned 218 

against the danger of overly optimistic results in the context of relating mean Ellenberg indicator 219 

values to ordination scores, assignment of samples into groups using cluster analysis, and species 220 

richness. They argued that these optimistic results are caused by CWM inheriting information 221 

about the compositional similarity between community samples and relating CWM to other 222 

variables having the same similarity issue causes the problem. They suggested that this 223 

relationship should either not be tested, or the “modified permutation test” with randomisation of 224 

species attributes should be used. Peres-Neto et al. (2012) discussed similar issue in the context 225 

of metacommunity phylogenetics, Šmilauer & Lepš (2014, p. 158) in the context of the CWM-226 

RDA method and Hawkins et al. (2017) in the macroecological context when relating CWM of 227 

species traits to species richness.  228 

Parallel to developments related to the CWM approach, Dray & Legendre (2008) 229 

identified the problem of inflated Type I error rate in the fourth corner (Legendre et al. 1997) if 230 

the fourth-corner statistic is tested by the row-based permutation method. Dray & Legendre 231 
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(2008) suggested the use of two-step testing procedure combining row- and column-based 232 

permutation tests together, a method which ter Braak et al. (2012) improved by introducing the 233 

sequential testing approach, called also max approach by later studies (ter Braak et al. 2017). The 234 

max test, first used by Cormont et al. (2011), is based on taking the maximum P-value from 235 

sequentially conducted row- and column-based permutation tests. 236 

Hawkins et al. (2017) pointed out an important theoretical difference between intrinsic 237 

and extrinsic sample attributes, which differ in the relationship to the matrix of species 238 

composition. In general, intrinsic (sample or species) attributes are mathematically derived from 239 

the matrix of species composition, while extrinsic (sample or species) attributes have no 240 

mathematical relationship to it. Examples of intrinsic sample attributes include, e.g. species 241 

richness or diversity indices, sample ordination scores, sample assignments into clusters by 242 

numerical clustering, and also CWM calculated from species attributes and species composition;  243 

extrinsic sample attributes include measured or estimated environmental variables or grouping of 244 

samples according to experimental design. Intrinsic species attributes are also occasionally used 245 

(species scores on ordination axes or species optima calculated by weighted mean from species 246 

composition matrix) but are not further discussed here. The max test proposed by Peres-Neto et 247 

al. (2017) for CWM correlation applies to test the relationship between CWM and extrinsic 248 

sample attributes, and ter Braak et al. (2018) made it clear that there is no theoretical justification 249 

to use it for testing the relationship of CWM to intrinsic sample attributes. I suggest (in line with 250 

Zelený & Schaffers 2012) that test of CWM with intrinsic sample attributes can be done with 251 

column-based permutation test (modified permutation test sensu Zelený & Schaffers 2012), if we 252 
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consider such relationship as an example of spurious correlation (Brett 2004); more about this 253 

below (“Spurious correlation” of CWM with intrinsic sample attributes). 254 

 255 

Three categories of hypotheses tested by CWM approach 256 

I suggest that each hypothesis tested by the CWM approach fall into one of the three categories 257 

(labelled here as A, B or C, see Table 1 for a summary), depending on assumptions it makes 258 

about the link of matrix of species composition to either species attributes or sample attributes, 259 

respectively (Fig. 2). One may assume that the link exists if there is sufficient support for it 260 

either in the explicit formulation of a tested hypothesis or implicitly from the theoretical context 261 

of the study. The hypotheses in category A assume the link of species attributes to species 262 

composition (t <-> L), hypotheses in category B assume the link of sample attributes to species 263 

composition (e<->L), and in hypotheses in category C does not assume any of the two links.  264 

