Kitchen *et al.* 1

1 Genomic variants among threatened *Acropora* corals

- 2
- **3** Authors: S. A. Kitchen^{*†}, A. Ratan^{*‡}, O.C. Bedoya-Reina^{§**}, R. Burhans^{††}, N. D. Fogarty^{‡‡}, W.
- 4 Miller^{††}, I. B. Baums^{†§§}
- 5 * Authors contributed equally to the manuscript

6 Author Affiliations:

- 7 † 208 Mueller Lab, Biology Department, The Pennsylvania State University, University Park PA
- 8 16802 sak89@psu.edu, baums@psu.edu
- 9 ‡ Department of Public Health Sciences and Center for Public Health Genomics, University of
- 10 Virginia, Charlottesville VA 22908 ratan@virginia.edu
- 11 § MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics,
- 12 University of Oxford, South Parks Road, Oxford OX1 3PT, UK oscar@bx.psu.edu
- 13 ** MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The
- 14 University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK.
- 15 *†*† Centre for Comparative Genomics and Bioinformatics, Pennsylvania State University,
- 16 University Park, PA 16802, USA rico@bx.psu.edu, webb@bx.psu.edu
- 17 ‡‡ Department of Marine and Environmental Sciences, Nova Southeastern University, Fort
- 18 Lauderdale, FL 33314, Nicole.fogarty@nova.edu
- 19
- 20 Data Accession numbers: NCBI SRA accession numbers are SRR7235977-SRR7236038.
- 21

Kitchen et al. 2

22	Running Title: Genomic variants among threatened corals
23	
24	Keywords: coral, Caribbean, single nucleotide polymorphism, population genomics, Galaxy
25	
26	Corresponding Author (§§): I.B Baums, 208 Mueller Lab, Biology Department, The
27	Pennsylvania State University, University Park PA 16802, Fax +1 814 865 9131,
28	baums@psu.edu
29	
30	Article Summary
31	We provide the first comprehensive genomic resources for two threatened Caribbean reef-
32	building corals in the genus Acropora. We identified genetic differences in key pathways and
33	genes known to be important in the animals' response to the environmental disturbances and
34	larval development. We further provide a list of candidate loci for large scale genotyping of these
35	species to gather intra- and interspecies differences between A. cervicornis and A. palmata across
36	their geographic range. All analyses and workflows are made available and can be used as a
37	resource to not only analyze these corals but other non-model organisms.

Kitchen *et al.* 3

39 ABSTRACT

40 Genomic sequence data for non-model organisms are increasingly available requiring the 41 development of efficient and reproducible workflows. Here, we develop the first genomic 42 resources and reproducible workflows for two threatened members of the reef-building coral 43 genus Acropora. We generated genomic sequence data from multiple samples of the Caribbean 44 A. cervicornis (staghorn coral) and A. palmata (elkhorn coral), and predicted millions of 45 nucleotide variants among these two species and the Pacific A. digitifera. A subset of predicted nucleotide variants were verified using restriction length polymorphism assays and proved useful 46 in distinguishing the two Caribbean Acroporids and the hybrid they form ("A. prolifera"). 47 48 Nucleotide variants are freely available from the Galaxy server (usegalaxy.org), and can be 49 analyzed there with computational tools and stored workflows that require only an internet 50 browser. We describe these data and some of the analysis tools, concentrating on fixed 51 differences between A. cervicornis and A. palmata. In particular, we found that fixed amino acid 52 differences between these two species were enriched in proteins associated with development, 53 cellular stress response and the host's interactions with associated microbes, for instance in the 54 Wnt pathway, ABC transporters and superoxide dismutase. Identified candidate genes may 55 underlie functional differences in the way these threatened species respond to changing 56 environments. Users can expand the presented analyses easily by adding genomic data from 57 additional species as they become available.

Kitchen *et al.* 4

58 INTRODUCTION

59 Genomic data for non-model organisms are becoming available at an unprecedented rate. 60 Analyses of these data will advance our understanding of the capacity of organisms to adapt, 61 acclimatize or shift their ranges in response to rapid environmental change (Savolainen et al. 62 2013). While genome sequencing itself has become routine, bioinformatics treatment of the data 63 still presents hurdles to the efficient and reproducible use of this data (Nekrutenko and Taylor 64 2012). Thus, genomic variant analysis workflows (e.g. Bedova-Reina et al. (2013) are needed to 65 eliminate some of these computational hurdles and increase reproducibility of analyses. Here, we 66 develop such tools, apply them to threatened reef-building corals and present novel findings with 67 respect to the molecular pathways used by these species to respond to environmental stimuli. The Acropora species, A. cervicornis and A. palmata were the main reef-building corals of 68 69 the Caribbean (Figure 1). These corals have greatly decreased in abundance during recent years 70 due to infectious disease outbreaks, habitat degradation, storm damage, coral bleaching, 71 outbreaks of predators and anthropogenic activities (Bruckner 2002). A large body of previous 72 studies has investigated the effects of environmental stress in Caribbean Acroporid corals 73 (Randall & Szmant 2009; DeSalvo et al. 2010; Baums et al. 2013; Libro et al. 2013; Polato et al. 74 2013; Parkinson et al. 2015). These studies highlight changes in the molecular, cellular, and 75 physiological response of these species to an unprecedented elevation in seawater temperature. 76 Increases in water temperature of only 2 -3 °C can reduce the fertilization rates, reduce larval 77 survival, and deplete genotypic diversity of Caribbean Acroporids (Randall & Szmant 2009; 78 Williams & Miller 2012; Baums et al. 2013).

Kitchen *et al.* 5

79	Because of a tremendous die-off, both species are now listed as threatened on the United
80	States Federal Endangered Species List (Anonymous 2006). Extensive conservation efforts are
81	currently underway across the range, which will be considerably facilitated by the acquisition of
82	genomic data. For instance, these data will help to identify management units, evolutionary
83	significant units, hybridization dynamics, genotypic diversity cold-spots and interactions with the
84	corals' obligate symbionts in the genus Symbiodinium (Baums 2008; van Oppen et al. 2015). The
85	project described here represents an early effort to move beyond low-resolution sequencing and
86	microsatellite studies (Vollmer & Palumbi 2007; Baums et al. 2014) and employ the power of
87	full-genome analysis (Drury et al. 2016).
88	Here, we present genome-wide single nucleotide variants (SNVs) between the two
89	Caribbean Acroporids relying on the genome assembly for a closely related species, A. digitifera
90	(Shinzato et al. 2011) (Figure 1). We have successfully used the same approach to analyze
91	genomes using much more distant reference species, such as polar, brown and black bears based
92	on the dog genome (Miller et al. 2012), and giraffe based on cow and dog (Agaba et al. 2016).
93	We highlight several examples of how these SNVs enable population genomic and evolutionary
94	analyses of two reef-building coral species. The SNV results are available on the open source,
95	public server Galaxy (Afgan et al. 2016), along with executable histories of the computational
96	tools and their settings. This workflow presented here for corals and by Bedoya-Reina et al.
97	(2013) can be transferred for genomic analyses of other non-model organisms, and provide
98	abundant information in a reproducible manner.

Kitchen *et al.* 6

99 MATERIALS AND METHODS

100 DNA Extraction and Sequencing

101 For each species, five previously genotyped samples from the Baums Lab coral tissue 102 collection were selected from each of the four sites representing their geographic range: Florida 103 (FL), Belize (BE), Curacao (CU) and U.S. Virgin Islands (VI; Table 1) (Baums et al. 2009; 104 Baums et al. 2005). An additional sample for each species from Florida (A. cervicornis 105 CFL14120 and A. palmata PFL1012) was selected for deep genome sequencing because they are 106 located at easily accessible and protected sites in the Florida Keys (A. palmata at Horseshoe Reef 107 and A. cervicornis at the Coral Restoration Foundation nursery), and are predictable spawners 108 that are highly fecund. High molecular weight DNA was isolated from each sample using the 109 Qiagen DNeasy kit (Qiagen, Valencia, CA) according to the manufacturer's protocol. DNA 110 quality and quantity was assessed with gel electrophoresis and Oubit 2.0 fluorometry (Thermo 111 Fisher, Waltham, MA), respectively. Sequence library construction and sequencing was 112 completed by the Pennsylvania State University Genomics Core Facility. Paired-end short insert 113 (550 nt) sequencing libraries of the two deeply sequenced genomes were constructed with 1.8-2 114 µg sample DNA and the TruSeq DNA PCR-Free kit (Illumina, San Diego, CA). The remaining 115 40 paired-end short insert (350 nt) sequencing libraries (Table S1) were constructed using 100 ng 116 sample DNA and the TruSeq DNA Nano kit (Illumina, San Diego, CA). Deep- and shallow-117 sequence libraries were pooled separately and sequenced on the Illumina HiSeq 2500 Rapid Run 118 (Illumina, San Diego, CA) over two lanes and four lanes, respectively.

Kitchen *et al.* 7

119 A. digitifera Assembly and Inter-species Gene Model Comparisons

120 We downloaded the A. digitifera genome assembly and GFF-formatted gene annotations 121 from NCBI GCA 000222465.2 Adig 1.1). To conduct the pathway enrichment analysis, we 122 obtained additional annotation from the Kyoto Encyclopedia of Genes and Genomes (KEGG) 123 (Kanehisa et al. 2017). During gene prediction, gene annotation can be error prone and misled by 124 assembly gaps or errors, imprecision of *de novo* gene predictors and/or errors in gene annotations 125 in the species used for comparison, among other sources. To overcome these known issues, our 126 approach included, at a minimum, submitting the putative amino acid sequence to the blastp 127 server maintained by the Reef Genomics Organization (Liew et al. 2016) () and the blastp and/or 128 psi-blast servers at NCBI (Altschul et al. 1997) (). We also used the Reef Genomics website to 129 assess the degree of inter-species sequence conservation among 20 corals in Figure 1 (resources 130 include transcriptomes and genomes, details provided in Bhattacharya et al. (2016), and the 131 Genome Browser () at the University of California at Santa Cruz (Kent et al. 2002) to measure 132 the inter-species conservation of the orthologous mammalian residue. We interpret the degree of 133 conservation at a protein position and its immediate neighbors as suggesting the amount of 134 selective pressure and the functional importance of the site.

135 Single Nucleotide Variant and Indel Calls

We aligned the paired-end sequences for the 42 samples to the *A. digitifera* reference genome sequence using BWA version 0.7.12 (Li and Durbin 2009) with default parameters. On average, we were able to align ~89% of the reads for each individual, and ~74% of the reads aligned with a mapping quality > 0. Paired-end reads are generated by sequencing from both ends of the DNA fragments, and we found that about 70% of these reads aligned within the

Kitchen *et al.* 8

141	expected distance from its mate in those alignments (see Table S1 for details). We used
142	SAMBLASTER version 0.1.22 (Faust and Hall 2014) to flag potential PCR duplicate reads that
143	could otherwise affect the quality of the variant calls (Table S1). Considering data from all
144	individuals simultaneously, we used SAMtools version 1.3.1 (Li et al. 2009) to identify the
145	locations of putative variants with parameters -g to compute genotype likelihoods, -A to include
146	all read pairs in variant calling, and -E to recalculate the base alignment quality score against the
147	reference A. digitifera genome. Variants were called with bcftools version 1.2 (Li 2011)
148	multiallelic caller and further filtered to keep those variants for which the total coverage in the
149	samples was less than 1,200 reads (to limit the erroneous calling of variant positions in repetitive
150	or duplicated regions), the average mapping quality was greater than 30, and the fraction of reads
151	that aligned with a zero mapping quality was less than 0.05. The VCF file of nucleotide variants
152	was converted to gd_snp format using the "Convert" tool from the "Genome Diversity"
153	repository on Galaxy, after separating the substitution and insertion/deletion (indel) variants. The
154	resulting sets of SNVs and indels are available on Galaxy (a permanent link will be made
155	available upon acceptance). The mitochondrial variants were similarly identified using
156	the A. digitifera mitochondrial reference genome (GenBank: NC_022830), and Figure S3 was
157	drawn using Millerplot (https//github.com/aakrosh/Millerplot).
158	
159	The Galaxy tool "Phylogenetic Tree" under Genome Diversity (Bedoya-Reina et al. 2013)

160 was used to calculate the genetic distance between two individuals at a given SNV as the 161 difference in the number of occurrences of the first allele. For instance, if the two genotypes are 162 2 and 1, i.e., the samples are estimated to have respectively 2 and 1 occurrences of the first allele 163 at this location, then the distance is 1 (the absolute value of the difference of the two numbers).

