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Abstract 

Ovarian cancer is usually detected at a late stage with the 5-year survival at only 30-40%. 

Additional means for early detection and improved diagnosis are acutely needed. To search 

for novel biomarkers, we compared circulating plasma levels of 981 proteins in patients with 

ovarian cancer and benign tumours, using the proximity extension assay. A novel 

combinatorial strategy was developed for identification of multivariate biomarker 

signatures, resulting in 484 mutually exclusive models out of which 448 did not contain the 

present biomarker MUCIN-16. The top-ranking model consisted of 14 proteins and had a 

AUC=0.95, PPV=1.0, sensitivity=0.99 and specificity=1.0 for detection of stage III-IV ovarian 

cancer in the discovery data, and an AUC=0.89, PPV=0.93, sensitivity=0.89 and 

specificity=0.95 in the replication data. The novel plasma protein signature could be used to 

improve the diagnosis of women with adnexal ovarian mass or in screening to identify 

women that should be referred to specialized examination. 

 

Introduction 

 

Ovarian cancer is currently the 7th most common cancer across the world with estimated 

incidences from 4.1 to 11.4 cases per 100 000 women1. Since ovarian cancer is commonly 

caught late, the overall 5-year survival rate is only 30-40%. MUCIN-16 (also known as Cancer 

antigen 125, CA-125) was introduced as a biomarker for ovarian cancer in 19832 and is 

currently the most important single biomarker for epithelial ovarian cancer managment3. 

MUCIN-16 alone however, has low sensitivity for early stage cancer (50-62%) at a specificity 

of 94-98.5%3. Combinations of MUCIN-16 and other biomarkers, including WFDC2 (WAP 

Four-Disulfide Core Domain 2, also known as HE4 - human epididymal protein 4), such as the 

ROMA Score (Ovarian Malignancy Risk Algorithm), increases the sensitivity to 75% at similar 

specificity (90-95%)4. The low sensitivity for detection of early stage ovarian cancer prohibits 

population screening using the current biomarkers. A recent study in the UK suggests that 

multi-modal tests are approaching sufficient accuracy to justify screening from a health-

economic stand-point5. However, tests with low specificity have a high false positive rate, 

which will result in unnecessary anxiety and examinations and also additional cost for the 

health-care system.  
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The presently available biomarkers are mainly used to improve diagnosis of women that 

experience symptoms or when imaging such as transvaginal ultrasound (TVU) or computer 

tomography (CT) indicate adnexal ovarian mass. The tests/algorithms then triage patients in 

need of surgery at tertiary centres. Even in this context, identification of clinically useful 

biomarkers based on single or combination of proteins is challenging. Recent developments 

of high-throughput technologies for detection and quantification of proteins has made it 

possible to study thousands of biomarker candidates in a single sample. Skates and 

colleagues6 have presented a statistical framework for study design, sample size calculation 

in discovery and replication stages, for identification of single biomarkers that can 

distinguish between cases and controls, with special reference to ovarian cancer. They 

recommend selection of the highest ranking 50 biomarkers from a discovery stage, which 

are then examined in a replication stage. A smaller set of replicated markers is then used to 

build a classifier that is tested in clinical validation studies. We have previously shown7 that 

plasma protein levels for several protein biomarkers are highly correlated. This implies that 

sets of proteins can be identified in a discovery stage whose combined predictive power is 

not greater than their individual contribution. Also, biomarkers that are not significant on 

their own can increase the predictive power in combination with other, individually 

significant or non-significant, biomarkers.  

 

One approach for finding combinations of highly predictive biomarkers is to use exhaustive 

searches, such as the approach taken by Han and colleagues8 where 165 combinations of 

MUCIN-16 and a selection of three out of 11 additional biomarkers were examined for their 

ability to separate high-grade serous ovarian carcinoma from benign conditions. Such 

exhaustive approaches quickly become computationally unfeasible when the number of 

candidate proteins is high. For instance, choosing 4 from 1000 proteins can be done in over 

40 billion ways. Another strategy is to use feature selection with machine learning 

frameworks to select subsets of informative markers from a larger set. This approach has 

previously been used to build a classifier with 12 biomarkers selected from 92 for separating 

ovarian cancer from healthy controls or benign conditions9. This is achieved by splitting the 

samples into a training and a test set, but with fairly small sample sizes different models are 

usually generated depending on the subset of samples used for training. To overcome these 
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limitations, we developed a novel analysis strategy based on building models separating 

ovarian cancer from benign tumours, where we first identify smaller sets of proteins that are 

robustly selected across several splits, so-called cores. In the second step, we build a model 

by extending a core with additional proteins that have high predictive power in combination 

with the specific core.  

 

Here, we aimed to identify multiple mutually exclusive biomarker signatures differentiating 

benign conditions from ovarian cancers at different stages, grades and all histological 

subtypes. The signatures should be practically useful and contain up to 20 proteins selected 

from a total of 981 characterized plasma proteins in one discovery cohort and two 

replication cohorts.  

