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Abstract. Regulation of transcription factor activity is dynamically
changed across cellular conditions and disease subtypes. The identifica-
tion of biological modulators contributing to context-specific gene regula-
tion is one of the challenging tasks in systems biology, in order to under-
stand and control cellular responses across different genetic backgrounds
and environmental conditions. Previous approaches for the identifica-
tion of biological modulators from gene expression data are restricted
to the capturing of a particular type of a three-way dependency be-
tween a regulator, its target gene, and a modulator, and these methods
cannot describe complex regulation structure, such as where multiple
regulators, their target genes, and modulators are functionally related.
Here, we propose a statistical method for the identification of biologi-
cal modulators by capturing multivariate local dependencies, based on
energy statistics, which is a class of statistics based on distances. Subse-
quently, out method assigns a measure of statistical significance to each
candidate modulator by a permutation test. We compared our approach
with a leading competitor for the identification of modulators, and illus-
trated its performance both through the simulation and real data anal-
ysis. GIMLET is implemented with R (≥ 3.2.2) and is available from
github (https://github.com/tshimam/GIMLET).

Keywords: Gene regulation · Modulator detection · Energy statistics ·
Distance correlation · Statistical test

1 Introduction

Regulation of gene expression is a process in which the expression of a particular
gene can be either activated or repressed. Transcription factors (TFs) contribute
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greatly to the process of gene regulation by binding to a specific DNA sequence
in the promoter regions of their target genes and controlling their transcription.
The responsiveness of a target gene expression to a TF is typically changed due
to genetic variation or a change in the cellular environment. This modulation in
gene-specific responsiveness is often caused by a specific factor called modulator
at different levels, including the transcriptional, post-transcriptional and post-
translational levels.

In the last decade, large international consortia, such as The Cancer Genome
Atlas (TCGA) [1] and the International Cancer Genome Consortium (ICGC)
[2], have generated large-scale gene expression profiles of different tumor types
and catalogued their genetic alterations (recurrent mutations and copy number
variations). Genome-wide association studies (GWAS) also have identified tens of
thousands of human disease-associated variants and millions of single nucleotide
polymorphisms [3]. However, it remains unknown if and how a lot of genetic
alterations and variants interact with physical and functional interactions within
cellular networks.

The identification of genetic alterations and variations that function as bi-
ological modulators and contribute to gene expression control is one of the
challenging tasks in systems biology. Recently, sophisticated algorithms have
been developed for this task which have successful applications in many areas
[4,5,6,7,8,9]. For example, MINDy [4] formulates the problem of identifying mod-
ulators as a problem of testing if the expressions of a univariate transcription
factor and its target gene, denoted by X and Y , are independent each other,
conditioned on the expression levels of an univariate modulator denoted by Z
in the framework of conditional mutual information. GEM [5] uses a linear re-
gression model with the effects of interaction between X and Z to describe
the relationships between X and Y modulated by Z. MIMOSA [6] considers
a mixture model of X and Y from two different fractions based on Z. Note
that these methods are designed to capture a particular type of three-way de-
pendence where X, Y , and Z are univariate random variables. Therefore, they
cannot capture multivariate dependencies where sets of random variables are
associated with each other. Currently, no systematic mathematical framework is
available for the identification of biological modulators of the complex gene reg-
ulation, such as combinatorial regulation, whether multiple transcription factors
and modulators are functionally related.

In this study, we present a novel method, genome-wide identification of mod-
ulators using local energy statistical test (GIMLET), to overcome the challenges
outlined above. GIMLET includes the following contributions.

1. GIMLET is mainly based on dependence coefficients from energy statistics
for modeling the relationships between genes. This type of coefficients is
a measure of statistical dependence between two random variables or two
random vectors of arbitrary, not necessarily equal dimension. This enables
to correlate the expression of sets of any size for TFs, their target genes, and
modulators.
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2. We provide a new dependence coefficient, called local distance correlation,
to compare the difference of distance correlation at low and high values of
given modulators, allowing the identification of all types of local dependence,
such as non-monotone and non-linear relationships, between TFs and their
target genes at the fixed point of modulators.

3. We develop a permutation-based approach to evaluate whether local distance
correlation varies with modulators, which enables the discovery of modula-
tors related with complex regulatory relationships, including synergistic and
cooperative regulation, from a statistical point of view.