Kitchen *et al.* 9

164	The Neighbor-joining tree was constructed with QuickTree (Howe et al. 2002) and visualized
165	with draw_tree utility script in package PHAST (Hubisz et al. 2010). We used I-TASSER online
166	server for protein structure prediction (Yang et al. 2015) to model and further help to develop
167	hypotheses about functionality of several mutations in STE20-related kinase adapter protein
168	alpha protein (NCBI: LOC107340566). Identification of enriched KEGG pathways was
169	completed using the "Rank Pathways" tool, which compares the gene set with SNVs against the
170	complete set of genes in the pathway using the statistical Fisher's exact test.

171 Genomic Regions of Differentiation

172 We assigned a measure of allele frequency difference to each SNV analogous to calculations 173 of F_{ST} for intra-species comparisons using the "Remarkable Intervals" Galaxy tool (score shift 174 set to 90%). F_{ST} values can be used to find genomic regions where the two species have allele 175 frequencies that are remarkably different over a given window or interval, i.e., the F_{ST} s are 176 unusually high. Such intervals may indicate the location of a past "selective sweep" (Akey et al. 177 2002) caused by a random mutation that introduces an advantageous allele, which rises to 178 prominence in the species because of selective pressures, thereby increasing the frequency of 179 nearby variants and changing allele frequencies from those in an initially similar species. In 180 theory, the $F_{\rm ST}$ ranges between 0, when the allele frequencies are identical in the two species, to 181 1, for a fixed difference. However, in practice it works better to use an estimation formula that 182 accounts for the limited allele sampling; we employ the "unbiased estimator" of Reich et al. 183 (2009), because it performs best on the kinds of data used here, according to Willing et al. 184 (2012). It should be noted that care must be taken when interpreting high F_{ST} values this way, 185 since they can also be caused by genetic drift, demographic effects, or admixture (Holsinger and

Kitchen et al. 10

- 186 Weir 2009). We compared these intervals to the genome-wide F_{ST} estimate calculated using the 187 Galaxy tool "Overall FST".
- 188 PCR-Ready SNV Markers and RFLP Validation
- 189 PCR-ready SNVs were identified based on the following criteria: 1) the SNV-caller
- 190 considered them to be high-quality (Phred-scaled quality score \ge 900), 2) all 21 A. cervicornis
- samples looked homozygous for one allele while all 21 *A. palmata* samples looked homozygous
- 192 for the other allele and 3) there were no observed SNVs, indels, low-complexity DNA or
- unassembled regions within 50 bp on either side of the SNV.
- 194 From the PCR-ready SNVs, we developed a PCR-restriction fragment length polymorphism
- 195 (RFLP) assay to validate a subset of fixed SNVs with additional Caribbean Acroporids samples,
- 196 including the hybrid of the two species, *Acropora prolifera* (Table S2). We screened 197 fixed
- 197 SNVs with 50bp flanking sequence (101bp total) using the webserver SNP-RFLPing2 (Chang et
- al. 2006; Chang et al. 2010) to find a set of loci that would cut with common restriction enzymes
- 199 (HaeIII, DpnII, Hinfl, EcoRV, and HpyCH4IV all from New England Biolabs, Ipswich, MA).
- Eight loci were selected, of which half cut *A. palmata*-like SNVs while the other half cut *A.*
- 201 *cervicornis*-like SNVs (Table S3). For each diagnostic locus, additional flanking sequence was
- 202 extracted from the scaffold until another restriction enzyme recognition site was encountered for
- 203 that specific locus-restriction enzyme combination. Primers were designed for the extended
- flanking sequence using Primer3web version 4.1.0 (Untergasser et al. 2012).
- A reference set of parental (n=10 A. palmata and n=9 A. cervicornis) and hybrid (n=27colonies) samples from across the geographic range were tested with a previously developed
- 207 microsatellite assay based on five markers (Baums et al. 2005) and the RFLP assay (Table S2). A

Kitchen *et al.* 11

208	test set of hybrids (n=20 colonies) that did not have previous genetic information was also
209	included to compare taxon assignment between the two marker sets. Hybrids were initially
210	identified in the field based on intermediate morphological features following Cairns (1982);
211	Van Oppen et al. (2000); Vollmer and Palumbi (2002).
212	For all samples, DNA was extracted using the DNeasy kit (Qiagen, Valencia, CA). PCR
213	reactions consisted of 1X NH4 Buffer (Bioline, Boston, MA), 3 mM MgCl2 (Bioline, Boston,
214	MA), 1 mM dNTP (Bioline, Boston, MA), 250 nmol forward and reverse primers (IDT,
215	Coralville, Iowa), 1 unit of Biolase DNA polymerase (Bioline, Boston, MA) and 1 μl of DNA
216	template for a total volume of 10 μ l. The profile for the PCR run was as follows: 94 °C for 4 min
217	for initial denaturing, followed by 35 cycles of 94 °C for 20s, 55 °C for 20s, and 72 °C for 30s,
218	and a final extension at 72 $^{\circ}\text{C}$ for 30min. For each locus, 5 μl of PCR product was combined
219	with 1X restriction enzyme buffer (New England Biolabs, Ipswich, MA) and 0.2 μ l restriction
220	enzyme (New England Biolabs, Ipswich, MA) for a total reaction volume of 10 μ l and incubated
221	according to the manufacturer's recommendation. PCR and digest fragment products were
222	resolved by 2% TAE agarose gel electrophoresis at 100 V for 35 min, except for locus
223	NW_015441368.1: 282878 that was run on 3.5% TAE agarose gel at 75 V for 45 min to resolve
224	the smaller fragments. Banding patterns were scored for each locus as homozygous for either
225	parent species (1 or 2 bands) or heterozygous (3 bands).
226	Reference samples were first assigned to taxonomic groups (A. palmata, A. cervicornis, F1
227	or later generation hybrid) based on allele frequencies at five microsatellite loci (Baums et al.
228	2005) by NEWHYBRIDS (Anderson and Thompson 2002). A discriminant factorial
229	correspondence analysis (DFCA) was performed on the microsatellite and SNV marker data
230	separately to predict sample membership to the taxonomic groups: A. palmata, A. cervicornis, F1 11

Kitchen *et al.* 12

231	hybrid or later generation hybrid. The FCA performed in GENETIX version 4.05 (Belkhir et al.
232	2004) clustered the individuals in multi-dimensional space based on their alleles for each marker
233	type. The factorial axes reveal the variability in the data set with the first factor being the
234	combination of alleles that accounts for the largest amount of variability. The FCA scores for all
235	axes were used ina two-step discriminant analysis using the R statistical software (RCoreTeam
236	2017) to calculate the group centroid, or mean discriminant score for a given group, and
237	individual probability of membership to a given group using leave-one-out cross-validation First,
238	the parameter estimates for the discriminant function of each group were trained by the FCA
239	scores from the reference samples. Second, those functions were used to assign all samples,
240	including the test set of hybrids, based on their FCA scores to a taxon group.

241 Data Availability

The executable histories for the SNV and protein analyses and their respective data sets are available on Galaxy (link provided in final publication). Table 2 lists the data sets available on Galaxy. Specifically, the data sets "coral snps" and "intra-codon variants" are tables of variants with positions in reference to the *A. digitifera* genome. The data set "PCR-Ready SNVs" are 101 bp sequences extracted from the *A. digitifera* genome, with 50 bp flanking sequence surrounding the fixed SNV. Raw sequence data are deposited in the NCBI Sequence Read Archive (accessions SRR7235977-SRR7236038).

Kitchen *et al.* 13

249 **RESULTS**

250 Variants between Three Acroporid Species

251 For each species, we performed deep-coverage sequencing (roughly 150-fold coverage) of 252 one sample and shallow sequencing (roughly 5-fold to 10-fold) of 20 samples, five each from 253 four geographic locations (Florida, the Virgin Islands, Belize, and Curacao) (Figure 2A). For 254 details, see Table 1. The sequence coverage distribution for the Acroporid samples was 255 comparable between species (A. cervicornis: Figure S1 and A. palmata: "coral SNPs" history at 256 *link to be provided in final publication*). 257 Rather than relying on *de novo* assembly and gene annotation of our data, we based the 258 analysis reported below on an assembly and annotation of the highly similar reference genome of 259 A. digitifera (NCBI: GCA 000222465.2 Adig 1.1) (Shinzato et al. 2011). This strategy increases 260 reproducibility and leverages the work of large and experienced bioinformatics groups. 261 Important advantages of using this third species is that we can transfer its gene annotation as well 262 as "polarize" variants, as follows. The two sequenced species in this study diverged in the 263 Eocene about 34.2 mya from the most recent common ancestor they share with the reference 264 species A. digitifera (Figure 1) (van Oppen et al. 2001; Richards et al. 2013). Thus, with a 265 difference observed among the A. cervicornis and A. palmata samples, the allele agreeing with A. 266 digitifera can be interpreted as ancestral, and the variant allele as derived. 267 We identified both substitution and indel variants by aligning our paired-end sequencing 268 reads to the A. digitifera assembly and noting nucleotide differences with A. cervicornis and A. 269 palmata (Table 2). Specifically, each reported substitution variant is a position in an A. digitifera 270 assembly scaffold where at least one of our sequenced samples has a nucleotide that is different

Kitchen *et al.* 14

from the *A. digitifera* reference nucleotide, after all the thresholds on read-depth and mapping
quality as discussed in the Methods were applied. We call each of these an SNV (singlenucleotide variant) because "SNP" (single-nucleotide polymorphism) is commonly used to
describe an intra-species polymorphism. These data permit comparisons among the three *Acropora* species, although this paper focuses on *A. cervicornis* and *A. palmata*, and ignores
unanimous differences of the new sequences from the reference.

277 Fixed differences of SNVs and Indels between A. cervicornis and A. palmata

278 Single nucleotide variants and indels can be used to explore either intra- or inter-species 279 variation, using similar techniques in both cases. Of the 8,368,985 SNVs, 4,998,005 are 280 identically fixed in A. cervicornis and A. palmata, leaving 3,370,980 variable within our two 281 sequenced species, only 1,692,739 of which were considered high-quality (Phred-scaled quality 282 \geq 900, Table 2). The results reported below use this set of substitution variants. A phylogenetic 283 tree based on the genetic distance between those SNVs clearly separates the two species, and 284 distinguishes the samples from each species according to where they were collected in most 285 cases (Figure S2). The same is true of a Principal Component Analysis (Figure 2). From all the 286 SNVs, both synonymous and non-synonymous amino acid substitutions were identified from the 287 coding sequences (Table 2). Out of the 561,015 putative protein-coding SNVs, we retained the 288 120,206 deemed "high quality" and variable in the two newly sequenced species. To complete 289 our analysis, we identified 172 mitochondrial SNVs, which are highly concentrated in the gene-290 free "control region" (Figure S3). This region also contains the only identified indel between A. 291 digitifera and the two Caribbean Acroporids (Figure S3).