 

Results 

 

Characterization of plasma proteins in the discovery and replication cohorts 

 

A total of 552 proteins were characterized in the discovery and replication cohorts using the 

proximity extension assays (PEA) with the Olink Proseek Cardiometabolic, Cell Regulation, 

Development, Immune Response, Metabolism and Organ Damage panels (Methods). These 

measurements were combined with data from a previous study [Enroth et al, unpublished] 

on 460 characterized proteins in the discovery cohort, bringing the total number of unique 

proteins included in the analysis to 981. Forty-two of the 460 proteins have also been 

quantified in the replication cohorts using the proximity extension assay in two custom 21-

plex panels as previously described [Enroth et al, unpublished]. Following quality controls 

and normalization (Methods), a common set of 593 proteins (42 proteins from the previous 

5 panels and 551 from the additional 6 panels) characterized in all samples were used. 

 

484 distinct predictive models for ovarian cancer  

 

Models were generated using only the discovery data, according to our two-stage strategy. 

First, mutually exclusive protein cores, consisting of a smaller set of proteins, were selected 

by repeatedly splitting the data into training and test sets and retaining proteins that were 
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present in at least 70% of the models (Material and Methods, Figure 1A, B). Additional 

biomarkers where subsequently added to each core using a stepwise forward selection 

approach (Material and Methods, Figure 1C). The addition of proteins where terminated 

when the total model size was 20 proteins, or the next protein to be added did not 

substantially increase the performance of the model (Material and Methods). Using this 

strategy, we generated models to distinguish benign tumours from ovarian cancer stages I-II, 

III-IV and I-IV. For benign tumours versus stages I-II, the core had to be 2-6 proteins in length 

and have a sensitivity of at least 0.8, or a sensitivity and specificity above 0.6. For stages III-

IV, the allowed core size was 2-5, and had to have a sensitivity above 0.8 or a sensitivity and 

specificity above 0.7. Finally, for stages I-IV the allowed core size was 2-6 proteins, and the 

models were required to have a sensitivity above 0.8 or a sensitivity and specificity above 

0.7. These different parameter settings were used to identify models that can have either 

high sensitivity or high specificity or both, depending on the final application and to account 

for the fact that it is much more difficult to separate stages I and II from benign tumours 

compared to stages III and IV.  

  

The analysis resulted in 484 unique, mutually exclusive, models. The individual performance 

in the test-partition of the discovery data for the highest ranking 50 models is shown in 

Figure 2A. MUCIN-16, which is the clinically most useful single biomarker today, was the 

most common protein across cores in the 50 highest ranking models when sorting on core-

performance (average sensitivity and specificity in the test set from the discovery data, 

Figure 2B). Our search strategy specifically excludes sets of protein, and 448 of the detected 

cores did not contain MUCIN-16. In general, when MUCIN-16 was not included, the models 

contained a higher number of proteins (9 to 20) than when it was included (8 to 17). Overall, 

371 proteins were included in a core, or as an additional protein in at least one model. 

Among the top-ranking 50 cores and models, 115 proteins were selected in the addition 

phase compared to the list of 19 proteins that made up the core-set (Figure 2B, C). The 

performance of the 484 models in the test data is listed in Table 2 and a complete account of 

the models and their performances are listed in Supplementary Table 2. 

 

Replication of model performance 
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The performance of each model created from the discovery data was then evaluated in two 

replication cohorts. As the second replication cohort lacked patients with benign tumours, 

the benign tumours from the first replication cohort was used in both replication cohorts. 

Due to the relativeness of the NPX-scale (Material and Methods) and that the data in the 

discovery and replication sets were generated in different laboratory analysis runs, including 

parts of the data that was generated using a custom-panel [Enroth et al, unpublished], the 

replication cohorts were split into a test and training set (50-50) and model coefficients were 

re-determined with the R-package ‘glmnet’10. The performance of the models was then 

estimated in the training set. This was repeated 50 times for each model and the mean and 

standard deviation of sensitivity, specificity, positive and negative predictive values 

(PPV/NPV) and AUCs were recorded. The sensitivity and specificity were calculated at three 

different points on the ROC curve. The ‘best point,’ defined as the closest (Euclidean 

distance) point to perfect classification, and by selecting a minimum sensitivity or specificity 

of 0.93. The performance ranges of the models are listed in Table 2. The top-ranking model 

all contained MUCIN-16, but overall,  the average performance of models with MUCIN-16 

did not display any pattern in terms of improved result relative to those without MUCIN-16. 

About one third of the categories showed statistically higher scores in models with MUCIN-

16, about one third had lower scores and the last third did not show any significant 

difference in score (Wilcoxon ranked sum test, Bonferroni adjusted p-values, Supplement 

Table 3).  