Indeed, the choice of the appropriate category may not always be straightforward. For 265 

example, trait studies testing whether the environment is filtering the species into a community 266 

via their functional traits routinely assume that such traits are functional and as such traits are 267 

considered to be linked to species composition (category A). This is reasonable in case that for 268 

studied trait there is sufficient evidence from other studies about its functional effect. However, 269 

this assumption may not be justified if the analysis is based on traits that are relatively easy to 270 

measure and thus readily available in databases, but which may not necessarily be the functional 271 

ones. Also, even the trait which is generally considered as functional does not need to be 272 

functional in the context of used dataset. Similarly, it may be reasonable to assume that species 273 
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composition is linked to sample attributes (L-e), e.g. if the study is based on experimental 274 

treatment which is known to change species composition and the question is focused on how 275 

these changes are reflected by sample attributes (e.g. Ellenberg-type indicator values, Chytrý et 276 

al. 2009).  277 

As a simple rule to decide whether it is relevant to consider the existence of L-t or L-e 278 

link or not, one may ask whether it is interesting to test the existence of given link, or whether it 279 

would make sense to randomise species (t) or samples (e) attributes, respectively. If the answer 280 

is no, it may be safe to assume that given attributes are linked to species composition. In the case 281 

of functional traits example above, if there is a sufficient evidence to say that the trait is 282 

functional (e.g. experimental study, or previous empirical studies), it may be reasonable to 283 

assume that the link exists and does not need to be tested; if any doubt occurs, better to test it. 284 

The link between species composition and sample attributes (L-e) is tested by row-based test 285 

(parametric or permutation), the link between species composition and species attributes (L-t) by 286 

column-based permutation test, and both links simultaneously by the max test combining both 287 

row- and column-based tests together by selecting the larger P-value (Peres-Neto et al. 2017 and 288 

Fig 1b here). Even if max test seems to represent universal testing solution, in fact in categories 289 

A and B, the link which is assumed to exist does not need to be tested. This simplifies the test to 290 

either row-based (i.e. standard test), testing the link between sample attributes and species 291 

composition in category A, or column-based, testing the link between species attributes and 292 

species composition in category B. Only hypotheses in category C require both row- and 293 

column-based tests to be done, and max test was proved to control Type I error rate (Peres-Neto 294 

et al. 2017). 295 
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Category A. Studies in this category assume that species attributes are linked to species 296 

composition. For example, trait-based studies asking whether species traits can explain the effect 297 

of environmental filtering on species abundance in a community fall into this category. The null 298 

hypothesis, which states that sample attributes are not linked to species composition, can be 299 

tested by row-based (standard) parametric or permutation test. 300 

Category B. Studies in this category assume that sample attributes are linked to species 301 

composition. Includes experimental studies in which the effect of experimental treatment 302 

(sample attribute) on species composition is acknowledged, and the question is about the 303 

response of species attributes to it. The null hypothesis, which states that species attributes are 304 

not linked to species composition, can be tested by column-based permutation test (also called 305 

modified permutation test in Zelený & Schaffers 2012). 306 

Category C. Studies in this category assume no link between either species or sample attributes 307 

to species composition. Examples include empirical studies describing the general relationship 308 

between sample attributes and species attributes, without acknowledging any assumption based 309 

on the mechanism of such relationship (e.g. studies relating the CWM of traits to environmental 310 

variables without a priori assuming that traits are functional, allowing to question whether 311 

particular traits are linked to species composition or not). Studies with species indicator values 312 

relating mean indicator values to measured environmental variables also fit this category. To 313 

reject the null hypothesis, which states that there is no link between species or sample attributes 314 

and the matrix species composition, means to prove that both species and sample attributes are 315 
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linked to species composition, and this can be done by max test combining both row- and 316 

column-based tests. 317 

 318 

“Spurious correlation” of CWM with intrinsic sample attributes 319 

Examples of the relationship of CWM of species attributes with intrinsic sample attributes 320 

include analyses testing the relationship between CWM of Ellenberg-like indicator values and 321 

ordination scores (Zelený & Schaffers 2012) or CWM of traits with species richness (Hawkins et 322 

al. 2017). Wildi (2016) argued that testing such relationship violates the requirement on the 323 

independence of tested variables and should not be used, and ter Braak et al. (2018) warns 324 

against the use of the max test because it is not justified by the theory behind in this context. I 325 

suggest that this relationship can be considered as a case of “spurious correlations”, i.e. a 326 

relationship between compound variables calculated from the same parent variables (Pearson 327 