Kitchen *et al.* 15

292	The examples in most of the following sections investigate only inter-species differences,
293	and in particular focus on fixed SNVs, i.e., locations where the 21 sequenced A. cervicornis
294	samples share the same nucleotide and the 21 A. palmata samples share a different nucleotide.
295	Variants were filtered so that the genotype of each shallow genome within a species would
296	match its deeply sequenced genome. This approach identified 65,533 fixed nucleotide SNV
297	differences and 3,256 fixed amino acid differences, spread across 1,386 genes (Table 2, see
298	Galaxy histories "coral SNPs" and "coral proteins"). These SNVs are potentially useful for
299	investigating the genetic causes of phenotypic differences between the two Acropora species. In
300	the following, by "fixed" difference we always mean fixed between A. cervicornis and A.
301	palmata. It should be also be noted that such variants may be simply the result of demographic
302	process rather than the result of adaptation to different niches.
303	Identified indels can also be analyzed to understand genomic difference between the studied
304	species. Filtered in a manner analogous to the SNVs (requiring "high quality" and variability in
305	A. cervicornis plus A. palmata), the original set of 940,345 genome-wide indels (Table 2) was
306	reduced to 149,036. Of those, 2,031 were identified as fixed between A. cervicornis and A.
307	palmata. They provide an additional set of hints for tracking down the genetic underpinnings of
308	inter-species phenotypic differences, since indels are often more disruptive than substitutions.
309	Examples of Substitutions with Potential Protein Modifications

310 We scanned the list of proteins with a fixed amino acid difference (or several fixed

311 differences) to examine more closely. One potentially interesting fixed amino acid substitution is

- found in superoxide dismutase (SOD), whose activity is essential for almost any organism, and
- 313 particularly for corals, like Acropora, that harbor symbionts of the genus Symbiodinium. This

Kitchen et al. 16

314	fixed difference was identified in comparison to A. digitifera (NCBI: LOC107335510 or Reef
315	Genomic: Acropora_digitifera_12779), which strongly matched (E-value 3e-85) the human
316	manganese SOD mitochondrial protein (GenBank: NP_001309746.1; Figure S4). We observed a
317	glutamate (E) to glutamine (Q) substitution in A. cervicornis, corresponding to position 2 of the
318	A. digitifera orthologue (Figure S4). According to the surveyed coral sequences, the Q is fixed in
319	a number of other corals, except for an E shared by A. digitifera, A. palmata, A. hyacinthus, A.
320	millepora and A. tenuis suggesting a lineage-specific mutation (Figure S4).
321	Another gene, NF-kappa-B inhibitor-interacting Ras-like protein 2 (NKIRAS2; NCBI:
322	LOC107355568 and Reef Genomics: Acropora_digitifera_6635) has two putative fixed amino
323	acid difference in the Caribbean Acroporids (Figure S5). One, an E to aspartic acid (D)
324	substitution, occurs in the middle of a "motif" LGTERGV \rightarrow LGTDRGV that is fairly well
325	conserved between A. palmata and other members of the complex corals including Porites spp.
326	and Astreopora sp. as well as robust corals except the Pocilloporidae family (S. pistillata and
327	Seriatopora spp.), but not with A. cervicornis or other Acroporids (Figure S5). Thus, this appears
328	to be a recurrent substitution in corals. The second putative fixed amino acid difference in this
329	gene is unique to A. cervicornis from the corals we surveyed. The transition is from a polar but
330	uncharged asparagine (N) to a positively charged lysine (K) in the short motif
331	$SVDGSNG \rightarrow SVDGSKG$ (Figure S5). This substitution might have consequences on the tertiary
332	structure and function of this gene in A. cervicornis compared to the other Acroporids.

333 Fixed Indels in Protein-Coding Regions

334

respective mammalian orthologues. Of the 2,031 fixed indels identified, most were not found in

We also looked for fixed indels in protein-coding regions among corals compared to

Kitchen et al. 17

336	coding sequence with only 18 genes having a fixed indel. For closer inspection, we picked a
337	fixed indel in STE20-related kinase adapter protein alpha (STRAD α ; NCBI: LOC107340566,
338	Reef Genomics: Acropora_digitifera_13579) because it has a deletion of four-amino acids, along
339	with two amino acid substitutions in A. palmata, both of which are fixed differences between the
340	Caribbean Acroporids. It aligns well with human STRADa, isoform 4 protein NP_001003788.1
341	(E-value 2e-77). A blastp search of coral resources indicates that the deletion is unique to A.
342	palmata (Figure S6B), although Madracis auretenra also has a four amino acid deletion, but
343	shifted by three positions. This deletion in A. palmata is confirmed by the lack of reads mapping
344	to the 12bp nucleotide region (Figure S7).
345	To determine the degree of protein modification from these differences, we positioned them
346	on a predicted protein structure of A. cervicornis using I-TASSER server (Yang et al. 2015).
347	Figure 3 illustrates the predicted configuration of the protein using as structural reference the
348	inactive STRAD α protein annotated by Zeqiraj et al. (2009). The indel occurring between A.
349	palmata and A. cervicornis is at positions 322 to 325, and the substitutions in positions 62 and
350	355. In order to induce the activation of STRAD α , ATP binds and induces a conformational
351	change. In its active stage, STRAD α interacts with MO25 α by means of the alpha-helixes B, C
352	and E, the beta-laminae 4 and 5, and the activation loop to further regulate liver kinase B1
353	(LKB1) (Zeqiraj et al. 2009). Despite the fact that neither the substitutions nor the indel are
354	placed in the structural elements described to interact with ATP or MO25 α , it is difficult to
355	disregard their functional role with them or with LKB1.

Kitchen et al. 18

356 KEGG Pathways Enriched for Fixed SNVs

357 An alternative to looking at individual amino acid substitutions is to search for protein 358 groupings that are enriched for substitutions. This is frequently done with Gene Ontology terms 359 (Consortium 2015) and/or classifications according to the KEGG (Kanehisa et al. 2017). We 360 took advantage of the A. digitifera KEGG pathway annotations and looked for KEGG classes 361 enriched for fixed amino acid variants. Five out of 119 pathways were found to be enriched in 362 non-synonymous substitutions between A. palmata and A. cervicornis (two-tailed Fisher's exact 363 test, p < 0.05), and included two pathways where up to 12 genes presented these differences (i.e. 364 ABC transporters and Wnt signaling pathway, Table 3). In Figure 4, the Wnt signaling pathway 365 and the 12 genes with a fixed difference out of 101 genes (approximately 12%) in this pathway 366 are displayed. Note that multiple genes in Table 3 can be mapped to the same module, and 367 several modules might appear more than once in Figure 4. In particular, these 12 genes added 27 368 non-synonymous fixed differences between A. palmata and A. cervicornis, and were grouped 369 into seven different modules within the pathway (i.e. Axin, beta-catecin, Frizzled, Notum, 370 SMAD4, SIP, and Wnt). Of these modules, Wnt grouped the largest number of genes (n=5), 371 followed by Frizzled (n=2), and all the other modules with just one gene. The Wnt module 372 included three WNT4 paralogue genes and nine non-synonymous mutations. Notably, the Axin 373 module included only one gene orthologue to AXIN1 (i.e. LOC107345943) but six non-374 synonymous mutations. Similarly, the module Notum only includes one gene orthologue to 375 NOTUM but this gene has five non-synonymous fixed mutations between A. palmata and A. 376 cervicornis. 377 The strongest support from the KEGG analysis was for an enrichment of fixed amino acid

378 differences in 12 of 67 ABC transporters (Table 3). The 12 include orthologues of the following

Kitchen *et al.* 19

379	three ATP-binding subfamily members: member 7 of subfamily B, member 2 of subfamily D
380	(ABCD2), and member 2 of subfamily G. Judged by the level of inter-species sequence
381	conservation around the variant position, ABCD2 stands out. ABCD2 transports fatty acids
382	and/or long chained fatty acyl-CoAs into the peroxisome (Andreoletti et al. 2017). The variant
383	valine (V) appears to at the beginning of transmembrane helices 3 that is conserved in the
384	majority of coral species, including A. digitifera and A. cervicornis (Figure S8). In A. palmata
385	and A. millepora the V is replaced by isoleucine (I). However, the residues predicted to stabilize
386	ABCD proteins and facilitate transport across the membrane are conserved between all corals
387	and the human orthologue (Andreoletti et al. 2017). In vertebrates, the "motif"
388	SVAHLYSNLTKPILDV is essentially conserved in all mammal, bird, and fish genomes
389	available at the UCSC browser (Figure S9). The only three substitutions pictured in Figure S9
390	are a somewhat distant $I \rightarrow V$ in hedgehog and rabbit, and $V \rightarrow I$ in opossum at the position variant
391	in A. palmata. This extreme level of inter-species protein conservation suggests that the ABCD2
392	orthologue may function somewhat differently in A. palmata and A. millepora compared to most
393	other corals. However, the ease with which V and I can be interchanged in nature, because of
394	their biochemical similarity and illustrated by the mammalian substitutions mentioned above,
395	tempers our confidence in this prediction. Still, the apparent near-complete conservation of this
396	particular valine in evolutionary history lends some weight to the hypothesis.

397 Genomic Stretches of SNVs

Rather than restricting the analyses to only the fixed SNVs, a larger set of the high-quality
SNVs related to the species differences can be identified by interrogating the joint allelefrequency spectrum of the two species. An advantage of this approach over considering just

Kitchen et al. 20

401	amino acid variants is that it can potentially detect functional changes in non-coding regions,
402	such as promoters or enhancers. We identified 12,279 intervals of consecutive SNVs with high
403	F _{ST} values. The genomic intervals ranged from 5 b (NW_015441140.1:321,729-321,734, 4
404	SNVs with average $F_{ST} = 1.0$) to 27 kb (NW_015441096.1: 814,882-842,464, 8 SNVs with
405	average $F_{ST} = 0.9217$). The top scoring interval covers a 14 kb window in positions 64,603-
406	78,897 of scaffold NW_015441181.1 (Table S5 and Figure 5A). The average F_{ST} for the 241
407	SNVs in this interval is 0.9821, while the average F_{ST} for all of the roughly 1.7 million SNVs is
408	0.1089 . Within this interval, there are three gene models: methyltransferase-like protein 12
409	(MTL12; NCBI: LOC107339088), Wnt inhibitory factor 1-like protein (WIF1; NCBI:
410	LOC107339060), mucin-5AC-like protein (MUC5AC; NCBI: LOC107339062) (Figure 5A).
411	The next highest scoring run of high F_{ST} values is the 15 kb interval in positions 447289-
412	462570 of scaffold NW_015441116.1 (Figure 5B). The 306 SNVs in this region have an average
413	$F_{ST} = 0.9756$. The most recent NCBI gene annotations mention two intersecting genes in the
414	interval, protein disulfide-isomerase A5-like (PDIA5; NCBI: LOC107334364), mapping to the
415	interval 447,296-458,717, and thioredoxin domain-containing protein 12-like (TXNDC12;
416	NCBI: LOC107334366), mapping to 459,123-462,401 (Table S5 and Figure 5B). Adjacent to
417	this interval are three lower scoring intervals also containing a gene annotated as TXNDC12
418	(NCBI: LOC107334421), mapping to 463,276-467,160 (Table S5 and Figure 5B). The mapping
419	of LOC107334366 shows a strong match to seven exons, but the mapping of LOC107334364
420	include weakly aligning exons and missing splice signals. LOC107334364 consists of three
421	weakly conserved tandem repeats, and has partial blastn alignments to position 33-172 of human
422	thioredoxin domain-containing protein 12 precursor (GenBank: NP_056997.1). The shorter
423	sequence LOC107334366 has a blastp alignment (E-value 9e-22) to the same region. In the older

Kitchen et al. 21

424 Reef Genomics dataset for *A. digitifera*, the corresponding gene for LOC107334364 is

425 Acropora digitifera 140461. Thus, based on the newer NCBI annotation, there appears to be

- 426 either a gene or a pseudo-gene in this highly divergent genomic region of A. digitifera.
- 427

27 SNV Markers for Species Identification and Hybrid Assignment

428 To aid the design of genotyping studies we identified 894 "PCR-ready" SNVs as those that 429 do not have another SNV, indel, or any (interspersed or tandemly duplicated) repeats within 50 430 bp (Table 2). We call these the "PCR-ready" SNVs, since in theory they are good candidates for 431 amplification in any of the three Acropora species. We validated a subset of eight of these PCR-432 ready SNVs in additional A. palmata (n=10) and A. cervicornis (n=9) samples from across the 433 geographic range (Table S2) using a RFLP assay. The eight markers were designed to digest the 434 PCR product at a single nucleotide base present in only one of the two species (Table S3). For 435 example, at locus NW 015441435.1 position 299429, the variable base between the species (GG 436 in A. cervicornis and AA in A. palmata) provides a unique recognition site in A. cervicornis for 437 the restriction enzyme HpyCH4IV (A^{CG} T) that results in digestion of A. cervicornis PCR 438 product but not A. palmata (Figure S11A). We found that our stringent selection of PCR-ready 439 SNVs are in fact fixed in the additional samples surveyed. 440 We also screened colonies that were morphologically classified as hybrids between A.

palmata and *A. cervicornis*. We attempted to refine the hybrid classification of colonies into first
or later generation hybrid groups based on the proportion of ancestry from each parental species
using five microsatellite markers or the above described eight SNV loci.