 
Top-ranking model  
 

The top-ranking of the 484 models was based on a three-protein core with MUCIN-16, 

TACSTD2 and SPINT1. This core was extended with 11 additional proteins (FCGR3B, TRAF2, 

GKN1, CST6, SEMA4C, NID2, CEACAM1, CLEC6A, MILR1, CA3 and CDH3). The distribution of 

abundance levels for the core proteins in the 1st replication in patients with ovarian cancer 

stages III-IV and those with benign tumours are shown in Figure 3A. The core proteins have 

clearly deviating levels between the cancer cases and controls. This is further illustrated by a 

principle component analysis (PCA) based on the three core proteins (Figure 3B). The 

additional proteins are selected based on explained variance in the decision after 

adjustment for the variance explained by the already included proteins (Material and 
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Methods). Therefore, some of the first six additional proteins (Figure 3C) do not differ 

significantly in abundance between cases and controls when examined separately but 

contribute to the separation when examined in combination with the previously included 

proteins. The separation between benign tumours and ovarian cancer stages III-IV for the 

top-ranked 14-protein model is shown in the PCA in Figure 3D. 

 

Receiver Operating Characteristic (ROC) curves for benign tumours versus ovarian cancer 

stages I-II, III-IV and I-IV are shown in Figure 3E-G. Similar illustrations for the discovery and 

2nd replication cohort are given as Supplementary Figure 1 and 2. For separating benign 

tumours from ovarian cancer stages III-IV, the top-ranked 14-protein model had an AUC=0.9, 

a sensitivity=0.99 and a specificity=1.00 in the test-proportion of the discovery data. In the 

test proportion of the 1st replication data the model had an AUC=0.89, a PPV=0.93, a 

sensitivity=0.89 and a specificity=0.95. This should be compared to MUCIN-16 which by itself 

had an AUC=0.70, a PPV=0.81, a sensitivity=0.86 and a specificity=0.85 in same cohort 

(Figure 3F, Table 3). At a sensitivity above 0.93 in 1st and 2nd replication cohorts, the model 

achieved a specificity of 0.27 and 0.28, respectively, and at a specificity above 0.93 a 

sensitivity of 0.86 and 0.80. Performance measures for the discovery and replication cohorts 

for all the different stages investigated are listed in Table 3.  

 

Proof-of-concept model for practical use 

 

Several factors in addition to the ability to separate cases and controls may influence the 

choice of the proteins included in a multiplex test, such as comparison with established 

tests, measurable concentration range, and sensitivity of proteins to haemolysis of red blood 

cells causing leakage of proteins into the plasma. Taking these limitations into account, we 

started from the top-ranking core of the 484 models and allowed additional selection but 

restricted the search to proteins present in models with the highest performance in the 

discovery cohort. This list of possible additions was filtered by removing proteins sensitive to 

exposure to hemolysate11 and proteins that occur in much higher concentrations in human 

plasma than those in the selected core, and therefore would need to be diluted before 

assayed with PEA11. We then performed model selection as before based solely on the 

discovery data (benign tumours versus ovarian cancer stages III-IV) and identified a model 
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consisted of 8 proteins. We finally added three proteins (WFDC2, KRT19 and FR-alpha) based 

on their previous association with ovarian cancer stages I-II in our modelling, or in previous 

literature9,12,13. The 11-protein panel consisted of MUCIN-16, SPINT1, TACSTD2, CLEC6A, 

ICOSLG, MSMB, PROK1, CDH3, WFDC2, KRT19 and FR-alpha. The performance of this 11-

protein panel was then evaluated in the two replication cohorts (Table 3). In the 1st 

replication cohort the AUC=0.90, PPV=0.94, sensitivity=0.91 and specificity=0.95 to 

distinguish benign tumours from ovarian cancer stage III-IV. 

 
 
Discussion 
 
The current study was designed to identify mutually exclusive predictive biomarker 

signatures containing up to 20 proteins differentiating benign conditions from ovarian 

cancers at different stages, grades and all histological subtypes. This was done starting from 

a very large number of plasma proteins. These proteins were not selected based on prior 

association with ovarian cancer, but because of their availability in high-throughput 

multiplexed proteomics assays. The models were developed using a discovery cohort, and 

the performance of the models was then evaluated using two replication cohorts. In addition 

to the 484 biomarker signatures obtained using our computerized strategy, we developed 

one model taking into account protein-specific criteria such as abundance range and 

sensitivity to haemolysis. Finding combinations of predictive, robust, biomarkers is 

computationally intensive, and with several hundreds of proteins, exhaustive searches of 

combinations of up to 20 proteins is not feasible. To this end, we developed a strategy for 

identification of highly predictive unique signatures using hierarchical exclusion of individual 

proteins. By design, this lead to the discovery of many signatures that did not contain 

MUCIN-16. Overall, the signatures without MUCIN-16 contained a higher number of proteins 

than signatures with MUCIN-16, but there were no clear patterns were either group 

outperformed the other. Our top-ranking model achieved a sensitivity of 0.99 and specificity 

of 1.0 in the test proportion of the discovery data for separating benign tumours from 

ovarian cancer stage III-IV. A recent study by Boylan and colleagues9 reports perfect 

classification of benign tumours and late stage ovarian cancer using either MUCIN-16 or 

WFDC2 alone, by analysis of a single cohort with proteins measured using the same PEA 

technology as in our study. In our 1st replication cohort, MUCIN-16 alone had an AUC of 0.70, 
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0.65 and 0.51 for separating benign tumours from ovarian cancer stages III-IV, I-IV, and I-II, 

respectively (Figure 3F-G). The difference in performance between our study and that by 