1897). Spurious correlations like X/Z ~ Y/Z, X ~ Y/X or X+Y ~ Y (where X, Y and Z are 328 

variables related together) are ubiquitous in ecology, often encountered also in plant trait studies 329 

when one routinely calculates and tests the relationship between calculated traits (e.g. between 330 

specific leaf area, SLA, and leaf area, LA, where SLA is calculated as ratio between LA and leaf 331 

dry weight, LDW: SLA ~ LA = LA/LDW ~ LA). Although opinions on how to deal with 332 

spurious correlations differ among researchers (Jackson & Somers 1991), general suggestion is 333 

to either avoid analysing relationship between compound variables, or to acknowledge their non-334 

independence by testing their observed relationship (e.g. correlation) against the null expectation 335 

which would exist even if the parent variables are generated in random. For this, Jackson & 336 
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Somers (1991) and Brett (2004) suggested generating such null expectation by a permutation 337 

model, permuting the variable occurring only on one side of the equation. 338 

CWM of species attributes and intrinsic sample attributes (like ordination scores or 339 

species richness) are both functions of a species composition matrix L. CWM can be rewritten as 340 

f1(t, L) and intrinsic samples attributes as f2(L), where t is the vector of species attributes 341 

(Ellenberg-type indicator values, traits) and L is the matrix of species composition. In the 342 

relationship f1(t, L) ~ f2(L), the compositional matrix L is a parent variable occurring on both 343 

sides of the equation, in the same sense as in the spurious correlation. The null expectation of the 344 

test statistic can be calculated by permuting the trait values among species as in the modified 345 

permutation test suggested by Zelený & Schaffers (2012). Modified test changes the original null 346 

hypothesis of no relationship between CWM of species attributes and intrinsic sample attributes 347 

(i.e. f1(t, L) <-//-> f2(L)) into no relationship between species attributes and intrinsic sample 348 

attributes (i.e. t <-//-> f2(L)). In this way, the modified permutation test remains a valid tool to 349 

correct for inflated Type I error rate when relating CWM of species attributes to sample 350 

attributes (e.g. relating mean Ellenberg-type indicator values to scores of unconstrained 351 

ordination, Zelený & Schaffers 2012). 352 

 353 

Dependence of inflated Type I error rate on data characteristics 354 

In this section, I illustrate how is the inflation of Type I error rate in CWM approach dependent 355 

on three dataset characteristics: compositional heterogeneity (beta diversity) of the species 356 

composition matrix, the strength of the link between sample attributes and species composition 357 
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(L-e link), and the number of samples in the community matrix. For this, I use CWM correlation 358 

with standard parametric test and apply it on a number of simulated community datasets. Then, I 359 

use the real vegetation dataset with Ellenberg-type indicator values to show how the inflation 360 

depends on the strength of the environment-species composition relationship. 361 

Design of the simulation study 362 

The algorithm generating simulated community data is an extension of COMPAS model 363 

proposed by Minchin (1987). Here, I used model structured by two virtual ecological gradients, 364 

which is an extension of one-gradient implementation by Fridley et al. (2007). Along each 365 

gradient, a number of unimodal species response curves was generated, where each response 366 

curve quantifies the probability with which an individual found in a given gradient location is 367 

assigned to given species. Species composition of individual samples was then generated by 368 

randomly selecting locations along both gradients and assigning given number of individuals 369 

(100) into species according to species probabilities at given gradient location. The first gradient 370 

is used to define sample and species attributes (locations of samples equals to sample 371 

‘environmental variable’, while optima of species response curve equals to species ‘trait’), while 372 

the second gradient is used to modify the beta diversity of the whole dataset (increasing its length 373 

together with proportional increase in the number of species results in increased beta diversity of 374 

the species composition matrix). Species niche widths are generated as random numbers of 375 

uniform distribution between 500 and 1000 units, independently for each gradient. The effective 376 

length of the first gradient was arbitrarily set to 500 units (the true length is 1500 units, but only 377 

the range between 500 to 1000 units is populated by samples, to avoid gradient edges with a 378 
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lower density of response curves). The effective length of the second gradient varied between 379 