444 Using the SNV makers, the reference F1 hybrids and seven later generation hybrids were 445 heterozygous at all variable sites, whereas the remaining later generation hybrids (*n*=17)

Kitchen *et al.* 22

446	genotypes at each site varied depending on the locus (two examples in Figure S11). Similar to
447	the F1 hybrids, the test set of hybrids were also heterozygous at all loci. For each locus,
448	genotypes were scored to produce a multi-locus genotype (MLG) for each individual.
449	The congruency of taxon classification was compared between the SNV MLGs and
450	microsatellite MLGs using a discriminant factorial correspondence analysis (DFCA) for each
451	marker set (Figure 6). All A. cervicornis samples but one were correctly identified to their
452	taxonomic group using the microsatellite MLGs, but in only 50% of A. palmata colonies did the
453	microsatellite clustering coincide with the previous taxon assignment (Table S2 and Figure 6A).
454	In contrast, because of stringency in selecting the fixed SNV loci, there was 100% agreement of
455	the previous taxon assignment of the parental species colony and its SNV MLG classification
456	(thus data points for pure bred samples are overlaid by the group centroid in Figure 6B).
457	No hybrid samples (F1, later generation or those in the test set) were assigned with high
458	probability to the F1 group with either maker set in the DFCA (Table S2). However, we found
459	that the SNV MLGs of F1 hybrids, seven later generation hybrids and all test hybrids shared the
460	same discriminant function coordinates as the F1 centroid, representing F1-like hybrids in the
461	data set (overlaid by F1 group centroid in Figure 6B). The remaining later generation hybrids
462	were classified as either A. cervicornis (n=6), A. palmata (n=1) or hybrid (n= 10; Figure 6B and
463	Table S2).

464 **DISCUSSION**

In this study, we have identified inter- and intra-species SNVs and indels between three *Acropora* species. These variants can cause amino acid substitutions that might ultimately alter
protein function between these corals. We provided examples of genes with putative fixed-

Kitchen *et al.* 23

differences between the Caribbean Acroporid species, grouped variants by their KEGG
pathways, highlighting examples from the Wnt and ABC transporter pathways, identified highly
diverged genomic regions between them and developed a RFLP assay to distinguish species and
hybrids. Genomic resources and workflows are available on Galaxy allowing researchers to
reproduce the analyses in this paper and apply them to any Acroporid species or other non-model
organisms.

474 Candidate Loci in Growth and Development

Genes in the Wnt pathway are critical for pattern formation, tissue differentiation in developing embryos and tissue regeneration of Cnidaria (Guder et al. 2006). Interestingly, we found that genes in the Wnt pathway are enriched in fixed amino acid substitutions and an antagonist of this pathway, WIF, has consecutive SNVs with high *F*_{ST} values between *A*. *cervicornis* and *A. palmata*.

480 Wnt genes function in primary body axis determination in *Hydra* and *Nematostella* 481 (Hobmayer et al. 2000; Kusserow et al. 2005), and in bud and tentacle formation in Hydra 482 (Philipp et al. 2009). Changes in the expression of Wnt genes under high temperatures are 483 hypothesized to result in disassociating A. palmata embryos and planulae with bifurcated oral 484 pores, indicating the critical role of this pathway in the ability of coral larvae to develop properly 485 under thermal stress (Polato et al. 2013). The genomic differences in the Wnt genes between 486 elkhorn and staghorn corals reported here (Figure 4) could reflect developmental or growth 487 adaptations that may be influenced by temperature, underscoring the warning that changing 488 ocean temperature can alter the development of corals.

Kitchen et al. 24

489	The Wnt pathway continues to regulate coral growth beyond early developmental life stages.
490	In the two Caribbean Acroporids, expression of Wnt genes was higher in the tips of colonies than
491	the base of colonies (Hemond et al. 2014). Differential expression of WIF was not observed in
492	the comparison of the distinct branch regions within or between species or under larval thermal
493	stress in A. palmata (Polato et al. 2013; Hemond et al. 2014), but WIF expression in A. digitifera
494	did change across the transitional life stages of blastula, gastrula, post-gastrula and planula
495	(Cruciat and Niehrs 2013; Reyes-Bermudez et al. 2016).
496	Another candidate gene STRAD α (Figure 3) is part of the AMP-activated protein kinase
497	(AMPK) pathway, which plays a key role in cellular growth, polarity and metabolism. Under
498	starvation or stressful conditions, the AMPK pathway senses cell energy and triggers a response
499	to inhibit cell proliferation and autophagy (Hawley et al. 2003). Recently, the switch towards
500	activation of AMPK-induced autophagy over apoptosis has been proposed to enhance disease
501	tolerance in immune stimulated corals (Fuess et al. 2017). In this study, STRAD α was found to
502	have two non-synonymous mutations and an indel between A. cervicornis and A. palmata
503	(Figure 3). Although these changes do not occur in a reported site of activity, we cannot ignore
504	the possibility that they are relevant in the interaction of STRAD α with MO25A α and LKB1.
505	The products of these three genes interact together to regulate the AMPK cascade, with
506	STRAD α being key for LKB1 protein stability. The extent to which AMPK more broadly
507	contributes to the development and disease tolerance of elkhorn and staghorn corals needs to be
508	further explored.

Kitchen et al. 25

509	Candidate Loci for Microbe Interactions and Cellular Stress
510	We highlighted several genes with fixed differences between the two Caribbean Acroporids
511	that are involved in innate immunity, membrane transport and oxidative stress in cnidarians.
512	These genes are also important for mediating interactions between the coral host and their
513	microbial symbionts. Corals mediate interactions with foreign microbes by either creating
514	physical barriers or initiating an innate immune response (Palmer and Traylor-Knowles 2012;
515	Oren et al. 2013). Innate immunity is not only activated for the removal of threatening microbes,
516	but also facilitates colonization of beneficial microorganisms within the coral host.
517	As one of the physical barriers, corals secrete a viscous mucus on the surface of their
518	epithelium that can trap beneficial and pathogenic microbes (Sorokin 1973; Rohwer et al. 2002).
519	Microbial fauna of the mucus can form another line of defense for their host, with evidence that
520	mucus from healthy A. palmata inhibits growth of other invading microbes and contributes to the
521	coral antimicrobial activity (Ritchie 2006). This mucus is composed of mucins, one of which
522	might be mucin 5AC that was found to span three divergent genomic intervals between A.
523	palmata and A. cervicornis. Mucin-like proteins have been found in the skeletal organic matrix
524	of A. millepora (Ramos-Silva et al. 2014) and are differentially expressed in the tips of A.
525	cervicornis during the day (Hemond and Vollmer 2015) suggesting a potential role for these
526	large glycoproteins in biomineralization as well. Thus, the divergence of mucin in elkhorn and
527	staghorn corals could underlie difference in the composition of their mucus and/or calcification
528	patterns.
529	Beyond the mucus layer, corals and other cnidarians have a repertoire of innate immune
530	tools to recognize microbial partners from pathogens and remove the latter. The transcription
531	factor NF- κB is one of these tools that regulates expression of immune effector genes, including

Kitchen et al. 26

532	mucin mentioned above (Sikder et al. 2014). We identified two fixed SNVs in NKIRAS2, an
533	inhibitor of NF-κB transcription (Chen et al. 2004). The two substitutions within this gene were
534	both unique to either A. palmata or A. cervicornis and neither were shared by the Pacific
535	Acroporids. While the role of NKIRAS1 and -2 are largely unexplored in non-mammal animals,
536	NKIRAS1 has been reported to be one out of nine genes down-regulated at high temperatures in
537	A. palmata (Polato et al. 2013).
538	As a way to interact and exchange nutrients with their beneficial microbes, corals can use
539	ABC transporter proteins. In general, ABC transporters encode for large membrane proteins that
540	can transport different compounds against a concentration gradient using ATP. More
541	specifically, they can transport long-chain fatty acids, enzymes, peptides, lipids, metals, mineral
542	and organic ions, and nitrate. ABC transporters were enriched in fixed amino acid differences
543	between A. palmata and A. cervicornis (Table 3). Previous characterization of the proteins
544	embedded in a sea anemone symbiosome, the compartment where the symbionts are housed,
545	found one ABC transporter which could facilitate movement of molecules between partners
546	(Peng et al. 2010). ABC transporters were upregulated in response to high CO ₂ concentrations
547	(Kaniewska et al. 2012) and during the day (Bertucci et al. 2015) in A. millepora suggesting
548	diverse roles for these proteins, transporting both molecules from the environment and
549	metabolites from their symbionts.
550	Within the ABC transporters, we analyzed in detail the non-synonymous mutations in
551	ABCD2 between A. palmata and A. cervicornis (Figure S8). This analysis was limited by the
552	availability of sequences, but allowed us to conclude that the amino acid substitution, though
553	expected to not produce a large functional change, is embedded in a-well conserved motif. The
554	ABCD2 product is involved in the transport of very long-chain acyl-CoA into peroxisomes for β -

Kitchen et al. 27

555	oxidation. It has been reported that A. palmata larvae derive their energy by this mean and that
556	high temperatures induce a change in expression of genes associated with peroxisomal β -
557	oxidation (Polato et al. 2013). This is thought to indicate that larvae of A. palmata catabolize
558	their lipid stores more rapidly at elevated temperatures (Polato et al. 2013). Increased lipid
559	catabolism in turn drove the need for additional redox homeostasis proteins to deal with reactive
560	oxygen species (ROS) produced during oxidation of fatty acids (Polato et al. 2013).
561	Superoxide dismutase, PDIA5 and TXDNC12 are involved in ROS stress-response and
562	antioxidant defense to deal with the oxygen radicals that are produce via the coral host or its
563	symbionts. It has been reported that the antioxidant protein SOD, which converts superoxide
564	anions to hydrogen peroxide, is important to reduce the ROS produced by the coral host and also
565	its dinoflagellate symbiont (Levy et al. 2006), particularly under high temperature stress (Downs
566	et al. 2002), high photosynthetically active radiation (Downs et al. 2002) and salinity stress
567	(Gardner et al. 2016). The genes PDIA5 and TXDNC12 also regulate oxidative stress as well as
568	protein folding. They are both localized to the endoplasmic reticulum and belong to the
569	thioredoxin superfamily of proteins (Galligan and Petersen 2012). These genes were found to
570	span the longest interval of significant genomic differentiation between the two Caribbean
571	species (Figure 5). Thioredoxin-like genes have been differentially expressed in a number of
572	thermal stress experiments on Pacific Acroporids (Starcevic et al. 2010; Souter et al. 2011; Rosic
573	et al. 2014) providing strong support for their role in mediating redox stress. Future research is
574	required to validate the functional consequences of the substitutions in the loci that differ
575	between A. palmata and A. cervicornis and their putative roles in host cellular stress response,
576	microbial interactions and/or nutrient exchange.