Boylan and colleagues9 could be due to geographic origin of the cohorts (USA and Sweden), 

biological nature of the sample (i.e. serum versus plasma), or differences in sample sizes and 

model evaluations. Boylan and colleagues9 used 21 women with benign conditions and 21 

with late stage ovarian cancer, as compared to 71 and 56 in our study. Another study by Han 

and colleagues8 reported a sensitivity of 0.87 at a specificity of 1.0 for separating benign 

tumours from ovarian cancer stage I-IV, using the four proteins MUCIN-16, E-CAD, WFDC2, 

and IL-6. Our top-ranked model had a sensitivity of 0.85 and specificity of 0.91 under the 

same conditions. Similar to the results of these previous studies8,9, the performance of our 

models in the test-proportion of the discovery data is very good, with some models showing 

perfect classification. We also evaluated the selected models in two replication cohorts and 

found the performance similar, but somewhat lower than in the discovery set. This either 

implies that there are underlying differences between the cohorts, such as pre-analytical 

conditions, or that the models are over-trained with respect to the samples in the discovery 

cohort. The performance in the test-proportion of the discovery cohort should therefore be 

considered less certain than the results obtained in the replication cohorts. In our study, the 

benign tumours and the cancer samples from the 2nd replication cohort differ in pre-

analytical context, which could explain part of the lower performance as compared to using 

the 1st replication cohort. This highlights the importance of understanding the context in 

which a biomarker test is to be used as compared to the setting used for development of the 

model.  

Some of the proteins in the 14-protein panel and the 11-protein panel, aside from MUCIN-16 

and WFDC2 (HE4), have previously been associated to ovarian cancer. TACSTD2 (Tumor-

associated calcium signal transducer 2) expression has been associated with decreased 

survival of ovarian cancer and proposed as a prognostic factor14, and a biomarker for 

targeted therapy15. SPINT1 (Matriptase, HAI-2) is a type II transmembrane serine protease 

expressed on epithelial ovarian tumour cells. In advanced stage ovarian tumours, matriptase 

is expressed in the absence of HAI-1, its inhibitor, indicating that an imbalance between 

matriptase and HAI-1 is important in the development of ovarian disease16. Matriptase has 

also been proposed as an adjuvant therapeutic target for inhibiting ovarian cancer 

metastasis17. TRAF2 (TNF receptor-associated factor 2) regulates activation of NF-kappa-B 
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and JNK and is involved in apoptosis. Genetic polymorphisms in this gene have been 

associated with high-grade serous ovarian cancer and patients with clear cell ovarian 

carcinoma18. NID2 (Nidogen-2) has been proposed as blood biomarker for ovarian cancer 

and is strongly correlated to CA125 levels19. CEACAM1 (Carcinoembryonic antigen-related 

cell adhesion molecule 1) is a cell-cell adhesion receptor and strongly expressed in malignant 

ovarian tumours20. Analysis of circulating tumour cell RNA have seen an increased 

expression of KRT19 (Keratin, type I cytoskeletal 19), but no studies of the plasma protein 

level have been performed21. FR-alpha (Folate receptor alpha, FR-alpha) is a GPI-anchored 

glycoprotein and serum levels has been found to be elevated in ovarian cancer patients22,23 

and correlated to both clinical stage and histological type24,25. Finally, decreased expression 

of MSMB (Beta-microseminoprotein) has been shown to correlate with reduced survival of 

invasive ovarian cancer26. In order to study the potential of using the protein panels in 

diagnosis or screening, we determined their performance after tuning the models 

prioritizing either specificity or sensitivity. A diagnostic test for women with a transvaginal 

ultrasound indication of adnexal mass must possess a high sensitivity but can accept a 

moderate specificity. Previous investigations predicting the risk of malignancy in adnexal 

masses using TVU only27, reports sensitivities ranging from 99.7% to 89.0% with specificities 

of 33.7% to 84.7% for calculated risk scores of 1 to 30% and positive predictive values 

ranging from 44.8 to 75.4%. At a minimum sensitivity of 0.93 (actual sensitivities 0.97 and 

0.95 in the 1st and 2nd replication cohorts) our top-ranked protein model can distinguish 

between women with benign tumours and ovarian cancer stage III-IV with a specificity of 

0.27-0.28 and positive predictive values of 0.93-0.89. An earlier report28 retrospectively 

examined the predictive value of MUCIN-16 and WFDC2 among Swedish women that 

underwent surgery with suspected ovarian cancer. Out or 373 women, 58% were found to 

have benign tumours and 30% have ovarian cancer (15% stage I-II, 15% stage I-IV). That 

study reported a sensitivity of 61.9% at specificity of 75% with a positive predictive value of 

31.3% for MUCIN-16 and WFDC2 combined. Thus, the performance measures of the model 

presented here are higher than the current clinically used biomarker combinations, but 

lower than the highest reported performances of clinical specialists, albeit with a higher 

positive predictive value. A combined use of both TVU and a biomarker test is likely to give 

even higher specificity. An indication of the potential for using the protein model for 

identification of women at risk in population screening was obtained by studying the 
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sensitivity at high specificity. At a minimum specificity of 0.93, the top-ranked 14-protein 

panel has sensitivity for stages III-IV of 0.86/0.80 (1st/2nd replication cohort) and for stages I-

IV 0.58/0.73 in distinguishing benign tumours from women with ovarian cancer (Table 3). 

