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1 Abstract1

High-dimensional flow and mass cytometry allow cell types and states to be characterized in2

great detail by measuring expression levels of more than 40 protein markers per cell. Here3

we present diffcyt, a new computational framework for differential discovery analyses in4

these datasets, based on (i) high-resolution clustering and (ii) empirical Bayes moderated5

tests adapted from transcriptomics. Our approach provides improved statistical performance,6

including for rare cell populations, along with flexible experimental designs and fast runtimes7

in an open-source framework.8

2 Introduction9

High-dimensional flow cytometry and mass cytometry (or CyTOF, for ‘cytometry by time-of-10

flight mass spectrometry’) characterize cell types and states by measuring expression levels11

of pre-defined sets of surface and intracellular proteins in individual cells, using antibodies12

tagged with either fluorochromes (flow cytometry) or heavy metal isotopes (mass cytometry).13

Modern flow cytometry systems allow simultaneous detection of more than 20 proteins per cell,14

in thousands of cells per second [23]. In mass cytometry, the use of metal tags significantly15

reduces signal interference due to spectral overlap and autofluorescence, enabling detection16

of more than 40 proteins per cell in hundreds of cells per second [5, 23]. Recently, further17

increases in the number of detected proteins have been demonstrated using oligonucleotide-18

tagged antibodies and single-cell DNA sequencing [24]; this has also been combined with19

single-cell RNA sequencing on the same cells [27, 19].20

The rapid increase in dimensionality has led to serious bottlenecks in data analysis.21

Traditional analysis by visual inspection of scatterplots (‘manual gating’) is unreliable and22

inefficient in high-dimensional data, does not scale readily, and cannot easily reveal unknown23

cell populations [23]. Significant efforts have been made to develop computationally guided24

or automated methods that do not suffer from these limitations. For example, unsupervised25

clustering algorithms are commonly used to define cell populations in one or more biological26

samples. Recent benchmarking studies have demonstrated that several clustering methods27

can accurately detect known cell populations in low-dimensional flow cytometry data [3],28
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and both major and rare known cell populations in high-dimensional data [30]. A further29

benchmarking study comparing supervised methods for inferring cell populations associated30

with a censored continuous clinical variable demonstrated good performance for two methods31

using data of moderate dimensionality [2].32

Several new methods have recently been developed for performing (partially) supervised33

analyses with the aim of inferring cell populations or states associated with an outcome34

variable in high-dimensional cytometry data, including Citrus [7], CellCnn [4], cydar [15],35

and a classic regression-based approach [17]. However, these existing methods have a36

number of limitations (summarized in Supplementary Table 1). In particular: (i) detected37

features from Citrus cannot be ranked by importance, and the ranking of detected cells from38

CellCnn cannot be interpreted in terms of statistical significance; (ii) rare cell populations39

are difficult to detect with Citrus and cydar (by contrast, CellCnn is optimized for analysis40

of rare populations); (iii) the response variable in the models for Citrus and CellCnn is the41

outcome variable, which makes it difficult to account for complex experimental designs; and42

(iv) CellCnn and cydar do not distinguish conceptually between ‘cell type’ and ‘cell state’43

(or functional) markers, which can make interpretation difficult.44

Here we present diffcyt, a new computational framework using high-resolution45

unsupervised clustering together with supervised statistical analyses to detect cell populations46

or states associated with an outcome variable in high-dimensional cytometry data. Figure 147

provides an overview of the diffcyt methodology (a detailed description is included in48

Supplementary Note 1). Clustering is used to define cell populations, and empirical Bayes49

moderated tests adapted from the transcriptomics field are used for differential analysis.50