500 to 4500 units (also with extra 500 units at each side). As a result, each simulated community 380 

data set includes a matrix of sample attributes (‘environmental variable’, e), species composition 381 

(L) and species attributes (‘traits’, t), where sample attributes and species attributes are linked to 382 

species composition. Because the aim is to show what is the probability that CWM correlation 383 

will be significant even if the null hypothesis is true (i.e. species attributes are not related to 384 

species composition), species attributes were permuted to remove their link to species 385 

composition. 386 

 Beta diversity of the dataset was modified by increasing the length of the second gradient. 387 

I assumed that 500 units of the second gradient represent one community, i.e. enlarging the 388 

second gradient from 500 to 5000 units (by steps of 500 units) generated datasets of increasing 389 

beta diversity (with 1 to 9 communities). A dataset with a maximum number of communities was 390 

also included (max), in which the data are reshaped in the way that no species are shared among 391 

any pair of samples. The strength of the relationship between species composition and sample 392 

attributes (L-e strength) was manipulated by adding random noise to generated values of sample 393 

attributes e. I also included one intrinsic sample attribute, mathematically derived from the 394 

matrix of species composition (L) by an unconstrained ordination (sample scores along the first 395 

axis of correspondence analysis calculated on log-transformed species composition data, denoted 396 

as CA1). The number of samples was manipulated by increasing the density of locations along 397 

both gradients where communities were generated, while keeping the length of the gradients 398 

constant; this mimics the real situation of sampling increasing number of community samples 399 

within the same range of compositional heterogeneity. 400 
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 I prepared two scenarios, each with one fixed and two variable data characteristics. In 401 

scenario 1, the number of samples was fixed (100 samples), while beta diversity and the strength 402 

of L-e relationship varied; for each combination of beta diversity (1, 3, 5, 7, 9 and max. 403 

communities) and L-e strength (0.0, 0.2, 0.4, 0.6, 0.8, 1 and CA1) I generated 1000 datasets. In 404 

scenario 2, the L-e strength was kept fixed (0.6), while the number of samples and beta diversity 405 

varied; for each combination of sample size (25×2n samples with n = {0, 1, 2, 3, 4, 5} and the 406 

same levels of beta diversities as in scenario 1) I generated 1000 datasets. For each dataset, I 407 

related CWM of t (weighted by species abundances) with e by Pearson’s r correlation and tested 408 

the significance by standard parametric t-test, and then by permutation max test (199 409 

permutations, with absolute t-value as a test statistic). I quantified the inflation of Type I error 410 

rate in CWM correlation for each combination of data characteristics by inflation index (sensu 411 

Lennon 2000) calculated as I(α) = No/Ne, where α is the nominal significance level, No is the 412 

number of ‘observed’ correlations significant at α level, and Ne is the number of ‘expected’ 413 

correlation significant at α level (calculated as Ne = αNtotal, where Ntotal is the total number of 414 

tests). Inflation index quantifies how many times more likely we are to find significant result 415 

compared to the test with correct Type I error rate; test with inflation index close to unity has 416 

correct Type I error rate. I plotted the inflation index I (α = 0.05) against beta diversity and the 417 

strength of L-e link (scenario 1) or a number of samples and beta diversity (scenario 2).  418 

Design of real data study 419 

Example dataset of real data contain forest vegetation plots sampled by me on the slopes of deep 420 

valley of river Vltava, Czech Republic (Zelený & Chytrý 2007). The total of 97 plots of 10×15 m 421 

were sampled at even distances along the transect running along the valley slope. All vascular 422 
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plant species were recorded and their cover estimated using Braun-Blanquet scale (Westhoff & 423 

van der Maarel 1978). A subset of 11 environmental variables measured or estimated for each 424 

plot was selected (details in Zelený & Chytrý 2007). Species attributes used in this analysis are 425 

Czech indicator values for light, temperature, moisture, reaction and nutrients, which are 426 