We describe our proposed framework and algorithm in Section 2. We also provide
the efficiency of GIMLET using synthetic and real data in Sections 3 and 4.

2 GIMLET Methodology

2.1 Notations and Preliminaries

For a p-dimensional random vector a, |a| represents its Euclidean norm. A col-
lection of n i.i.d. observations for a is denoted as {ak; k = 1, . . . , n} where
ak = (a1, . . . , ap)

′ represents the k-th sample.
The distance correlation [10] was introduced as a measurement of dependence

between two random vectors X ∈ Rp and Y ∈ Rq. It is based on the concept
of distance covariance between X and Y , denoted by V2(X,Y ), which measures
the distance between the joint characteristic function of (X, Y ) and the product
of the marginal characteristic functions as follows:

V2(X,Y ) =
1

cpcq

∫
Rp+q

|fX,Y (s, t)− fX(s)fY (t)|2w(s, t)dtds,

where fX,Y (s, t), fX(s), and fY (t) are the characteristic functions of (X,Y ), X,
and Y , respectively, and the weight function w(s, t) = (cpcq|s|1+p|t|1+q)−1 with
constants cl = π(1+l)/2/Γ ((1 + l)/2) for l ∈ N is chosen to produce scale free
and rotation invariant measure that does not go to zero for dependent variables.

The distance correlation R(X,Y ) between X and Y is then defined as

R(X,Y ) =
V2(X,Y )√

V2(X,X)V2(Y, Y )
, (1)

if V2(X,X)V2(Y, Y ) > 0 and equals 0 otherwise. The remarkable properties of
the distance correlation introduced by the equation (1) include 0 ≤ R(X,Y ) ≤ 1
and R(X,Y ) = 0 if and only if X and Y are independent.

If we observe a collection {(xk,yk); k = 1, . . . , n} of n i.i.d. observations
from the joint distribution of random vectors X ∈ Rp and Y ∈ Rq, the empirical
distance covariance between X and Y , denoted by V2

n(X,Y ), is then given by

V2
n(X,Y ) = S1(X,Y ) + S2(X,Y )− 2S3(X,Y ),
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where

S1(X,Y ) =
1

n2

n∑
k,l=1

|xk − xl||yk − yl|,

S2(X,Y ) =
1

n2

n∑
k,l=1

|xk − xl|
1

n2

n∑
k,l=1

|yk − yl|,

S3(X,Y ) =
1

n3

n∑
k=1

n∑
l,m=1

|xk − xl||yk − ym|.

The empirical distance correlation Rn(X,Y ) is then

Rn(X,Y ) =
V2
n(X,Y )√

V2
n(X,X)V2

n(Y, Y )
,

and satisfies 0 ≤ Rn(X,Y ) ≤ 1.

2.2 Local distance correlation

We introduce a local estimator of the distance correlation evaluated at another
random vector Z = zα ∈ Rr as a local measurement of dependence between
X and Y conditioning on Z = zα based on the observed data. We consider a
collection {(xk,yk, zk) : k = 1, . . . , n} of n i.i.d. observations for random vectors
X, Y , and Z. Let us denote wkα = Kh(zk, zα) satisfying

∑n
k=1 wkα = 1 as the

new weight function based on the distance between two sample vectors zk and
zα where Kh is a specified kernel function with a bandwidth h.

Based on the definition of Nadaraya-Watson estimator [12,13] as a weighted
averaging method, we define a local estimator of distance covariance conditioning
on Z = zα, using the weighted Euclidean distance as

V2
n(X,Y |Z = zα) = S1(X,Y |Z = zα) + S2(X,Y |Z = zα)− 2S3(X,Y |Z = zα),

where

S1(X,Y |Z = zα) =
n∑

k,l=1

wkαwlα|xk − xl||yk − yl|,

S2(X,Y |Z = zα) =
n∑

k,l=1

wkαwlα|xk − xl|
n∑

k,l=1

wkαwlα|yk − yl|,

S3(X,Y |Z = zα) =
n∑
k=1

wkα

n∑
l,m=1

wlαwmα|xk − xl||yk − ym|.