By default, our implementation uses the FlowSOM clustering algorithm [28], given its strong51

performance and fast runtimes [30] (other high-resolution clustering algorithms could also be52

substituted). For the differential analyses, we use methods from edgeR [22, 16], limma [21],53

and voom [12], which are widely used in transcriptomics; in addition, we include alternative54

methods adapted from the classic regression-based framework [17].55

Our methods consolidate several aspects of functionality from the existing methods56

described above. Similar to cydar and the classic regression framework, our model57

specification uses the cytometry-measured features (cell population abundances or median58
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expression of cell state markers within populations) as response variables, which enables59

analysis of complex experimental designs, including accounting for batch effects, paired60

designs, and continuous covariates. Linear contrasts enable testing of a wide range of61

hypotheses. Rare cell populations can easily be investigated, since the use of high-resolution62

clustering ensures that rare populations are unlikely to be merged into larger ones. In addition,63

as in Citrus and the classic regression framework, we allow the user to split the set of64

protein markers into ‘cell type’ and ‘cell state’ markers. Cell type markers are used to define65

clusters representing cell populations, which are tested for differential abundance (DA); and66

median cell state marker signals per cluster are used to test for differential states (DS) within67

populations. We note that the underlying concepts of cell type and cell state are challenging68

to define precisely, and may partially overlap. In general, ‘cell type’ refers to relatively stable69

or permanent features of a cell’s identity, while ‘cell state’ refers to transient features such70

as signaling or other functional states or the cell cycle [29, 20, 31]. In our view, recognizing71

this distinction greatly improves biological interpretability, since the results can be directly72

linked back to existing cell types or populations of interest [17]. Finally, our methods have73

fast runtimes, enabling exploratory and interactive analyses.74
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Figure 1. Overview of diffcyt methodology. The diffcyt framework applies high-resolution clustering
and empirical Bayes moderated tests for differential discovery analyses in high-dimensional cytometry data.
(a) Input data are provided as tables of protein marker expression values per cell, one table per sample.
Markers may be split into ‘cell type’ and ‘cell state’ categories; cell type markers are used for clustering.
(b) High-resolution clustering summarizes the data into a large number (e.g. 100–400) of clusters representing
cell subsets. (c) Features are calculated at the cluster level, including cluster cell counts (abundances), and
median expression of cell state markers within clusters. (d) Differential testing methods can be grouped
into two types: differential abundance (DA) of cell populations, and differential states (DS) within cell
populations. Test results are returned as sets of significant detected clusters (DA tests) or cluster-marker
combinations (DS tests). (e) Results are interpreted with the aid of visualizations, such as heatmaps.
A detailed description of the diffcyt methodology is provided in Supplementary Note 1; existing methods
are described in Supplementary Note 2.
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3 Results75

We demonstrate the performance of our methods on two semi-simulated datasets (‘AML-sim’76

and ‘BCR-XL-sim’) and two published experimental datasets (‘Anti-PD-1’ and ‘BCR-XL’).77

The semi-simulated datasets have been constructed by computationally introducing an78

artificial signal of interest (an in silico spike-in signal) into experimental data, thus reflecting79

the properties of real experimental data while also including a known signal for evaluation.80

A complete description of all datasets is provided in Supplementary Note 3 (including81

Supplementary Tables 2–5 and Supplementary Figures 2–3).82

The AML-sim dataset evaluates performance for detecting differential abundance of83

rare cell populations. The dataset contains a spiked-in population of acute myeloid leukemia84

(AML) blast cells, in a comparison of 5 vs. 5 paired samples of otherwise healthy bone85

marrow mononuclear cells, which simulates the phenotype of minimal residual disease in86

AML patients (the data generation strategy is adapted from [4], and uses original data from87

[13]). The simulation was repeated for two subtypes of AML (cytogenetically normal, CN;88

and core binding factor translocation, CBF), and three thresholds of abundance for the89

spiked-in population (5%, 1%, and 0.01%). Figure 2(a) displays representative results for90

one subtype (CN) and one threshold (1%), for all diffcyt DA methods as well as Citrus,91

CellCnn, and cydar (complete results are included in Supplementary Figure 3). Methods92

diffcyt-DA-edgeR, diffcyt-DA-voom, and CellCnn give the best performance; the diffcyt93

results can also be interpreted as adjusted p-values, enabling a standard statistical framework94

where a list of significant ‘detected’ clusters is determined by specifying a cutoff for the95

false discovery rate (FDR). diffcyt-DA-GLMM has inferior error control at the given FDR96

cutoffs, and reduced sensitivity at the highest spike-in threshold (5%). Citrus detects only a97

subset of the spiked-in cells, and cydar cannot reliably distinguish these rare populations.98

Figure 2(b) displays p-value distributions from an accompanying ‘null simulation’, where99

no true spike-in signal was included; the p-value distributions for the diffcyt methods are100

approximately uniform, indicating good error control and model fit (additional replicates101

are included in Supplementary Figure 4). Figure 2(c) illustrates the expression profiles102