Further studies are needed using samples collected at different time-points prior to 

diagnosis to evaluate the potential of using the panel in population screening. In screening, 

the aim is not to distinguish between benign tumours and cancer, but between healthy 

women and cancer, and it is likely that there will be more pronounced differences when 

comparing to a healthy population. In support of this notion, we have shown29 that the 

sensitivity to distinguish population controls from stage I-IV cancer was 0.62 and stage III-IV 

was 0.78. Future studies including age-matched population controls have to be conducted to 

determine the performance of the 14-protein biomarker set in population screening.  

 

In summary, we have developed a strategy for identification of protein cores that resulted in 

mutually exclusive combinations of protein signatures that can separate between benign 

tumours and ovarian cancers. The results demonstrate the ability to achieve high 

performance characteristics without including MUCIN-16. We also show that broad searches 

for novel combinations of protein biomarkers that on their own are not necessarily good 

predictors is a powerful approach for finding relevant biomarkers for disease.  

 
 
Materials and Methods 
 
Samples 
 
Plasma samples of women with benign and malignant ovarian tumours, either came from 

the UCAN collection at Uppsala Biobank, Uppsala University, Sweden or the Gynaecology 

tumour biobank at Sahlgrenska University Hospital, Göteborg, Sweden, as previously 

described [Enroth et al, unpublished] (Table 1). All tumours were examined by pathologist 

specialized in gynaecologic cancers for histology, grade and stage according to International 

Federation of Gynaecology and Obstetrics (FIGO) standards. All plasma samples were frozen 

and stored at -70°C. The study was approved by the Regional Ethics Committee in Uppsala 

(Dnr: 2016/145) and Gothenburg (Dnr: 201-15).  
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The discovery cohort consisted of 90 patients diagnosed with benign tumours and 79 

patients with ovarian cancer stages I-IV. Samples were collected at time for primary surgery 

under full anesthesia but before incision. All women had at least 6 hours fasting before 

sample collection. The first replication cohort consisted of 71 patients diagnosed with benign 

tumours and 100 patients with ovarian cancer stages I-IV and were collected under the same 

conditions as the discovery cohort. The second replication cohort consisted of 77 patients 

with ovarian cancer stages I-IV. The second replication samples were collected at time of 

diagnosis, from awake patients, by a trained nurse.  

 
Protein measurements 
 
We have previously quantified 460 proteins from the Olink Multiplex Cardiovascular II, 

Cardiovascular III, Inflammation, Neurology and Oncology panels in the discovery cohort 

using the proximity extension assay (PEA) [Enroth et al, unpublished]. Forty-two of these 

have also been quantified in the replication cohorts using PEA in two custom-design 21-plex 

panels30.  Here, an additional 552 proteins were analysed using the Olink Multiplex 

Cardiometabolic, Cell Regulation, Development, Immune Response, Metabolism and Organ 

Damage panels and real-time PCR using the Fluidigm BioMark™ HD real-time PCR platform31 

in the discovery and replication cohorts. A complete list of the 1012 assays corresponding to 

981 unique proteins are listed in Supplementary Table 1. The samples were randomized 

across plates and normalized for any plate effects using the built-in inter-plate controls 

according to manufacturers’ recommendations. The PEA gives abundance levels in NPX 

(Normalized Protein eXpression) that is on log2-scale. Each assay has an experimentally 

determined lower limit of detection (LOD) defined as three standard deviation above noise 

level. Here, all assay values below LOD were replaced with the defined LOD-value. Samples 

and proteins that did not pass the quality control were removed. After quality control, 42 

proteins from the custom panels and 551 from the additional 6 panels were kept. Assay 

characteristics including detection limits calculations, assay performance and validations are 

available from the manufacturer (www.olink.com).  

  
Model generation 
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First, the discovery set was randomly split into a training set and a test set with 50% of the 

samples in each, and a linear regression model was generated with the R-package ‘glmnet’10 

with ‘alpha’ = 0.9 and optimized using 10-fold cross-validation in the training-set as 

implemented by the ‘cv.glmnet’-function. This was repeated 50 times with new train/test 

sets and a core consisting of the proteins present in at least 70% of the generated models 

was selected. In order to find mutually exclusive cores, the core-generating process was 

repeated in a recursive manner, excluding one protein at a time from the previous core from 

the available protein pool. For each newly generated core, the process was then repeated 

unless the core contained more than a specific number of proteins or had a sensitivity or 

specificity below a specified cut-off. For each new search, all previously excluded proteins 

were made unavailable to the current selection. The search was cancelled if more than 20 

proteins had been excluded. The core-discovery process is outlined in Figure 1A and 1B. For 

each core, proteins were added creating a final model in a stepwise forward selection. First, 

the variance in the decision explained by the core was removed by keeping the residuals 

from a linear model generated with the protein values in the core as input and the decision 

as output. Then, the variance explained by any other available protein in the adjusted 

outcome was calculated and the protein explaining the most remaining variance in the 

decision was added to the model and the contribution of that protein to the explained 

variance in the decision was adjusted for. This was repeated until the best candidate protein 

did not explain more than 1% of remaining variance or the total number of proteins in the 

model exceeded 20 proteins (Figure 1C).  
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Figures and Tables 
 
Table 1: Cohort statistics. 
 