Each sample of the neighborhood in the α-th sample is weighted according
to its weighted Euclidean distance from Z = zα. Points close to Z = zα
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have large weight, and points far from Z = zα have small weight. The ker-
nel function Kh used in all of our examples is the Gaussian kernel function
Kh(zk, zα) = exp(−|zk − zα|2/h) where h is a bandwidth parameter that con-
trols the smoothness of the fit. For a specific point Z = zα, the nearest-neighbor
bandwidth h is determined so that the local neighborhood contains the q = bnδc
closest samples to the α-th sample in the Euclidean distance of Z where δ ∈ (0, 1)
is a tuning parameter that indicates the proportion of neighbors. Therefore, each
local estimator is inferred with q observations that fall within the ball Bδ(zα),
centered at the α-th sample. We use a varying width parameter h, which reduces
the problem of data sparsity by increasing the radius in the regions with fewer
observations.

The empirical local estimator of the distance correlation, called local distance
correlation, Rn(X,Y |Z = zα) for given Z = zα is then defined by the equation

Rn(X,Y |Z = zα) =
V2
n(X,Y |Z = zα)√

V2
n(X,X|Z = zα)V2

n(Y, Y |Z = zα)
, (2)

if both V2
n(X,X|Z = zα) and V2

n(Y, Y |Z = zα) are strictly positive, and it is
equal to zero otherwise.

2.3 Statistical hypothesis test for the identification of modulators

In the statistical hypothesis testing for the identification of modulators, it is
of practical interest to assess whether the local dependence between X and Y
varies with Z. This question can be formulated by:

H0 : Rn(X,Y |Z) = c↔ H1 : Rn(X,Y |Z)) 6= c, (3)

where Rn(X,Y |Z) is a function of Z and c is a constant.
For the calculation of the p-values of the local dependence between X and

Y for each Z, we apply a permutation-based approach similar to the one used
by [4]. Under the assumption that Rn(X,Y |Z) is a monotonic function of Z, we
calculate the test statistic:

∆Rn(X,Y |Z) =

∣∣∣∣∣ 1

|UZ |
∑
k∈UZ

R(X,Y |Z = zk)− 1

|LZ |
∑
k∈LZ

R(X,Y |Z = zk)

∣∣∣∣∣ ,
(4)

where UZ and LZ are the index sets of the upper and lower points of Z, re-
spectively. To assess the statistical significance of ∆Rn(X,Y |Z), we generate a
series of null hypotheses, and calculate the empirical p-value, using the following
permutation procedures:

1. Permute the values of Z for all samples.
2. Re-calculate the test statistics using (4). Denote the null statistic of the l-th

permutation by ∆R0
n(l).
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3. Repeat steps 1-2 B times and calculate the empirical p-value for Z:

pZ =
1

B

B∑
l=1

I(∆Rn(X,Y |Z) ≤ ∆R0
n(l)), (5)

where the indicator function I(A) equals 1 when the condition A is true and
it equals 0 otherwise.

The statistical significance of Z, as expressed in (5), is the percent of null statis-
tics, equally or more extreme than the observed statistic for given Z. Note that
this empirical method directly couples both the minimal obtainable p-value and
the resolution of the p-value to the number of permutations B.

The statistical significance of Z, as expressed in (5), is the percent of null
statistics, equally or more extreme than the observed statistic for given Z. Note
that this empirical method directly couples both the minimal obtainable p-value
and the resolution of the p-value to the number of permutations B. Therefore, it
requires a very large number of permutations to calculate the p-values when we
want to accurately estimate small p-values. In order to compute more accurate
p-values, we use a semi-parametric approach based on tail approximation [14,15].
The corrected empirical p-value p̃Z , using the distribution tail approximation, is
given by

p̃Z =

{
pZ if ∆Rn(X,Y |Z) ≤ ∆R̃0

n

exp
[
−λ(∆Rn(X,Y |Z)−∆R̃0

n)
]

otherwise
, (6)

where λ is a scale parameter, and ∆R̃0
n is a threshold that we set to the 99-

th percentile of null distributions. The parameter λ is estimated by the null
statistics satisfying the condition ∆R0

n > ∆R̃0
n.

3 Synthetic data results

We generated synthetic data and evaluated the performance of our method in
order to gain insight into statistical power and type I error rate control in the
identification of modulators, based on the hypothesis H0 : Rn(X,Y |Z) = c ↔
H1 : Rn(X,Y |Z) 6= c.