(phenotypes) and relative abundances by sample for the detected and true differential clusters103
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(additional heatmaps are included in Supplementary Figure 5). Figure 2(d) demonstrates104

the effect of varying the number of clusters across a broad range (between 9 and 1,600).105

Performance is reduced when there are too few clusters (due to merging of populations) or106

too many clusters (due to low power). The number of clusters is the main parameter choice107

in the diffcyt methods; an optimum is achieved around 400 clusters for this dataset (the108

remaining thresholds and condition are shown in Supplementary Figure 6).109

Additional results provide further details on overall performance and robustness of110

the diffcyt methods. The top detected clusters represent high-precision subsets of the111

spiked-in population, confirming that the high-resolution clustering strategy has worked as112

intended (Supplementary Figure 7). Filtering clusters with low cell counts (using default113

parameters) did not remove any clusters from this dataset. An alternative implementation of114

the diffcyt-DA-voom method (using random effects for paired data) gives similar overall115

performance (Supplementary Figure 8). Using FlowSOM ‘meta-clustering’ to generate 40116

merged clusters instead of testing at high resolution worsens both error control and sensitivity117

(Supplementary Figure 9). Sensitivity to random seeds used for the clustering and data118

generation procedures is highest at the 0.1% threshold, as expected (Supplementary Figures119

10–11). Similarly, additional simulations containing ‘less distinct’ populations of interest (see120

Supplementary Note 3) demonstrate that sensitivity to reduced signal strength is highest121

at the 0.1% threshold (Supplementary Figure 12). Using smaller sample sizes (2 vs. 2)122

affects performance noticeably at the lower thresholds (Supplementary Figure 13). Finally,123

runtimes are fastest for methods diffcyt-DA-edgeR and diffcyt-DA-voom (Supplementary124

Figure 14).125

The second dataset, BCR-XL-sim, evaluates performance for detecting differential states126

within cell populations. This dataset contains a spiked-in population of B cells stimulated127

with B cell receptor / Fc receptor cross-linker (BCR-XL), in a comparison of 8 vs. 8 paired128

samples of healthy peripheral blood mononuclear cells (original data sourced from [6]). The129

stimulated B cells have elevated expression of several signaling state markers, in particular130

phosphorylated ribosomal protein S6 (pS6); methods are evaluated by their ability to detect131

differential expression of pS6 within the population of B cells. Figure 2(e) summarizes132

performance for the diffcyt DS methods and the existing methods. The diffcyt methods133
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give the best performance, with diffcyt-DS-limma having better error control. Citrus134

and CellCnn detect differential expression of pS6 for only a subset of the spiked-in cells,135

and cydar gives poor performance (likely due to ambiguity in assigning cells to overlapping136

‘hyperspheres’ in the high-dimensional space in order to calculate performance metrics).137

Figure 2(f) displays p-value distributions from a null simulation; p-values are approximately138

uniform across replicates, as previously (additional replicates are included in Supplementary139

Figure 15). Figure 2(g) displays expression profiles of detected and true differential clusters,140

along with expression by sample of the signaling marker pS6 (additional heatmaps are141

included in Supplementary Figure 16). Figure 2(h) demonstrates the effect of varying the142

number of clusters. As previously, performance is reduced when there are too few or too143

many clusters; for this dataset, an optimum is observed across a broad range, including 100144

clusters.145

Additional results provide further details for this dataset. As previously, the146

top detected clusters represent high-precision subsets of the population of interest147

(Supplementary Figure 17). Filtering with default parameters did not remove any clusters.148

Alternative implementations of diffcyt-DS-limma (using random effects for paired data)149

and diffcyt-DS-LMM (using fixed effects for paired data) give similar performance overall150

(Supplementary Figure 18). For this dataset, using FlowSOM meta-clustering to merge151

clusters does not reduce performance (Supplementary Figure 19). Varying random seeds152

for the clustering and data generation procedures does not significantly affect performance153