Ellenberg-type species indicator values recalibrated for territory of the Czech Republic (Chytrý 427 

et al. 2018). For the analysis presented here, species composition data include only herbs 428 

sampled in the forest understory, since indicator values for light are defined only for herbs and 429 

juveniles of woody species. Only species that have all five indicator values available were 430 

included, others were removed from both species composition matrix and matrix of indicator 431 

values; this is to guarantee that all calculated CWM are based on species composition datasets 432 

with identical beta diversity. Additionally to 11 extrinsic (measured or estimated) environmental 433 

variables, I included also one intrinsic variable, scores of samples along the first axis of 434 

correspondence analysis calculated on (log transformed) species composition data. As a result, 435 

three matrices were used for CWM correlation: environmental variables (97 samples × 12 436 

variables), species composition (97 samples × 103 species) and Czech indicator values (103 437 

species × 5 indicator values). CWM was calculated as species mean weighted by estimated 438 

species abundances transformed into the percentage scale. The strength of L-e link for each 439 

environmental variable was quantified as variance (R2
CCA) this variable explains in canonical 440 

correspondence analysis (CCA) on log-transformed species composition data, rescaled to 441 

maximum variance one explanatory variable could theoretically explain (equal to variance 442 

represented by the first axis of correspondence analysis calculated on same species composition 443 

data; Šmilauer & Lepš 2014). The use of CCA is inspired by link between its unconstrained 444 
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version (CA) and fourth-corner approach (Peres-Neto et al. 2017), and although the ordination 445 

based on chi-square distances may not be the best method for CWM correlation (which does not 446 

apply species and sample weights in calculation), I use it here as a reasonable proxy. Note that 447 

the strength of L-e in analysis of simulated and real data is quantified by different methods; in 448 

simulated data, the strength is manipulated post hoc by adding certain level of noise to values of 449 

sample attributes (which by construction has strong L-e link), while in real data, the strength is 450 

calculated as variance in L explained by e. Since in real study the species composition data are 451 

the same for each combination of t and e, beta diversity is fixed and R2
CCA reflects only the L-e 452 

strength. If the beta diversity was left to vary (e.g. by calculating CWM for species attributes 453 

with missing values of t), the R2
CCA would reflect both L-e strength and beta diversity of L. 454 

All analyses were done in R-project (version 3.5.0, R Foundation for Statistical 455 

Computing, Vienna, Austria, https://www.R-project.org/); complete R-script is available in 456 

Appendix S1. Simulated data were generated by package simcom (Zelený, unpublished), and 457 

CWM correlation was calculated by weimea (Zelený, unpublished; source code of v. 0.1.10 in 458 

Appendix S2, the latest version at https://github.com/zdealveindy/weimea). 459 

 460 

Results 461 

In an analysis based on simulated data, all three data characteristics (beta diversity, the strength 462 

of L-e link and sample size) influenced the inflation index of CWM correlation tested by 463 

standard parametric test (Fig. 3). The inflation index is negatively related to beta diversity and 464 

positively to the strength of L-e link (Fig. 3a,b). In the case of maximum beta diversity (samples 465 
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does not share any species) the inflation index is approaching unity for all strengths of L-e link. 466 

Inflation index is also positively related to the number of samples (Fig. 3c), with the highest 467 

inflation index for the most homogeneous community (number of communities = 1); for the most 468 

heterogeneous community (maximum beta diversity) the inflation index oscillates around unity. 469 

The max test applied on the same data removes the problem of inflated Type I error rate from all 470 

combinations of the three data characteristics (returning inflation index close to 1). 471 

In the analysis of real data, beta diversity of the species composition data and the number 472 

of samples were fixed, and only the strength of L-e varied (differ among individual 473 

environmental variables). Those environmental variables with a stronger link to species 474 

composition were significantly (P < 0.05) related to higher number of CWM of indicator values, 475 

with intrinsic variable (CA1) related to all five (Fig. 4a). In an analysis where randomly 476 

generated ones replaced real indicator values, the inflation index increased with the strength of 477 