Cohort Origin1 Types No of 
Women 

Age, mean (SD) CA-1252 

Discovery Gbg Benign Tumours 90 60.0 (16.8) 16.8 (9.9) 
  Stage I-II 42 60.7 (12.4) 67.6 (72.0) 
  Stage III-IV 37 63.8 (14.1) 327.4 (284.5) 
1st Replication Gbg Benign Tumours 71 60.2 (14.5) NA 
  Stage I-II 44 62.4 (13.7) NA 
  Stage III-IV 56 61.6 (11.3) NA 
2nd Replication UCAN Stage I-II 13 55.9 (15.0) NA 
  Stage III-IV 64 59.4 (12.0) NA 

1 UCAN: collection at Uppsala Biobank, Uppsala University, Sweden. Gbg: Gynaecology tumour biobank at Sahlgrenska University Hospital, Göteborg, Sweden 2 Measured at 
clinic [kU/L], median (median absolute deviation). NA indicates ‘not available’.  

 
Table 2: Performance ranges of all models 
 

Stage1 MUC162 No. Size Cohort AUC PPV NPV BPsens3 BPspec3 FSEse4 FSEsp4 FSPse4 FSPsp4 
I-II Yes 36 8-17 Discovery 0.80-0.94 0.71-0.89 0.89-0.97 0.77-0.95 0.84-0.93 0.99-1.00 0.04-0.14 0.58-0.90 0.95-0.96 
    1st Repl. 0.58-0.71 0.55-0.69 0.75-0.81 0.63-0.74 0.68-0.80 NA NA 0.16-0.45 0.94-0.95 
    2st Repl. 0.49-0.83 0.30-0.59 0.92-0.98 0.74-0.92 0.68-0.83 1.00-1.00 0.06-0.06 0.12-0.51 0.94-0.95 
 No 448 9-20 Discovery 0.54-0.91 0.44-0.84 0.76-0.94 0.60-0.89 0.61-0.91 1.00-1.00 0.04-0.07 0.13-0.77 0.95-0.96 
    1st Repl. 0.46-0.82 0.50-0.77 0.69-0.89 0.53-0.83 0.64-0.84 0.99-1.00 0.06-0.09 0.16-0.59 0.94-0.96 
    2st Repl. 0.41-0.93 0.27-0.78 0.89-1.00 0.71-0.98 0.63-0.92 1.00-1.00 0.05-0.06 0.08-0.81 0.94-0.95 
III-IV Yes 36 8-17 Discovery 0.95-0.96 0.94-1.00 0.98-1.00 0.95-1.00 0.97-1.00 1.00-1.00 0.04-0.10 0.93-1.00 0.95-0.96 
    1st Repl. 0.85-0.92 0.82-0.93 0.88-0.93 0.84-0.91 0.86-0.95 0.97-0.98 0.11-0.31 0.68-0.86 0.95-0.96 
    2st Repl. 0.75-0.91 0.76-0.92 0.77-0.92 0.74-0.90 0.79-0.93 0.95-0.96 0.15-0.50 0.50-0.82 0.94-0.96 
 No 448 9-20 Discovery 0.94-0.96 0.89-1.00 0.97-1.00 0.93-1.00 0.95-1.00 0.99-1.00 0.04-0.12 0.90-1.00 0.95-0.96 
    1st Repl. 0.78-0.90 0.78-0.95 0.82-0.92 0.76-0.91 0.80-0.96 0.96-0.99 0.07-0.34 0.54-0.87 0.94-0.96 
    2st Repl. 0.77-0.94 0.77-0.96 0.77-0.97 0.74-0.97 0.78-0.97 0.95-0.97 0.19-0.69 0.42-0.92 0.94-0.96 
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I-IV Yes 36 8-17 Discovery 0.88-0.94 0.88-0.95 0.86-0.96 0.85-0.95 0.89-0.96 0.95-0.96 0.32-0.74 0.76-0.93 0.95-0.96 
    1st Repl. 0.75-0.83 0.83-0.89 0.69-0.75 0.73-0.80 0.77-0.87 0.95-0.96 0.09-0.24 0.47-0.65 0.95-0.96 
    2st Repl. 0.70-0.87 0.75-0.89 0.70-0.87 0.71-0.87 0.73-0.89 0.95-0.95 0.14-0.59 0.39-0.73 0.95-0.96 
 No 448 9-20 Discovery 0.74-0.92 0.76-0.93 0.76-0.90 0.70-0.88 0.79-0.93 0.95-0.96 0.04-0.55 0.49-0.84 0.95-0.96 
    1st Repl. 0.67-0.84 0.78-0.92 0.60-0.80 0.62-0.83 0.73-0.90 0.95-0.96 0.04-0.35 0.35-0.72 0.95-0.96 
    2st Repl. 0.75-0.93 0.77-0.95 0.73-0.96 0.74-0.96 0.75-0.95 0.95-0.96 0.16-0.83 0.41-0.91 0.94-0.96 