A simulation study was conducted as follows. An i.i.d. sample of (X,Y, Z)
was generated using the endogenous switching regression model in the following
three settings:

M1 : Y = µ(X,Z) + σ(Z)ε,

M2 : Y = µ(X,Z) + σ(Z1Z2)ε,

M3 : Y = µ(X1X2, Z) + σ(Z)ε,

with

µ(X1X2, Z) =

{
fl(X1X2) if Z > θ1
0 otherwise

, and σ(Z) =

{
γ1 if Z > θ2
γ2 otherwise

,
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where X,X1, X2, Z, Z1, Z2 ∼ U [0, 1], ε ∼ N(0, 1), µ and σ are the conditional
mean and variance of Y depending on Z, and fl is a function which determines
a functional relationship between X and Y .

For a function fl(X), we considered the following eight different functional
relationships:

F1 (Line) : f1(X) = X − 1/2,
F2 (Quadratic) : f2(X) = 4(X − 1/2)2 − 1/2,
F3 (Cubic) : f3(X) = 80(X − 1/3)3 − 12(X − 1/3)− 7,
F4 (Sinusoid, 2 periods) : f4(X) = sin(4πX),
F5 (Sinusoid, 8 periods) : f5(X) = sin(16πX),
F6 (x1/4) : f6(X) = X1/4 − 1/2,

F7 (Circle) : f7(X) = (2W − 1)
√

1− (2X − 1)2,
F8 (Step) : f8(X) = I(X > 1/2)− 1/2,

(7)

where W ∼ Bern(0.5). These functions were originally used in [16] to assess the
statistical power against independence.

We set θ1 and θ2 to be 0.25 and 0.75, and γ1 and γ2 as follows:

γ1 =

{
1/6, if fl(X) = f1(X) or fl(X) = f3(X)
1/2, otherwise

,

γ2 =

{
1, if fl(X) = f1(X) or fl(X) = f3(X)
3, otherwise

. (8)

The scatter plots of the data obtained in these eight relationships are shown in
Figure 1.

The first setting, M1, was designed to find modulators in the traditional
framework for the identification of modulators [4], where the expression value of
a modulator Z ∈ R influences the dependence between the expression values of a
transcription regulator X ∈ R and its target gene Y ∈ R. The second and third
settings, M2 and M3, were aimed at finding the modulators in the new concep-
tual framework investigated in this study: M2 was intended for the combinatorial
modulation where the expressions of two modulators Z = (Z1, Z2)′ ∈ R2 influ-
ence the dependency between a transcription factor X ∈ R and its target gene
Y ∈ R, and M3 was intended for combinatorial regulation, where the expression
of a modulator Z ∈ R influences the dependency between two transcription fac-
tors X = (X1, X2)′ ∈ R2 and their target gene Y ∈ R, and both X1 and X2 are
required for Y .

The identification of modulators was assessed with our method (GIMLET)
and MINDy [4], one of the most widely used methods for this purpose. We note
that MINDy cannot be directly applied for the identification of modulators in the
settings M2 and M3, since MINDy is not designed for combinatorial modulation
and regulation. In these simulations, all possible triplets were tested separately
using MINDy, and the statistical significance was evaluated by Fisher’s method,
which is widely used to combine p-values. A hypothesis testing problem for the
identification of modulators with varying sample sizes (n = 100, 200, 500) was
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Fig. 1. Sample plots of the eight simulated relationships. Dark gray dots indicate sam-
ples with Z > 0.75, whereas light gray dots indicate samples with Z ≤ 0.75.
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simulated with 1,000 datasets generated for each of the above three settings.
All tests were performed at the significance level α = 0.05. Statistical power
was estimated by the fraction of test statistics that were at least as large as the
95th percentile of the null distribution. The null distribution was calculated by
1, 000 permutations illustrate in Section 2. Type I error rate was estimated by
calculating the power from data generated under the null hypothesis H0 : r(Z) =
c, which can be obtained by modifying the simulations where the random effect
is set to be independent of Z. Theoretically, the type I error rate of the test
should be equal to the significance level α = 0.05.

Table 1. The statistical power of GIMLET and MINDy using synthetic data with
different sample sizes (n = 100, 200, 500) for the eight relationships (linear, quadratic,
cubic, sine period 1/2, sine period 1/8, x1/4, circle, and step), in three different settings
(M1, M2, and M3). The average of p-values below the significant level α = 0.05 were
calculated through 1,000 simulations.