Kitchen *et al.* 28

577 Mitochondrial SNVs

578	Unlike other metazoan mitochondrial DNA (mtDNA), cnidarian mtDNA evolves much
579	slower and is almost invariant among conspecifics (van Oppen et al. 1999; Shearer et al. 2002).
580	However, the so-called control region can be hypervariable compared to the other mtDNA
581	regions in corals (Shearer et al. 2002), and is where the majority of the mitochondrial SNVs in
582	these taxa were identified (Figure S3). The variability in this gene-free region has been used in
583	previous studies to reconstruct the phylogenetic relationship all Acroporid species (van Oppen et
584	al. 2001) and as one of the markers to determine gene-flow between A. palmata and A.
585	cervicornis from hybridization (Vollmer & Palumbi 2002, 2007). The lack of fixed-differences
586	between the mtDNA of these two species suggests that mito-nuclear conflict might be limited or
587	non-existent during hybridization of these species.

588 Species-Specific Diagnostic Markers

589 We validated eight of the PCR-ready fixed SNVs in additional Acroporid samples and 590 classified the two Acroporid species and their hybrid based on the MLGs of these makers and 591 five microsatellite loci (Figure 6). Currently, microsatellite makers are routinely used to identify 592 Acroporid genotypes and clone mates, but only one of these is a species-specific marker (locus 593 192) between the Caribbean Acroporid (Baums et al. 2005; Baums et al. 2009). While previous 594 studies have used labor intensive Sanger-sequencing of one mitochondrial and three nuclear loci 595 to study Caribbean hybrid Acropora (Van Oppen et al. 2000; Vollmer and Palumbi 2002), PCR-596 ready fixed SNV markers provide an alternative for high-throughput genotyping and hybrid 597 classification. The detection of only one variable base at each SNV locus can lower genotyping 598 error, avoid difficulties in interpreting heterozygous Sanger sequences and increase

Kitchen et al. 29

599	reproducibility across labs (Anderson and Garza 2006). Our results indicate a small number of
600	fixed SNVs can outperform the microsatellite makers for taxonomic classification of the species
601	but not necessarily the hybrids. Our inability to discriminate the F1-like hybrids from the later
602	generation hybrids with the DFCA is likely due to the low sample size of reference F1 hybrids
603	(n=3). In the case of the SNV markers, the identical MLGs between the F1 hybrids and seven
604	later generation hybrids further reduced our ability to separate the groups. Therefore, with the
605	limited number of PCR-ready SNVs tested, there was no difference in the performance of
606	microsatellite to SNV loci for refining hybrid classification. These results however, indicate that
607	the genomes provide a rich source for PCR-ready SNVs albeit a larger number of SNVs then
608	tested here will need to be assayed before Caribbean Acroporid hybrids can be classified
609	confidently.

610 CONCLUSION

611 By using the genome assembly of A. digitifera, we were able to detect differences between 612 A. cervicornis and A. palmata at various levels, from a single nucleotide substitution to hundreds of nucleotide substitutions over large genomic intervals. We identified genetic differences in key 613 614 pathways and genes known to be important in the animals' response to the environmental 615 disturbances and larval development. This project can work as a pilot to gather intra- and 616 interspecies differences between A. cervicornis and A. palmata across their geographic range. 617 Ultimately, gene knock-down and gene editing experiments are needed to test whether these and 618 other genetic differences have functional consequences and thus could be targets for improving 619 temperature tolerance and growth of corals.

Kitchen et al. 30

620 WEB RESOURCES

- 621 The SNV and indel calls for both the nuclear and mitochondrial genomes are available at the
- 622 Galaxy internet server (usegalaxy.org) (Afgan et al. 2016).

623 DATA AVAILABILITY

- 624 NCBI Accession numbers for the raw reads are SRR7235977-SRR7236038. Supplemental
- 625 figures and tables are uploaded to figshare (link).

626 ACKNOWLEDGMENTS

627 This study was funded by NSF OCE-1537959 to IBB, NF, and WM. Thanks to the PSU

628 genomics facility for performing the sequencing. Additional thanks to Meghann Devlin-Durante

629 for assistance with DNA extractions and Macklin Elder for help with the RFLP assay. Samples

630 were collected and exported with appropriate permits.

631 AUTHOR CONTRIBUTIONS

AR provided SNV and indel calls and produced the figure of mitochondrial variants. SK extracted the coral DNA, contributed to the analysis of the SNVs and developed and analyzed the RFLP assay. OB generated 3D protein model and performed KEGG pathway enrichment analysis. RB made the variants available on Galaxy. NF provided samples for the genome sequencing and RFLP validation. AR, SK, OB, WM and IBB wrote the paper. The project is being managed by IBB.

Kitchen *et al.* 31

639 LITERATURE CITED

- 640 Afgan, E., D. Baker, M. Van den Beek, D. Blankenberg, D. Bouvier *et al.*, 2016 The Galaxy
- 641 platform for accessible, reproducible and collaborative biomedical analyses: 2016 update.
- 642 *Nucleic Acids Research* 44 (W1):W3-W10.
- 643 Agaba, M., E. Ishengoma, W.C. Miller, B.C. McGrath, C.N. Hudson et al., 2016 Giraffe genome
- 644 sequence reveals clues to its unique morphology and physiology. *Nature*
- 645 *Communications* 7:11519.
- 646 Akey, J.M., G. Zhang, K. Zhang, L. Jin, and M.D. Shriver, 2002 Interrogating a high-density
- 647 SNP map for signatures of natural selection. *Genome Research* 12 (12):1805-1814.
- 648 Altschul, S.F., T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang et al., 1997 Gapped BLAST and
- 649 PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids*650 *Research* 25 (17):3389-3402.
- Anderson, E., and E. Thompson, 2002 A model-based method for identifying species hybrids
 using multilocus genetic data. *Genetics* 160 (3):1217-1229.
- Anderson, E.C., and J.C. Garza, 2006 The power of single-nucleotide polymorphisms for largescale parentage inference. *Genetics* 172 (4):2567-2582.
- Andreoletti, P., Q. Raas, C. Gondcaille, M. Cherkaoui-Malki, D. Trompier *et al.*, 2017 Predictive
 structure and topology of peroxisomal ATP-binding cassette (ABC) transporters.
- 657 International Journal of Molecular Sciences 18 (7):1593.
- Anonymous, 2006 Endangered and threatened species: final listing determinations for elkhorn
- 659 coral and staghorn coral. *Federal Register* 71:26852-26872.

Kitchen *et al.* 32

- 660 Baums, I., M. Devlin Durante, L. Brown, and J. Pinzón, 2009 Nine novel, polymorphic
- 661 microsatellite markers for the study of threatened Caribbean acroporid corals. *Molecular*
- *Ecology Resources* 9 (4):1155-1158.
- 663 Baums, I.B., 2008 A restoration genetics guide for coral reef conservation. *Molecular Ecology*
- 664 17 (12):2796-2811.
- Baums, I.B., C.R. Hughes, and M.E. Hellberg, 2005 Mendelian microsatellite loci for the
 Caribbean coral *Acropora palmata*. *Marine Ecology Progress Series* 288:115-127.
- 667 Bedoya-Reina, O.C., A. Ratan, R. Burhans, H.L. Kim, B. Giardine et al., 2013 Galaxy tools to
- study genome diversity. *Gigascience* 2 (1):17.
- 669 Belkhir, K., P. Borsa, L. Chikhi, N. Raufaste, and F. Bonhomme, 2004 GENETIX 4.05,
- 670 Windows TM software for population genetics. *Laboratoire génome, populations,*671 *interactions, CNRS UMR* 5000.
- 672 Bertucci, A., S. Foret, E. Ball, and D.J. Miller, 2015 Transcriptomic differences between day and
- 673 night in Acropora millepora provide new insights into metabolite exchange and light -
- 674 enhanced calcification in corals. *Molecular Ecology* 24 (17):4489-4504.
- Bhattacharya, D., S. Agrawal, M. Aranda, S. Baumgarten, M. Belcaid *et al.*, 2016 Comparative
 genomics explains the evolutionary success of reef-forming corals. *eLife* 5:e13288.
- Bruckner, A.W., 2002 *Acropora* Workshop: Potential Application of the US Endangered Species
 Act as a Conservation Strategy. *NOAA Technical Memorandum NMFS-OPR*.
- 679 Cairns, S.D., 1982 Stony corals (Cnidaria: Hydrozoa, Scleractinia) of Carrie Bow Cay, Belize.
- 680 Chang, H.-W., Y.-H. Cheng, L.-Y. Chuang, and C.-H. Yang, 2010 SNP-RFLPing 2: an updated
- and integrated PCR-RFLP tool for SNP genotyping. *BMC Bioinformatics* 11 (1):173.

Kitchen *et al.* 33

- Chang, H.-W., C.-H. Yang, P.-L. Chang, Y.-H. Cheng, and L.-Y. Chuang, 2006 SNP-RFLPing:
 restriction enzyme mining for SNPs in genomes. *BMC Genomics* 7 (1):30.
- 684 Chen, Y., S. Vallee, J. Wu, D. Vu, J. Sondek *et al.*, 2004 Inhibition of NF- κ B activity by I κ B β in 685 association with κ B-Ras. *Molecular and Cellular Biology* 24 (7):3048-3056.
- 686 Consortium, G.O., 2015 Gene ontology consortium: going forward. Nucleic Acids Research 43
- 687 (D1):D1049-D1056.
- 688 Cruciat, C.-M., and C. Niehrs, 2013 Secreted and transmembrane wnt inhibitors and activators.
 689 *Cold Spring Harbor Perspectives in Biology* 5 (3):a015081.
- 690 Downs, C., J.E. Fauth, J.C. Halas, P. Dustan, J. Bemiss et al., 2002 Oxidative stress and seasonal

691 coral bleaching. *Free Radical Biology and Medicine* 33 (4):533-543.

- Drury, C., K.E. Dale, J.M. Panlilio, S.V. Miller, D. Lirman *et al.*, 2016 Genomic variation
 among populations of threatened coral: *Acropora cervicornis*. *BMC Genomics* 17
- **694** (1):286.
- Faust, G.G., and I.M. Hall, 2014 SAMBLASTER: fast duplicate marking and structural variant
 read extraction. *Bioinformatics* 30 (17):2503-2505.
- 697 Fuess, L.E., E. Weil, R.D. Grinshpon, and L.D. Mydlarz, 2017 Life or death: disease-tolerant
- 698 coral species activate autophagy following immune challenge. *Proceedings of the Royal*699 Society of London, Series B: Biological Sciences 284 (1856):20170771.
- Galligan, J.J., and D.R. Petersen, 2012 The human protein disulfide isomerase gene family.
- 701 *Human genomics* 6 (1):6.
- 702 Gardner, S.G., D.A. Nielsen, O. Laczka, R. Shimmon, V.H. Beltran et al., 2016
- 703 Dimethylsulfoniopropionate, superoxide dismutase and glutathione as stress response

Kitchen *et al.* 34

- indicators in three corals under short-term hyposalinity stress. Proc. R. Soc. B 283
- 705 (1824):20152418.
- Guder, C., I. Philipp, T. Lengfeld, H. Watanabe, B. Hobmayer et al., 2006 The Wnt code:
- cnidarians signal the way. *Oncogene* 25 (57):7450-7460.
- Hawley, S.A., J. Boudeau, J.L. Reid, K.J. Mustard, L. Udd et al., 2003 Complexes between the
- 709 LKB1 tumor suppressor, STRAD α/β and MO25 α/β are upstream kinases in the AMP-
- 710 activated protein kinase cascade. *Journal of Biology* 2 (4):28.
- 711 Hemond, E.M., S.T. Kaluziak, and S.V. Vollmer, 2014 The genetics of colony form and function
- in Caribbean Acropora corals. BMC Genomics 15 (1):1133.
- 713 Hemond, E.M., and S.V. Vollmer, 2015 Diurnal and nocturnal transcriptomic variation in the
- 714 Caribbean staghorn coral, *Acropora cervicornis*. *Molecular Ecology* 24 (17):4460-4473.
- Hobmayer, B., F. Rentzsch, K. Kuhn, C.M. Happel, C.C. von Laue et al., 2000 WNT signalling

molecules act in axis formation in the diploblastic metazoan *Hydra*. *Nature* 407:186.