(Supplementary Figures 20–21). Additional simulations containing ‘less distinct’ populations154

of interest (see Supplementary Note 2) show deteriorating performance when the signal is155

reduced by 75% (Supplementary Figure 22). Using smaller sample sizes (4 vs. 4 and 2 vs. 2)156

worsens error control, especially for diffcyt-DS-LMM (Supplementary Figure 23). Runtimes157

are fastest for diffcyt-DS-limma (Supplementary Figure 24).158

In order to demonstrate our methods on experimental data, we re-analyzed a dataset159

from a recent study using mass cytometry to characterize immune cell subsets in peripheral160

blood from melanoma patients treated with anti-PD-1 immunotherapy [11] (‘Anti-PD-1’161

dataset). In this study, differential signals were detected for a number of cell populations,162

both in response to treatment and in ‘baseline’ comparisons before treatment, between groups163
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Figure 2. Results of performance evaluations and benchmarking for semi-simulated datasets.
(a, e) Performance metrics for (a) dataset AML-sim, testing for differential abundance (DA) of cell populations;
and (e) dataset BCR-XL-sim, testing for differential states (DS) within cell populations. Panels show (i)
receiver operating characteristic (ROC) curves, and (ii) true positive rate (TPR) vs. false discovery rate
(FDR) (also indicating observed TPR and FDR at FDR cutoffs 1%, 5%, and 10%). For dataset AML-sim,
representative results for one condition (CN vs. healthy) and abundance threshold (1%) are shown (complete
results are included in Supplementary Figure 3). (b, f) Results for additional ‘null simulations’, where no
true spike-in signal was included; p-value distributions are approximately uniform (additional replicates are
included in Supplementary Figures 4 and 15). (c, g) Heatmaps displaying expression profiles (phenotypes) of
detected and true differential clusters, along with the signal of interest (abundances by sample or expression
of signaling marker pS6 by sample), for methods diffcyt-DA-edgeR and diffcyt-DS-limma. Expression
values represent median arcsinh-transformed expression per cluster across all samples (left panels) or by
individual samples (right panel in (g)); rows (clusters) are grouped by hierarchical clustering with Euclidean
distance and median linkage. Each heatmap shows the top 20 most highly significant clusters for that
method. Vertical annotation indicates detected significant clusters at 10% FDR (red) and clusters containing
>50% true spiked-in cells (black). (Additional heatmaps are included in Supplementary Figures 5 and 16).
(d, h) Results for varying clustering resolution (between 9 and 1,600 clusters per dataset); showing partial
area under ROC curves (pAUC) for false positive rates (FPR) <0.2 (additional figures are included in
Supplementary Figure 6). Performance metric plots generated using iCOBRA [25]; heatmaps generated using
ComplexHeatmap [9].
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of patients classified as ‘responders’ and ‘non-responders’ to treatment. One key result164

was the identification of a small subpopulation of monocytes, with frequency in ‘baseline’165

samples (prior to treatment) strongly associated with responder status. The relatively rare166

frequency made this population difficult to detect; in addition, the dataset contained a167

strong batch effect due to sample acquisition on two different days [11]. Using method168

diffcyt-DA-edgeR to perform a differential comparison between baseline samples from169

the responder and non-responder patients (and taking into account the batch effect), we170

correctly identified three significant differentially abundant clusters (at an FDR cutoff of171

10%) with phenotypes that closely matched the subpopulation of monocytes detected in the172

original study (CD14+CD33+HLA-DRhiICAM-1+CD64+CD141+CD86+CD11c+CD38+PD-173

L1+CD11b+ monocytes) (clusters 317, 358, and 380; Supplementary Figure 25). One174

additional cluster with a different phenotype was also detected (cluster 308). However, these175

results were sensitive to the choice of random seed for the clustering: in 5 additional runs176

using different random seeds, we detected between 0 and 4 significant differentially abundant177

clusters (at 10% FDR) per run; clusters matching the expected phenotype were detected in 4178

out of the 5 runs (Supplementary Figure 26).179

For a second evaluation on experimental data, we re-analyzed the original (unmodified)180

data from the BCR-XL stimulation condition in [6] (‘BCR-XL’ dataset). This dataset contains181

strong differential signals for several signaling state markers in several cell populations, as182

previously described [6, 17]. Using method diffcyt-DS-limma, we reproduced several of the183

major known signals, including strong differential expression of: (i) pS6, pPlcg2, pErk, and184

pAkt (elevated), and pNFkB (reduced, in BCR-XL stimulated condition) in B cells (identified185

by expression of CD20); (ii) pBtk and pNFkB in CD4+ T cells (identified by expression of186