L-e relationship, with values over 8 for environmental variables most strongly related to 478 

environment and almost 10 for CA1 (Fig. 4b). 479 

 480 

Discussion 481 

To avoid inflated Type I error rate in CWM approach, Peres-Neto et al. (2017) suggested using 482 

the max test as a universal solution. I suggest that as an alternative to this “one-fits-all” solution, 483 

it is useful to fully clarify what are the underlying assumptions the analysed question is putting 484 

on the links between members in the game, namely links of species composition to species 485 

attributes (L-t) or sample attributes (L-e), respectively. Standard (row-based parametric or 486 
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permutation) test controls for Type I error rate for the hypothesis in category A, and results of 487 

these studies, therefore, do not need to be considered as overly optimistic. In contrast, hypotheses 488 

in categories B and C requires alternative testing approach, namely column-based (modified) 489 

permutation test (B) and max test (C), to control for the Type I error rate. This concept can be 490 

useful for published studies using CWM approach with standard test, for which one can either 491 

clarify whether in the context of given study (with explicitly formulated hypothesis) the standard 492 

test returns correct Type I error rate (category A) and if not, whether it is possible to formulate 493 

an alternative hypothesis for which the presented results would be valid.  494 

If the study fits the category for which Type I error rate of standard tests is inflated 495 

(category B or C), one can evaluate what is the probability that the reported values are overly 496 

optimistic. For this, information about beta diversity, the strength of L-e relationship and the 497 

sample size is needed, or needs to be calculated from the original data (if available). This can 498 

also help with conducting a meta-analysis in the future which would evaluate the scale of the 499 

problem (how many published studies report overly optimistic results). Indeed, in many 500 

published studies the data characteristics are not reported, and original data are not available; 501 

then only a rough guess whether the risk is high or low is possible based on available data 502 

description. Such guesses are, indeed, only approximate, and re-analysis using the original data 503 

is needed to get an exact answer. 504 

Transformation of species abundances (e.g. square-root, log, or presence-absence) will 505 

influence the beta diversity of species composition data (and possibly of the strength of L-e link) 506 

and consequently also inflation index in CWM approach. For example, one may ask whether 507 
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traits or indicator values are better related to the environment if raw abundances or presences-508 

absences are used for CWM calculation (Hill & Carey 1997; Pakeman et al. 2007). In this sense, 509 

the practice differs between the use of traits and indicator values. For traits, the weighting of 510 

individual species values by species abundances in the community is justified by Grime’s Mass 511 

ratio hypothesis, which states that the functional effect of given species is proportional to its 512 

relative contribution to the total biomass of the community (Grime 1998). In contrast, CWM of 513 

Ellenberg-type species indicator values more often calculated unweighted by species abundances 514 

(i.e. calculated from presence-absence species composition data), because even species with low 515 

abundance or biomass can be a good indicator of environmental conditions (Ellenberg et al. 516 

1992). Attempts to answer whether raw abundances or transformed data should be used to 517 

calculate CWM are usually done by calculating both CWM of raw and transformed species 518 

attributes using the same dataset and relating them to the same sample attributes, including 519 

testing the significance by standard tests (Pakeman et al. 2007). This approach, however, does 520 

not allow separating the conceptual effect of species data transformation from a mere artefact 521 

caused by the fact that data transformation influences inflation index by changes in data 522 

characteristics. 523 

Inflation index of standard test in CWM approach is likely to be also influenced by 524 

removal of species from species composition matrix, which changes the beta diversity of species 525 

composition and strength of L-e relationship. Species are usually removed because they are 526 

missing value for given species attribute (e.g. traits measured only for a subset of dominant 527 

species, or indicator values without assigning values to generalists) or because of some arbitrary 528 

decision (e.g. removing rare species). If more species attributes are related by CWM approach to 529 
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the same sample attribute using the same species composition matrix, and if these attributes have 530 

different proportion and identity of missing species, resulting inflation index can differ among 531 

species attributes. This can also bias results of studies that explicitly ask about the sensitivity of 532 

CWM approach to missing species values (Ewald 2003; Pakeman & Quested 2007) if these are 533 

based on comparing the number of significant relationships of CWM between the same species 534 

and sample attributes on datasets with increasing proportion of removed species.  535 