- 717 Holsinger, K.E., and B.S. Weir, 2009 Genetics in geographically structured populations:
- 718 defining, estimating and interpreting FST. *Nature Reviews Genetics* 10 (9):639-650.
- Howe, K., A. Bateman, and R. Durbin, 2002 QuickTree: building huge Neighbour-Joining trees
 of protein sequences. *Bioinformatics* 18 (11):1546-1547.
- Hubisz, M.J., K.S. Pollard, and A. Siepel, 2010 PHAST and RPHAST: phylogenetic analysis
 with space/time models. *Briefings in bioinformatics* 12 (1):41-51.
- 723 Kanehisa, M., M. Furumichi, M. Tanabe, Y. Sato, and K. Morishima, 2017 KEGG: new
- perspectives on genomes, pathways, diseases and drugs. *Nucleic Acids Research* 45
 (D1):D353-D361.

Kitchen et al. 35

726	Kaniewska, P., P.R. Campbell, D.I. Kline, M. Rodriguez-Lanetty, D.J. Miller et al., 2012 Major
727	Cellular and Physiological Impacts of Ocean Acidification on a Reef Building Coral.
728	<i>PLoS ONE</i> 7 (4):e34659.
729	Kent, W.J., C.W. Sugnet, T.S. Furey, K.M. Roskin, T.H. Pringle et al., 2002 The human genome
730	browser at UCSC. Genome Research 12 (6):996-1006.
731	Kusserow, A., K. Pang, C. Sturm, M. Hrouda, J. Lentfer et al., 2005 Unexpected complexity of
732	the Wnt gene family in a sea anemone. Nature 433 (7022):156.
733	Levy, O., Y. Achituv, Y. Yacobi, N. Stambler, and Z. Dubinsky, 2006 The impact of spectral
734	composition and light periodicity on the activity of two antioxidant enzymes (SOD and
735	CAT) in the coral Favia favus. Journal of Experimental Marine Biology and Ecology 328
736	(1):35-46.
737	Li, H., 2011 A statistical framework for SNP calling, mutation discovery, association mapping
738	and population genetical parameter estimation from sequencing data. Bioinformatics 27
739	(21):2987-2993.
740	Li, H., and R. Durbin, 2009 Fast and accurate short read alignment with Burrows-Wheeler
741	transform. Bioinformatics 25 (14):1754-1760.
742	Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., 2009 The sequence alignment/map
743	format and SAMtools. Bioinformatics 25 (16):2078-2079.
744	Liew, Y.J., M. Aranda, and C.R. Voolstra, 2016 Reefgenomics. Org-a repository for marine
745	genomics data. Database 2016.
746	Nekrutenko, A., and J. Taylor, 2012 Next-generation sequencing data interpretation: enhancing
747	reproducibility and accessibility. Nature Reviews Genetics 13 (9):667.

Kitchen *et al.* 36

- Novembre, J., T. Johnson, K. Bryc, Z. Kutalik, A.R. Boyko *et al.*, 2008 Genes mirror geography
 within Europe. *Nature* 456 (7218):98-101.
- 750 Oren, M., G. Paz, J. Douek, A. Rosner, K.O. Amar et al., 2013 Marine invertebrates cross phyla
- comparisons reveal highly conserved immune machinery. *Immunobiology* 218 (4):484-
- 752 495.
- Palmer, C.V., and N. Traylor-Knowles, 2012 Towards an integrated network of coral immune
 mechanisms. *Proceedings of the Royal Society of London, Series B: Biological Sciences*279 (1745):4106-4114.
- Peng, S.E., Y.B. Wang, L.H. Wang, W.N.U. Chen, C.Y. Lu et al., 2010 Proteomic analysis of
- 757 symbiosome membranes in Cnidaria–dinoflagellate endosymbiosis. *Proteomics* 10
 758 (5):1002-1016.
- Philipp, I., R. Aufschnaiter, S. Özbek, S. Pontasch, M. Jenewein *et al.*, 2009 Wnt/β-catenin and
 noncanonical Wnt signaling interact in tissue evagination in the simple eumetazoan

761 *Hydra. Proceedings of the National Academy of Sciences* 106 (11):4290-4295.

- 762 Polato, N.R., N.S. Altman, and I.B. Baums, 2013 Variation in the transcriptional response of
- threatened coral larvae to elevated temperatures. *Molecular Ecology* 22 (5):1366-1382.
- Ramos-Silva, P., J. Kaandorp, F. Herbst, L. Plasseraud, G. Alcaraz *et al.*, 2014 The skeleton of
 the staghorn coral *Acropora millepora*: molecular and structural characterization. *PloS One* 9 (6):e97454.
- 767 RCoreTeam, 2017 R: A language and environment for statistical computing [Online]. R
- Foundation for Statistical Computing, Vienna, Austria.
- Reich, D., K. Thangaraj, N. Patterson, A.L. Price, and L. Singh, 2009 Reconstructing Indian
 population history. *Nature* 461 (7263):489-494.

Kitchen et al. 37

771	Reyes-Bermudez, A., A. Villar-Briones, C. Ramirez-Portilla, M. Hidaka, and A.S. Mikheyev,
772	2016 Developmental progression in the coral Acropora digitifera is controlled by
773	differential expression of distinct regulatory gene networks. Genome Biology and
774	Evolution 8 (3):851-870.
775	Richards, Z., D. Miller, and C. Wallace, 2013 Molecular phylogenetics of geographically
776	restricted Acropora species: Implications for threatened species conservation. Molecular
777	Phylogenetics and Evolution 69 (3):837-851.
778	Ritchie, K.B., 2006 Regulation of microbial populations by coral surface mucus and mucus-
779	associated bacteria. Marine Ecology Progress Series 322:1-14.
780	Rohwer, F., V. Seguritan, F. Azam, and N. Knowlton, 2002 Diversity and distribution of coral-
781	associated bacteria. Marine Ecology Progress Series 243:1-10.
782	Rosic, N., P. Kaniewska, CK.K. Chan, E.Y.S. Ling, D. Edwards et al., 2014 Early
783	transcriptional changes in the reef-building coral Acropora aspera in response to thermal
784	and nutrient stress. BMC Genomics 15 (1):1052.
785	Shearer, T.L., M.J.H. Van Oppen, S.L. Romano, and G. Worheide, 2002 Slow mitochondrial
786	DNA sequence evolution in the Anthozoa (Cnidaria). Molecular Ecology 11 (12):2475-
787	2487.
788	Shinzato, C., E. Shoguchi, T. Kawashima, M. Hamada, K. Hisata et al., 2011 Using the
789	Acropora digitifera genome to understand coral responses to environmental change.

Nature 476 (7360):320-323.

791	Sikder, M., H.J. Lee, M. Mia, S.H. Park, J. Ryu <i>et al.</i> , 2014 Inhibition of TNF - α - induced
792	MUC5AC mucin gene expression and production by wogonin through the inactivation of
793	NF - κB signaling in airway epithelial cells. <i>Phytotherapy Research</i> 28 (1):62-68.
794	Sorokin, Y.I., 1973 Trophical role of bacteria in the ecosystem of the coral reef. Nature 242
795	(5397):415.
796	Souter, P., L. Bay, N. Andreakis, N. Csaszar, F. Seneca et al., 2011 A multilocus, temperature
797	stress - related gene expression profile assay in Acropora millepora, a dominant reef -
798	building coral. Molecular Ecology Resources 11 (2):328-334.
799	Starcevic, A., W.C. Dunlap, J. Cullum, J.M. Shick, D. Hranueli et al., 2010 Gene expression in
800	the scleractinian Acropora microphthalma exposed to high solar irradiance reveals
801	elements of photoprotection and coral bleaching. PloS One 5 (11):e13975.
802	Untergasser, A., I. Cutcutache, T. Koressaar, J. Ye, B.C. Faircloth et al., 2012 Primer3-new
803	capabilities and interfaces. Nucleic Acids Research 40 (15):e115.
804	Van Oppen, M., B. Willis, H. Van Vugt, and D. Miller, 2000 Examination of species boundaries
805	in the Acropora cervicornis group (Scleractinia, Cnidaria) using nuclear DNA sequence
806	analyses. Molecular Ecology 9 (9):1363-1373.
807	van Oppen, M.J., J.K. Oliver, H.M. Putnam, and R.D. Gates, 2015 Building coral reef resilience
808	through assisted evolution. Proceedings of the National Academy of Sciences 112
809	(8):2307-2313.
810	van Oppen, M.J.H., B.J. McDonald, B. Willis, and D.J. Miller, 2001 The evolutionary history of
811	the coral genus Acropora (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear

Kitchen *et al.* 39

- 812 marker: Reticulation, incomplete lineage sorting, or morphological convergence?
- 813 *Molecular Biology and Evolution* 18 (7):1315-1329.
- 814 Vollmer, S.V., and S.R. Palumbi, 2002 Hybridization and the evolution of reef coral diversity.
- 815 *Science* 296 (5575):2023-2025.
- Yang, J., R. Yan, A. Roy, D. Xu, J. Poisson *et al.*, 2015 The I-TASSER Suite: protein structure
 and function prediction. *Nature Methods* 12 (1):7-8.
- 818 Zeqiraj, E., B.M. Filippi, S. Goldie, I. Navratilova, J. Boudeau et al., 2009 ATP and MO25α
- 819 regulate the conformational state of the STRADα pseudokinase and activation of the
- 820 LKB1 tumour suppressor. *PLoS Biology* 7 (6):e1000126.

Kitchen et al. 40

822 **TABLES**

823 Table 1. Sequenced Genomes. Species assignment was based initially on microsatellite

824 multilocus genotyping. Acropora Genet ID is an identifier for each Acropora multilocus

825 microsatellite genotype in the Baums Lab database. Coordinates are given in decimal degrees

826 (WGS84). Two samples were sequenced to a greater depth (bold type).