CD3 and CD4); and (iii) pBtk, pNFkB, and pSlp76 in natural killer (NK) cells (identified by187

expression of CD7). Here, phenotypes can be identified either by marker expression profiles188

(Supplementary Figure 27) or using reference population labels (Supplementary Figure 28).189
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4 Discussion190

We have presented a new computational framework for performing flexible differential191

discovery analyses in high-dimensional cytometry data. Our methods are designed for192

two related but distinct discovery tasks: detecting differentially abundant cell populations,193

including rare populations; and detecting differential expression of functional or other cell194

state markers within cell populations. Compared to existing approaches, our methods provide195

improved detection performance on semi-simulated benchmark datasets, along with fast196

runtimes. We have also successfully recovered known differential signals in re-analyses of two197

published experimental datasets, including differential abundance of a highly specific rare198

population. Our methods can account for complex experimental designs, including batch199

effects, paired designs, and continuous covariates. In addition, the set of protein markers200

may be split into cell type and cell state markers, facilitating biological interpretability.201

Visualizations such as heatmaps can be used to interpret the high-resolution clustering202

results (for example, to judge whether groups of clusters form larger populations, and to203

identify the phenotype of detected clusters). Methods diffcyt-DA-edgeR (for DA tests) and204

diffcyt-DS-limma (for DS tests) achieved the best performance and fastest runtimes overall205

(Figure 2); we recommend these as the default choices.206

One limitation of our framework is that groups of similar clusters cannot be automatically207

merged into larger cell populations with a consistent phenotype. For example, the clear208

group of detected clusters in Figure 2(g) would ideally be merged into a single population209

representing B cells. However, this is a difficult computational problem, since the optimal210

resolution depends on the biological setting, and any automatic merging must avoid merging211

rare cell populations into larger ones. Our high-resolution clustering approach instead provides212

a tractable ‘middle ground’ between discrete clustering and a continuum of cell populations;213

we return results directly at the level of high-resolution clusters, and let the user interpret214

them via visualizations. A related limitation concerns the identification of cell population215

phenotypes: while our approach relies on visualizations, improved methods for automatic216

annotation and labeling of clusters (e.g. [1]) may allow cell populations to be identified in a217

more automated manner, and could be integrated with our framework. A further limitation218
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relates to batch effects: in datasets with strong batch effects, the high-resolution clustering219

may separate by batch, making it more difficult to distinguish the signal of interest. Aligning220

cell populations across batches is an active area of research in single-cell analysis [8, 10, 18, 14];221

ideally, these methods will also be integrated with frameworks for downstream differential222

analyses. The main parameter choice in our methods is the number of clusters, which must be223

specified by the user. In most cases, we recommend higher numbers of clusters when rare cell224

populations are of interest (for example, we used 400 clusters for the AML-sim dataset, and225

100 clusters for the BCR-XL-sim dataset). The number of clusters determines the number of226

statistical tests, and affects power through the multiple testing penalty and the counts per227

cluster. This is a subjective choice, which may also be explored interactively; however, in our228

benchmarking evaluations, good results were obtained over a range of numbers of clusters229

(Figure 2(d, h)).230

In general, we note that our methods are designed for ‘discovery’ analyses: all results231

should be explored and interpreted using visualizations, and any generated hypotheses232

must ultimately be validated with targeted confirmatory experiments. Our methods233

are implemented in the open-source R package diffcyt, available from Bioconductor234

(http://bioconductor.org/packages/diffcyt). The package includes comprehensive235

documentation and code examples, including an extended workflow vignette. Code to236

reproduce all analyses and figures from our benchmarking evaluations is available from237

GitHub (https://github.com/lmweber/diffcyt-evaluations), and data files from the238

benchmarking datasets are available from FlowRepository (FR-FCM-ZYL8) [26], allowing239

other researchers to extend and build on our analyses.240
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5 Supplementary Material241

Supplementary Material is available as a single .pdf file containing Supplementary Notes242

1–3 and Supplementary Results (including Supplementary Tables 1–5 and Supplementary243

Figures 1–28).244
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