Species with missing values of species attributes values are treated differently in CWM 536 

approach applied on traits and Ellenberg-type indicator values. For traits, CWM is often defined 537 

as the mean weighted by relative contributions of species into overall biomass, where overall 538 

biomass also includes species for which traits were not measured (e.g. Garnier et al. 2004), while 539 

for indicator values, species without indicator values (often generalists) are simply disregarded 540 

from the calculation (Diekmann 2003). For traits, this is equivalent to calculating species relative 541 

contribution pij from absolute species abundance divided by abundance sum of all species present 542 

in the community (including those with missing trait values). For indicator values, in contrast, 543 

species with missing indicator values are first removed from L and pij is calculated as lij divided 544 

by sum of lij for species left in the matrix. Considering or disregarding the species without 545 

species attributes in the CWM calculation changes the absolute value of CWM and in result also 546 

the parameters estimated and tested by CWM approach. 547 

In this study, I explicitly ignored intraspecific variation in species attributes, using only 548 

dataset-wide mean species attribute values. Indeed, intraspecific variation is important, both in 549 

the context of functional traits (Albert et al. 2012) and potentially also Ellenberg-type indicator 550 
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values (Peppler-Lisbach 2008). In case of traits, intraspecific variability can be considered by 551 

calculating CWM values from the site- or treatment-specific species trait values (Lepš et al. 552 

2011). In the case of Ellenberg-type indicator values, species ecological amplitude can be 553 

implemented as extra weight in CWM formula (Peppler-Lisbach 2008). Whether and how much 554 

is the Type I error rate of such calculations inflated remain to be tested. 555 

Finally, the relevant consideration is whether the CWM approach is the best analytical 556 

solution for the question we aim to answer. In cases when the question is explicitly focused on 557 

relating community-level values of species attributes, like mean Ellenberg-like species indicator 558 

values (serving as an estimate of ecological conditions for individual sites) or the CWM of traits 559 

(as one of the functional-diversity metrics and as a community-level trait value) the use of CWM 560 

approach is entirely justified. In other cases, when the question is focused on relating individual 561 

species-attributes to sample attributes, the fourth corner approach should be considered as it is 562 

more powerful in detecting the sample attribute-species attribute relationship (Peres-Neto et al. 563 

2017).  564 

 565 

Conclusions 566 

The CWM approach with standard (row-based) test returns correct Type I error rate only in case 567 

the tested hypothesis assume that species composition is linked to species attributes. In other 568 

cases, the Type I error rate of the standard test is inflated, and the inflation index depends on the 569 

interaction between the beta diversity of species composition matrix, the strength of the 570 

relationship between species composition and sample attributes, and the number of samples in 571 
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the analysis. An alternative to standard test is a column-based or max test, respectively, 572 

controlling Type I error rate if species composition is linked to sample attributes (column-based 573 

test) or no link is assumed (max test). This concept can be used to evaluate whether results of 574 

studies using CWM approach with standard test report correct or inflated Type I error rate, and if 575 

inflated, how much. 576 
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Tables with legends 717 

Table 1. Overview of the characteristics of the three categories of hypotheses tested by the CWM 718 

approach. For each category, the corresponding assumption about a link between sample 719 

attributes (e) or species attributes (t) and species composition (L) is provided (X <–//–> X: no link, 720 

X <–>X: link), as well as the null vs alternative hypothesis and the recommended test. 721 

Category of hypotheses A B C 

The assumption about the 
link between objects 
(explicit or implicit) 

t <–> L e <–> L no assumption  

Null hypothesis e <–//–> L t <–//–> L 
e <–//–> t,  
i.e. e <–//–> L 
and/or t <–//–> L 

Alternative hypothesis e <–> L t <–> L 
e <–> t,  
i.e. e <–> L and t <–
> L 

Recommended test 

standard 
parametric test, 
row-based 
permutation test 

a column-based 
permutation test 
(modified 
permutation test) 

max test 
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Figures with legends  723 