 
All ranges indicate lowest and highest values for all models on that row. 1 Performances are for benign tumours vs this stage of ovarian cancers. 2 Indicates whether or not Mucin-16 was included in the model. 3 
Performances when cut-off is chosen at the best point (BP, closest point on ROC-curve to perfect classification).  4 Performances at a point on the ROC-curves with at least 0.93 sensitivity (FSEse and FSEsp) or 
specificity (FSPse and FSPsp). ‘NA’ means that not such point exists.  
 

 
Table 3: Performance of the top-ranking and the proof-of-concept model 
 

Stage1 Cohort AUC PPV NPV BPse2 BPsp2 FSEse3 FSEsp3 FSPse3 FSPsp3 
Mucin-16 only           
I-II Discovery 0.82 (0.07) 0.68 (0.14) 0.92 (0.04) 0.85 (0.09) 0.82 (0.08) 1.00 (0.01) 0.06 (0.06) 0.60 (0.16) 0.96 (0.01) 
 1st Repl. 0.51 (0.1) 0.62 (0.13) 0.79 (0.09) 0.71 (0.13) 0.71 (0.12) 1.00 (0.01) 0.20 (0.07) 0.29 (0.15) 0.94 (0.01) 
 2nd Repl. 0.27 (0.15) 0.25 (0.16) 0.87 (0.09) 0.65 (0.23) 0.51 (0.22) 1.00 (0) 0.15 (0.09) 0.06 (0.12) 0.96 (0.03) 
I-IV Discovery 0.86 (0.04) 0.88 (0.08) 0.87 (0.06) 0.86 (0.06) 0.89 (0.07) 0.95 (0.01) 0.31 (0.26) 0.75 (0.11) 0.96 (0.01) 
 1st Repl. 0.65 (0.08) 0.83 (0.06) 0.73 (0.10) 0.79 (0.09) 0.78 (0.08) 0.96 (0.01) 0.26 (0.12) 0.52 (0.14) 0.96 (0.02) 
 2nd Repl. 0.57 (0.09) 0.78 (0.08) 0.70 (0.09) 0.69 (0.09) 0.78 (0.10) 0.95 (0.01) 0.27 (0.12) 0.45 (0.16) 0.95 (0.02) 
III-IV Discovery 0.91 (0.06) 0.95 (0.11) 0.95 (0.11) 0.96 (0.06) 0.98 (0.05) 1.00 (0) 0.06 (0.03) 0.94 (0.08) 0.96 (0.01) 
 1st Repl. 0.70 (0.08) 0.81 (0.09) 0.81 (0.09) 0.86 (0.07) 0.85 (0.08) 0.98 (0.03) 0.24 (0.14) 0.68 (0.16) 0.95 (0.01) 
 2nd Repl. 0.60 (0.08) 0.79 (0.10) 0.79 (0.10) 0.75 (0.09) 0.81 (0.07) 0.96 (0.03) 0.31 (0.16) 0.49 (0.14) 0.95 (0.02) 
Top-ranking           
I-II Discovery 0.83 (0.06) 0.74 (0.15) 0.91 (0.05) 0.81 (0.09) 0.86 (0.09) 1.00 (0.01) 0.06 (0.08) 0.60 (0.18) 0.96 (0.01) 
 1st Repl. 0.61 (0.09) 0.60 (0.13) 0.75 (0.10) 0.64 (0.13) 0.70 (0.12) 0.99 (0.03) 0.04 (0.02) 0.26 (0.15) 0.95 (0.02) 
 2nd Repl. 0.65 (0.18) 0.42 (0.22) 0.95 (0.05) 0.80 (0.20) 0.74 (0.17) 1.00 (0) 0.06 (0.01) 0.30 (0.27) 0.95 (0.01) 
I-IV Discovery 0.88 (0.04) 0.91 (0.06) 0.86 (0.06) 0.85 (0.06) 0.91 (0.06) 0.95 (0.01) 0.38 (0.18) 0.78 (0.09) 0.96 (0.01) 
 1st Repl. 0.79 (0.06) 0.85 (0.07) 0.71 (0.09) 0.74 (0.08) 0.83 (0.09) 0.96 (0.01) 0.09 (0.14) 0.58 (0.13) 0.95 (0.02) 
 2nd Repl. 0.85 (0.05) 0.88 (0.06) 0.84 (0.08) 0.86 (0.07) 0.87 (0.06) 0.95 (0.01) 0.35 (0.29) 0.73 (0.12) 0.96 (0.02) 
III-IV Discovery 0.95 (0.01) 1.00 (0.02) 1.00 (0.02) 0.99 (0.03) 1.00 (0.01) 1.00 (0) 0.04 (0) 0.99 (0.03) 0.96 (0.01) 
 1st Repl. 0.89 (0.04) 0.93 (0.07) 0.93 (0.07) 0.89 (0.06) 0.95 (0.05) 0.97 (0.03) 0.27 (0.31) 0.86 (0.10) 0.95 (0.01) 
 2nd Repl. 0.87 (0.05) 0.89 (0.09) 0.89 (0.09) 0.88 (0.06) 0.90 (0.08) 0.95 (0.02) 0.28 (0.31) 0.80 (0.13) 0.94 (0.01) 
Proof-of-Concept           
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I-II Discovery 0.83 (0.06) 0.72 (0.13) 0.91 (0.05) 0.83 (0.08) 0.84 (0.08) 1.00 (0.01) 0.05 (0.06) 0.60 (0.19) 0.96 (0.01) 
 1st Repl. 0.69 (0.10) 0.63 (0.11) 0.82 (0.11) 0.77 (0.13) 0.69 (0.11) 0.99 (0.02) 0.05 (0.02) 0.37 (0.15) 0.95 (0.02) 
 2nd Repl. 0.70 (0.20) 0.58 (0.27) 0.95 (0.05) 0.80 (0.18) 0.82 (0.2) 1.00 (0) 0.06 (0) 0.54 (0.31) 0.94 (0.01) 
I-IV Discovery 0.88 (0.04) 0.88 (0.06) 0.89 (0.06) 0.87 (0.07) 0.90 (0.06) 0.95 (0.01) 0.40 (0.22) 0.79 (0.09) 0.96 (0.01) 
 1st Repl. 0.82 (0.05) 0.87 (0.08) 0.75 (0.08) 0.79 (0.07) 0.85 (0.09) 0.96 (0.01) 0.20 (0.18) 0.66 (0.12) 0.95 (0.01) 
 2nd Repl. 0.83 (0.04) 0.87 (0.07) 0.84 (0.07) 0.83 (0.08) 0.87 (0.07) 0.95 (0.01) 0.36 (0.23) 0.68 (0.11) 0.95 (0.01) 
III-IV Discovery 0.95 (0.02) 0.99 (0.03) 0.99 (0.03) 0.98 (0.04) 1.00 (0.01) 1.00 (0) 0.04 (0) 0.98 (0.04) 0.96 (0) 
 1st Repl. 0.90 (0.04) 0.94 (0.06) 0.94 (0.06) 0.91 (0.07) 0.95 (0.05) 0.97 (0.03) 0.27 (0.31) 0.88 (0.10) 0.95 (0.02) 
 2nd Repl. 0.84 (0.06) 0.88 (0.07) 0.88 (0.07) 0.85 (0.08) 0.89 (0.07) 0.95 (0.02) 0.32 (0.30) 0.73 (0.14) 0.95 (0.02) 