Species	Region	Sample ID	<i>Acropora</i> Genet ID	Reef	Latitude	Longitude	Collection Date	SRA Accession
A. cervicornis	Belize	CBE13827	C1630	Glovers Atoll	16.88806	-87.75973	8-Nov-15	SRR7236033
		CBE13837	C1631	Glovers Atoll	16.88806	-87.75973	8-Nov-15	SRR7236028
		CBE13792	C1632	Sandbores	16.77913	-88.11755	7-Nov-15	SRR723603
		CBE13797	C1646	Sandbores	16.77913	-88.11755	7-Nov-15	SRR7236034
		CBE13786	C1569	South Carrie Bow Cay	16.80132	-88.0825	6-Nov-15	SRR7236032
	Curacao	CCU13917	C1648	Directors Bay	12.066	-68.85997	4-Feb-16	SRR723603
		CCU13925	C1649	East Point	12.04069	-68.78301	5-Feb-16	SRR723599
		CCU13901	C1647	SeaAquarium	12.0842	-68.8966	2-Feb-16	SRR723603
		CCU13903	C1650	SeaAquarium	12.0842	-68.8966	2-Feb-16	SRR723602
		CCU13905	C1651	SeaAquarium	12.0842	-68.8966	2-Feb-16	SRR723603
	Florida	CFL4927	C1471	CRF	25.2155	-80.60778	22-Nov-11	SRR723599
		CFL4959	C1476	CRF	24.9225	-81.12417	22-Nov-11	SRR723599
		CFL4923	C1484	CRF	25.16472	-80.59389	22-Nov-11	SRR723599
		CFL4928	C1485	CRF	25.03222	-80.50417	22-Nov-11	SRR723599
		CFL14120	C1297	CRF (Grassy Key)	24.71182	-80.94595	1-Mar-16	SRR723599
		CFL4960	C1297	CRF (Grassy Key)	24.71182	-80.94595	22-Nov-11	SRR723599
	USVI	CVI13712	C1633	Botany	18.3569	-65.03515	28-Oct-15	SRR723599
		CVI13696	C1638	Botany	18.3569	-65.03515	27-Oct-15	SRR723598
		CVI13758	C1456	Flat Key	18.31701	-64.9892	31-Oct-15	SRR723602
		CVI13714	C1644	Hans Lollik	18.40191	-64.9063	29-Oct-15	SRR723599
		CVI13738	C1628	Sapphire	18.3333	-64.8499	30-Oct-15	SRR723602
A. palmata	Belize	PBE13813	P2947	Glovers Atoll	16.88806	-87.75973	8-Nov-15	SRR723601
1		PBE13819	P2959	Glovers Atoll	16.88806	-87.75973	8-Nov-15	SRR723601
		PBE13801	P2964	Sandbores	16.77913	-88.11755	7-Nov-15	SRR723602
		PBE13784	P2945	South Carrie Bow Cay	16.80132	-88.0825	5-Nov-15	SRR723601
		PBE13815	P2951	South Carrie Bow Cay	16.80132	-88.0825	5-Nov-15	SRR723601
	Curacao	PCU13919	P2970	Directors Bay	12.066	-68.85998	4-Feb-16	SRR723598
		PCU13933	P2977	East Point	12.04069	-68.78301	5-Feb-16	SRR723598
		PCU13911	P1232	SeaAquarium	12.0842	-68.8966	3-Feb-16	SRR723598
		PCU13907	P2212	SeaAquarium	12.0842	-68.8966	3-Feb-16	SRR723598
		PCU13939	P2976	Water Factory	12.1085	-68.9528	6-Feb-16	SRR723598
	Florida	PFL5524	P2118	Carysfort	25.22178	-80.2106	1-Aug-05	SRR723601
		PFL2655	P1032	Elbow	25.14363	-80.25793	3-Jun-10	SRR723597
		PFL2699	P2564	French	25.03393	-80.34941	28-May-10	SRR723601
		PFL1012	P1000	Horseshoe	25.13947	-80.29435	25-Apr-01	SRR723598
		PFL1037	P1001	Little Grecian	25.11843	-80.31715	2-Jul-02	SRR723598
		PFL6895	P1003	Sand Island	25.01817	-80.36832	17-Sep-09	SRR723600
	USVI	PVI13702	P2957	Botany	18.3569	-65.03515	27-Oct-15	SRR723600
	5511	PVI13752	P2946	Flat Key	18.31701	-64.9892	31-Oct-15	SRR723601
		PVI13744	P2953	Hans Lollik	18.40191	-64.9063	29-Oct-15	SRR723600
		PVI13750	P2954	Hans Lollik	18.40191	-64.9063	29-Oct-15	SRR723600
		PVI13740	P2952	Sapphire	18.3333	-64.8499	30-Oct-15	SRR723600

Kitchen *et al.* 41

828 Table 2. Data sets available on Galaxy.

829

Name	Contents	# of Lines
SNVs	A. <i>digitifera</i> scaffold positions with two observed nucleotides among the three Acropora genomes	8,368,985
indels	positions and contents of observed short (≤ 20 bp) insertion/deletions	940,345
SAPs	protein sequence positions of non-synonymous and synonymous substitutions	561,015
mitochondrial SNVs	<i>A. digitifera</i> mitochondrial genome positions with two observed nucleotides	172
mitochondrial indels	position of an insertion/deletion	1
exons	scaffold positions of annotated exon endpoints	222,156
PCR-ready SNVs	SNVs where no other SNV, indel, or low-complexity sequence is within 50 bp	894

⁸³⁰

831 Table 3. Statistically significant KEGG pathways enriched for genes having a fixed amino

832 acid difference between A. cervicornis and A. palmata. The third column gives the number of

833 genes in the pathway with one or more fixed difference(s), and the third reports what fraction

they represent of all genes in the pathway. For instance, 67 of the genes are annotated as

belonging to the ABC transporter pathway, and 12/67 = 0.18. Statistical significance determined

- 836 using a two-tailed Fisher's exact test.
- 837

Pathway	p-value	# Genes	Fraction
adf02010=ABC transporters	0.0015	12	0.18
adf00790=Folate biosynthesis	0.019	5	0.21
adf03420=Nucleotide excision repair	0.031	7	0.15
adf04933=AGE-RAGE signaling pathway in diabetic	0.023	9	0.14
complications			
adf04310=Wnt signaling pathway	0.037	12	0.12

Kitchen et al. 42

838 FIGURES

839	Figure 1. Phylogeny of corals with genomic and transcriptomic resources used in this study
840	(A) with images of the two focal species, Acropora palmata (B) and Acropora cervicornis (C).
841	The evolutionary relationships depicted in the coral phylogeny are redrawn based on the
842	phylogenomic analysis by Bhattacharya et al. (2016), but branch lengths do not reflect
843	evolutionary distance. Estimate of divergence time between the Caribbean Acroporids and A.
844	digitifera was calculated by Richards et al. (2013). Photographs of A. palmata (B) and A.
845	cervicornis (C) were taken by Iliana B. Baums (Curacao 2018).
846	
847	Figure 2. Geographic origin of Acropora samples (A) and Principal Components Analysis
848	of A. cervicornis samples, five from each of four locations (B). As noted in analyses of other
849	datasets (e.g., Novembre et al. (2008)) the geographic map is similar to the PCA.
850	
851	Figure 3. Predicted structure for STRADa in A. cervicornis. In its inactive conformation,
852	ATP binds the protein to activate it (in the space delimited by the purple residues). After the
853	protein is active, STRAD α interacts with MO25 to regulate LKB1. This interaction occurs by
854	means of the alpha-helices B, C and E, the beta-laminae 4 and 5, and the activation loop (blue).
855	A. palmata differs from A. cervicornis in two amino acids (N62Y and P355S) as well as in four
856	insertions (R322, D323, G324 and G325).
857	

858	Figure 4. Pictorial representation of the KEGG pathway for WNT signaling. The red shaded
859	boxes indicate the genes having fixed amino acid differences between A. cervicornis and A.
860	palmata. Green indicates the genes that were found in these genomes but did not differ between
861	the species. White indicates the genes that were not found in the three Acroporid genomes.
862	
863	Figure 5. Genomic intervals with or without regions of differentiation between A. palmata
864	and A. cervicornis. Inter-species allelic differentiation (F_{ST}) was calculated using the unbiased
865	Reich-Patterson estimator (Reich et al. 2009). Intervals of high scoring SNVs were identified by
866	subtracting 0.90 from each SNV F_{ST} value and totaling the score of consecutive SNVs until the
867	score could no longer be increased by an additional SNV on either end. High scoring regions are
868	shaded in light grey along 60 kb genomic windows for the top two scoring intervals, scaffold
869	NW_015441181.1 (A) and scaffold NW_015441116.1 (B), compared to 60 kb genomic window
870	on scaffold NW_015441064.1 with no intervals (C). Grey points are the F_{ST} estimate for each
871	SNVs and blue line is the average F_{ST} calculated over 1 kb sliding window analysis. Predicted
872	genes within these windows are shown above the graph in grey arrows. In order, genes include
873	mitochondrial proton/calcium exchanger protein (LETM1), A. digitifera LOC107339089,
874	protein-L-isoaspartate(D-aspartate) O-methyltransferase (PCMT1), mitochondrial
875	methyltransferase-like protein 12 (MTL12), Wnt inhibitory factor 1 (WIF1), mucin-5AC-like
876	(MUC5AC), G protein-coupled receptor 9 (GPCR9), Ras-related and estrogen-regulated growth
877	inhibitor (RERG), protein disulfide-isomerase A5 (PDIA5), thioredoxin domain containing
878	protein (TXNDC), protein ABHD14B (ABHD14B), mitogen-activated protein kinase kinase

Kitchen *et al.* 44

- kinase kinase 4 (MAP4K4), poly(ADP-ribose) polymerase family member 15 (PARP15), A.
- digitifera LOC107341429, and A. digitifera LOC107341151.

881 Figure 6. Discriminant factorial correspondence analysis of five microsatellite markers (A)

- and eight species-specific SNV loci (B). Samples were assigned to four different groups based
- on their previous taxon assignment: 1. A. cervicornis (n= 9, blue upside down triangles), 2. A.
- 884 *palmata* (*n*=10, pink triangles), 3. F1 hybrids (*n*=3, purple squares), and 4. later generation
- hybrids (n=24, green diamonds). The remaining hybrid samples (n=20, yellow circles) had no
- previous hybrid assignment and acted as our test set for the analysis. The large shapes for each
- group represent the group centroid, or mean. In panel B, data points for pure bred colonies are
- not visible because their coordinates are identical to their respective group centroids. F1 hybrids,
- test hybrids and seven later generation hybrids are also masked as they share the same
- 890 coordinates as the F1 centroid, representing F1-like hybrids in the data set.

Kitchen *et al.* 45

891 SUPPLEMENTAL DATA

892 Table S1. Alignment summary statistics for the various samples included in this study.

893 Each row corresponds to a sample. The column 'Generated Reads' refers to the number of

sequences generated for the sample. 'Mapped Reads' refers to the sequences that aligned with a

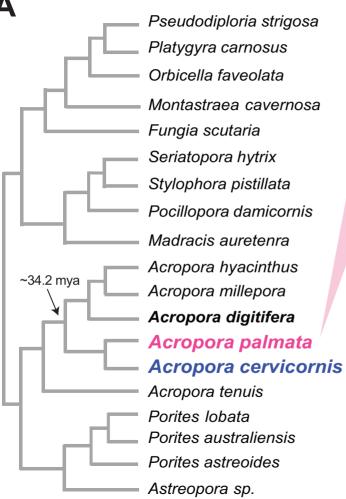
mapping quality > 0, and 'Properly Paired' refers to the number of reads that align within the

896 expected distance from their mate. 'Duplicate Reads' refers to the number of reads that were

flagged as putative PCR duplicates. 'Aligned Reads' refers to the number of sequences that were

aligned to the A. digitifera reference using BWA, We present these statistics at both the sequence

and the base level. Samples 1012 and 14120 are the deeply sequenced samples.