 724 

Fig. 1. Schema of (a) community-weighted mean approach, which generates the observed value 725 

of the test statistic (depending on the method used), and (b) available tests of this statistic. Three 726 
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tests are available: (i) row-based permutation test (analogy to standard parametric test of c-e 727 

relationship), (ii) column-based permutation test (called ‘modified permutation test’ in Zelený & 728 

Schaffers 2012), and (iii) max test (called also ‘row-column based permutation test’ in Peres-729 

Neto et al. 2017, or ‘sequential test’ in ter Braak et al. 2012). Notation: e = sample attribute (e.g. 730 

environmental variable), t = species attribute (e.g. trait), L = matrix of species composition, c = 731 

CWM calculated from t and L, tp = species attributes permuted among species, ep = sample 732 

attributes permuted among samples, cp = CWM calculated from tp and L. 733 
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    735 

Fig. 2. Differences in assumptions behind three categories of hypotheses tested by CWM 736 

approach. The bold link indicates that the hypothesis explicitly or implicitly assumes the link 737 

between the matrix of species composition (L) and either the vector of species attributes (t) or 738 

vector sample attributes (e) and this link is therefore not tested. Question mark, on the other hand, 739 

indicates that this link is not explicitly or implicitly acknowledged and can be tested. 740 
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 742 

Fig. 3. The effect of data characteristics on the inflation index of CWM correlation between 743 

CWM of species attributes and sample attributes, tested by parametric t-test of Pearson’s 744 

correlation coefficient (panels in top row) and max test (bottom row). Three data characteristics 745 

were evaluated: beta diversity of the community dataset (number of communities 1-9 and max. = 746 

maximum, when samples in the dataset does not share any species); the strength of the link 747 

between sample attributes and species composition (L-e; 0 = no link, e completely randomized;  748 

1 = full link, generated by the simulation model; CA1 = sample scores on the first CA axis), and 749 

the number of samples in the community (25-800). CA1 scores are intrinsic sample attributes 750 
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with maximum strength of L-e link, since they are derived by correspondence analysis from the 751 

community matrix L. In each of the panels, one of the characteristics is fixed and the other two 752 

are left to vary: in (a, d) and (b, e) beta diversity and L-e link vary, while the number of samples 753 

is fixed (n = 100), while in (c, f) the number of samples and beta diversity vary, while the 754 

strength of L-e is fixed (to value 0.6). The dashed horizontal line is for inflation index equal to 755 

one (no inflation). 756 
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  758 

Fig. 4. CWM correlations between CWM of Czech indicator values and environmental variables 759 

in the real dataset (Vltava), tested by parametric t-test (a, b) and max permutation test (c, d). (a) 760 

The number of significant (P < 0.05) correlations between CWM of indicator values and 761 

environmental variable (y-axis) increases with the strength of L-e relationship (x-axis, measured 762 

as rescaled variance explained by this e in CCA). (b) Inflation index of CWM correlation (y-axis) 763 

also increases with the strength of L-e relationship. If the max test replaces standard test, the 764 

number of significant indicator values does not relate to the strength of L-e relationship (c) and 765 
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the inflation index is close to unity for all environmental variables (d). ρ = Spearman’s 766 

coefficient of correlation between variables on x- and y-axis (*** = P < 0.001, ** = P < 0.01, n.s. 767 

= not significant). Dashed horizontal line (b, d) is for inflation index equal to one (no inflation). 768 

Environmental variables: ELE = elevation, SLO = slope, ASP = folded aspect, H_L = heat load, 769 

SSL = landform shape in the downslope direction, SIS = landform shape along an isohypse, LIT 770 

= presence of lithic leptosols, SKE = presence of skeletic and hyperskeletic leptosols, CAM = 771 

presence of cambisol, FLU = presence of fluvisols, SDP = soil depth, pH = soil pH, C32 – cover 772 

of tree and shrub canopy. 773 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2018. ; https://doi.org/10.1101/349589doi: bioRxiv preprint 

https://doi.org/10.1101/349589
http://creativecommons.org/licenses/by-nc-nd/4.0/