1 Performances are for benign tumours vs this stage of ovarian cancers. 2 Performances when cut-off is chosen at the best point (BP, closest point on ROC-curve to perfect classification). 3Performances at a point on 
the ROC-curves with at least 0.93 sensitivity (FSEse and FSEsp) or specificity (FSPse and FSPsp).
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Figure 1. Model Generation (A) Repeated model generation over random splits of the data. 
Proteins present in a sufficient fraction of the models are included into the core. (B) 
Generation of mutually exclusive cores. Proteins present in the first core (top node) are 
sequentially withheld from the second round of core discovery, as indicated by the sets to 
the left of the nodes. Each core of size N generates N new search-branches. (C) The final 
models are built by adding proteins to each core. The added proteins are chosen with 
respect to the proteins excluded in the core-discovery. Proteins are added in a stepwise 
forward selection choosing the protein that explains the highest proportion of remaining 
variance in the decision. See Materials and Methods for details.  
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Figure 2. Top 50 model characteristics (A) Variance explained in the decision (Benign tumour 
or Ovarian Cancer Stage III-IV by the cores (as indicated in blue) and by the additional 
proteins (grey) in the test set of the Discovery Data. Sensitivity and 1-Specifity of the cores 
(hollow markers) and the full models (filled markers) are shown (right axis) in red. (B) Protein 
inclusion into cores. Top 50 cores are indicated with C1, ..., C50 and proteins are labelled 
with their short name. A connector represents inclusion of that protein in a core. (C) Same as 
(B) but for additional proteins (not including core-proteins). Top 50 additional protein-sets 
are indicated by A1, …, A50.  
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Figure 3. Top-ranking model performance in 1st replication cohort. (A) Distribution of 
protein abundance levels in NPX for the three proteins in the core in patients with Benign 
tumours (indicated with a ‘B’) and Ovarian Cancer stage III-IV (indicated with ‘OC’). (B) PCA 
plot of the first two components using the proteins in the core. Figures shows Benign 
tumours in black and Ovarian Cancer stages III-IV in red. (C) As (A) but for the six first 
additional proteins in the model. (D) As (B) but for the complete model with 14 proteins. (E-
G) Receiver Operating Characteristic (ROC) curves of the performance of the complete 
model in the 1st replication cohort. From top to bottom, the ROC-curves represent Benign 
tumours vs. Ovarian cancer stages I-II, III-IV and I-IV respectively. 
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