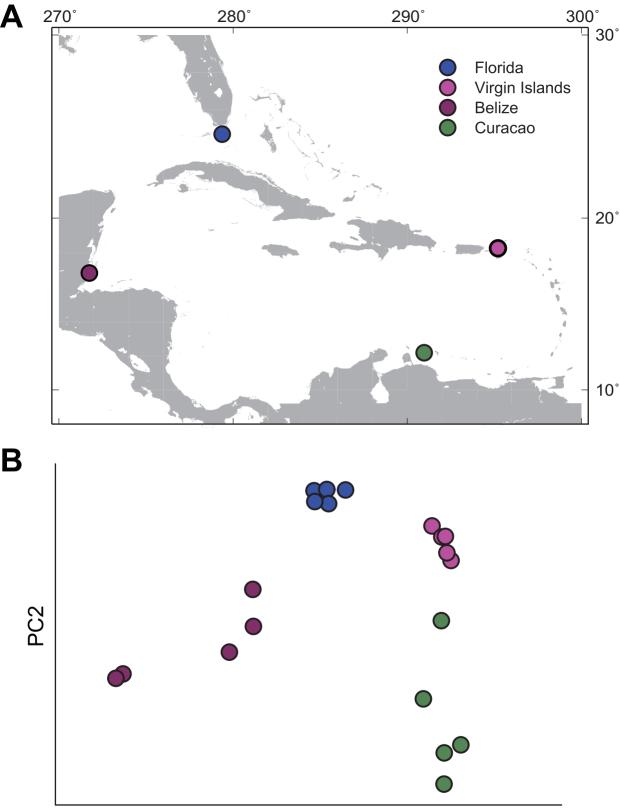

900

901 Table S2. Results from the discriminant factorial correspondence analysis for the

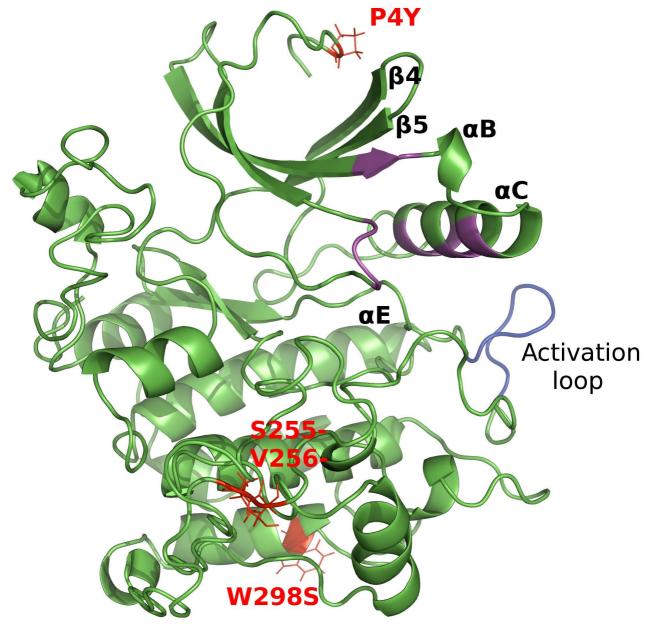
902 microsatellite and fixed SNV markers. . Bold clonal IDs indicate repetitive genotypes and grey 903 rows highlight samples where the probability of membership from the discriminant factorial 904 correspondence analysis differs between the two marker sets. For example, sample 2984 was 905 identified as A. cervicornis based on morphology and previous posterior probabilities from a 906 NEWHYBRIDS analysis. The discriminant analysis assigned the sample 2984 with 71.53% 907 probability to the hybrid group using the Msat MLG. This is in contrast to the SNP MLG which 908 classified the sample with 96.7 % as being A. cervicornis in agreement with both the visual 909 identification and NEWHYBRIDS results.

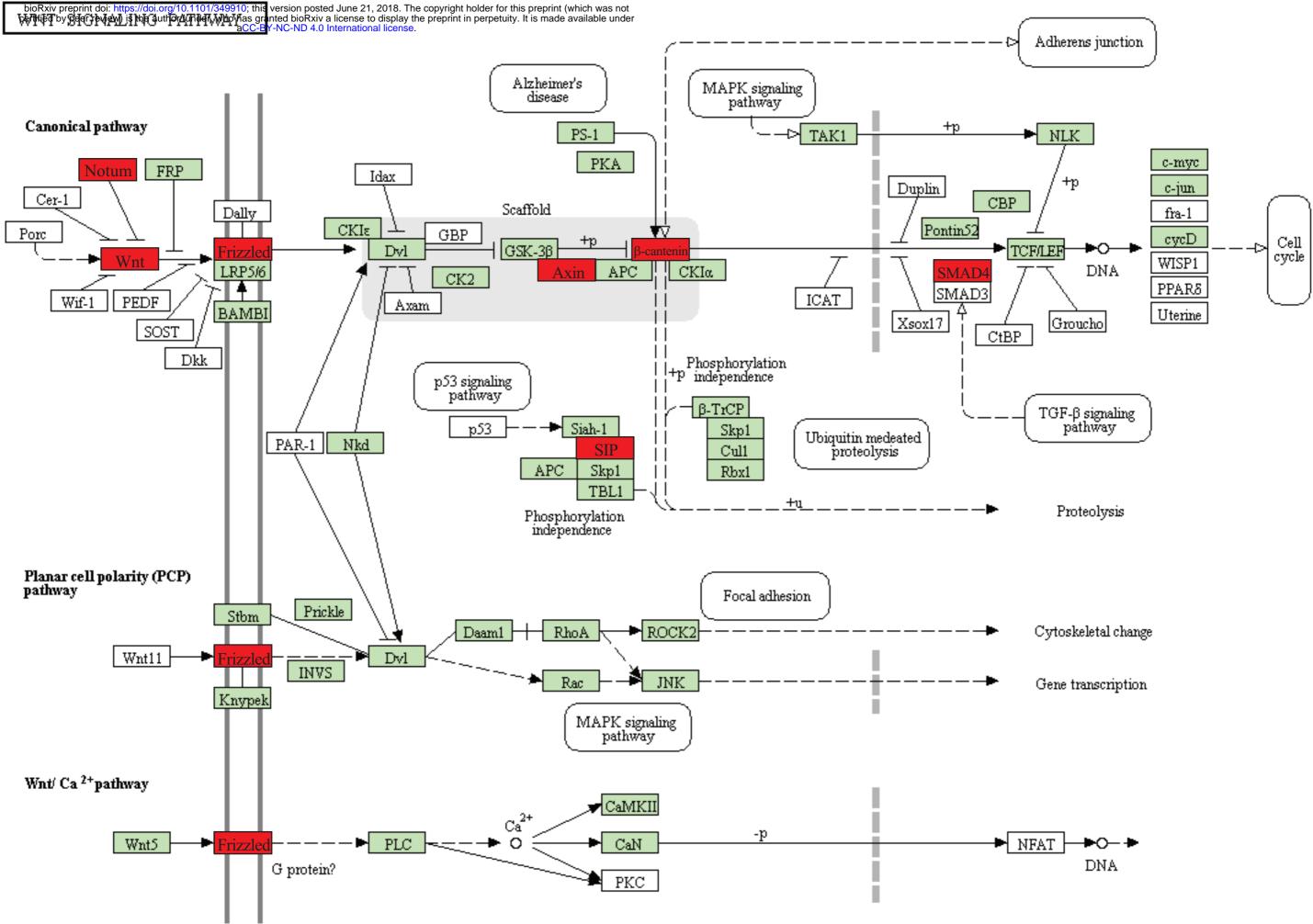
911	Table S3. Summary of the eight fixed SNV markers used to assign hybrids and species. For
912	each SNV, the left nucleotide matches A. cervicornis and the right nucleotide matches A.
913	palmata.
914	
915	Table S4. Fixed SNV marker gene annotation.
916	Table S5. Gene models identified in the two highest scoring $F_{\rm ST}$ intervals between the 20
917	samples of A. cervicornis and A. palmata.
918	
919	Figure S1. Genome coverage distributions of the 21 Acropora cervicornis samples.
920	
921	Figure S2. Distance-based phylogenetic tree of the 42 newly sequenced Acropora samples.
922	
923	Figure S3. Locations of 172 SNVs and one indel identified in the mitochondrial genome.
924	
925	Figure S4. Superoxide dismutase alignment highlighting the SNV between A. cervicornis
926	and A. digitifera (Reef Genomics:12779).
927	
928	Figure S5. Alignment of NF-kappa-B inhibitor-interacting Ras-like protein 1 from
929	Acropora_digitifera_6635 to sequences from other corals and the human orthologue
930	(GenBank: NP_065078.1).
931	

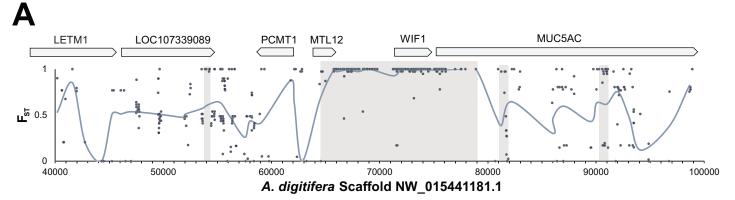
932	Figure S6. STE20-related kinase adapter protein alpha isoform 4 (STRAD α) truncated
933	alignment of A. digitifera protein Reef Genomics: Acropora_digitifera_13579) with coral
934	sequences and human NP_001003788.1 to highlight fixed SNVs and indel in <i>A. palmata</i> .
935	
936	Figure S7. Image of the coverage by sequenced reads around the 12-bp deletion of
937	STRADα, showing unanimous agreement of the species difference, for <i>A. palmata</i> (A) and <i>A</i> .
938	cervicornis (B).
939	
940	Figure S8. ATP-binding cassette sub-family D member 2 alignment of several coral
941	sequences and human orthologue (GenBank: NP_005155.1).
942	
943	Figure S9. Extreme conservation in vertebrates of the motif SVAHLYSNLTKPILDV in
944	ATP-binding cassette sub-family D member 2 (the human gene is transcribed right-to-left).
945	
946	Figure S10. RFLP results for parental species and hybrids for two fixed SNV loci. The
947	restriction fragment length polymorphism results of two loci, locus NW_015441435.1: 299429
948	that cuts A. cervicornis (A) and locus NW_015441068.1: 984261 that cuts A. palmata (B), are
949	displayed in order from left to right for A. cervicornis genome sample 13696, A. palmata genome
950	sample 13815, F1 hybrid sample 8939, and three later generation (LG) hybrid samples 4062,
951	6791, and 1302. Each lane is labeled as either marker= M, uncut PCR product = U, or cut PCR
952	product = C. The LG hybrid 1302 presents both heterozygous (A) and homozygous (B) alleles,
953	whereas LG hybrid 6791 is heterozygous and 4062 is homozygous for both loci.



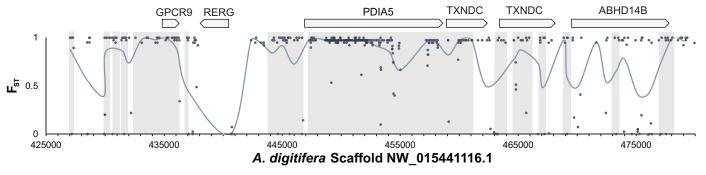
B

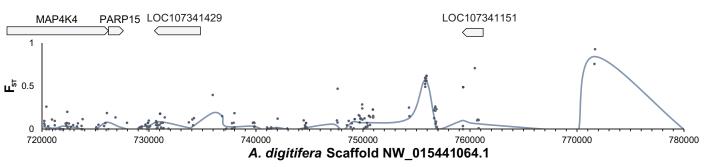

С



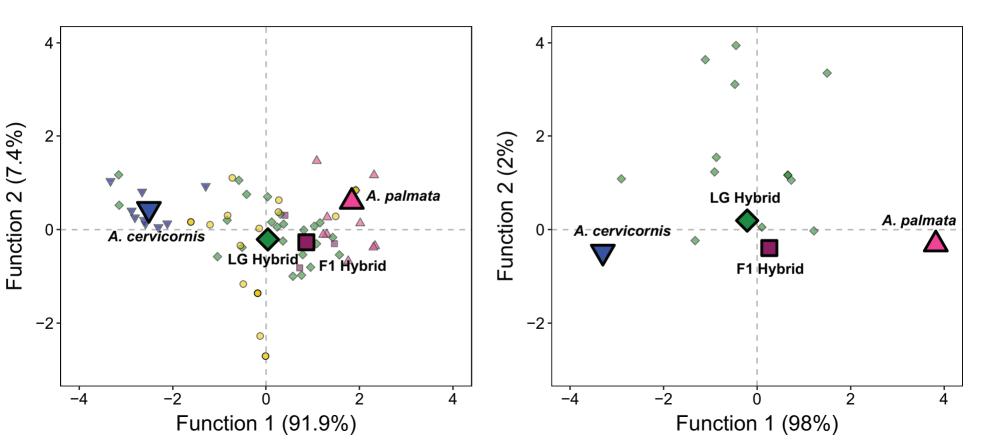


PC1




04310 2/23/18 (c) Kanehisa Laboratories

B



С

▼ C ■ F1 ♦ H ▲ P ● T

▼ C ■ F1 ◆ H ▲ P • T

P