Simulation Model
M1 M2 M3

n Relationship GIMLET MINDy GIMLET MINDy GIMLET MINDy

100 Line 0.895 0.576 0.621 0.090 0.652 0.141
Quadratic 0.536 0.307 0.219 0.062 0.663 0.140

Cubic 0.506 0.158 0.176 0.047 0.083 0.015
Sine period 1/2 0.345 0.271 0.164 0.065 0.141 0.041
Sine period 1/8 0.058 0.018 0.072 0.038 0.068 0.041

x1/4 0.750 0.314 0.241 0.055 0.708 0.200
Circle 0.053 0.134 0.056 0.044 0.173 0.134
Step 0.880 0.554 0.545 0.089 0.364 0.041

200 Line 0.995 0.939 0.913 0.121 0.930 0.315
Quadratic 0.861 0.780 0.480 0.081 0.935 0.353

Cubic 0.767 0.520 0.334 0.039 0.235 0.025
Sine period 1/2 0.679 0.463 0.336 0.061 0.297 0.040
Sine period 1/8 0.078 0.013 0.105 0.027 0.123 0.019

x1/4 0.939 0.693 0.474 0.043 0.949 0.405
Circle 0.128 0.342 0.078 0.019 0.420 0.250
Step 0.994 0.793 0.866 0.096 0.705 0.087

500 Line 1.000 1.000 1.000 0.208 1.000 0.761
Quadratic 0.995 1.000 0.885 0.090 1.000 0.822

Cubic 0.981 0.979 0.717 0.030 0.559 0.024
Sine period 1/2 0.934 0.997 0.759 0.087 0.709 0.067
Sine period 1/8 0.183 0.008 0.175 0.004 0.289 0.017

x1/4 1.000 0.996 0.839 0.035 1.000 0.850
Circle 0.453 0.905 0.172 0.028 0.916 0.650
Step 1.000 0.998 0.997 0.143 0.965 0.202

Table 1 shows the power calculated for eight different relationships with a
varying sample size of 100, 200, and 500. Although both of the tested methods
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have low power to detect modulators in small sample size (n=100), their power
increases with the sample size. Note that GIMLET has higher power compared
with MINDy in all relationships, except the circle. Both GIMLET and MINDy
have low chances of identifying the modulators in the high-frequency sine rela-
tionship. MINDy was shown to outperform MINDy, especially in the settings M2

and M3, since MINDy is not designed as a multivariate dependence measure for
the identification of modulators. Table 2 shows the type I error rates for the eight
different relationships with a varying sample size of 100, 200, and 500. Type I
error rates are quite close to the chosen α level for all the tests, demonstrating
that GIMLET shows better type I error rate control, compared with MINDy, in
this scenario.

Table 2. Type I error rate of GIMLET and MINDy, using synthetic data with different
sample sizes (n = 100, 200, 500), for the eight relationships (linear, quadratic, cubic,
sine period 1/2, sine period 1/8, x1/4, circle, and step), in three different settings (M1,
M2, and M3). Type I error rate of a test should be equal to the significance level
α = 0.05.

Simulation Model
M1 M2 M3

n Relationship GIMLET MINDy GIMLET MINDy GIMLET MINDy

100 Line 0.047 0.042 0.045 0.071 0.057 0.061
Quadratic 0.041 0.029 0.052 0.076 0.064 0.063

Cubic 0.050 0.036 0.051 0.062 0.062 0.051
Sine period 1/2 0.038 0.037 0.058 0.062 0.053 0.053
Sine period 1/8 0.045 0.015 0.041 0.051 0.057 0.040

x1/4 0.046 0.023 0.042 0.061 0.055 0.041
Circle 0.039 0.031 0.056 0.055 0.049 0.056
Step 0.053 0.049 0.048 0.077 0.054 0.056

200 Line 0.047 0.035 0.058 0.066 0.058 0.034
Quadratic 0.035 0.016 0.052 0.059 0.037 0.044

Cubic 0.045 0.021 0.048 0.046 0.043 0.027
Sine period 1/2 0.062 0.021 0.034 0.047 0.043 0.030
Sine period 1/8 0.049 0.009 0.045 0.030 0.039 0.026

x1/4 0.049 0.030 0.059 0.056 0.059 0.041
Circle 0.059 0.017 0.048 0.056 0.046 0.035
Step 0.046 0.028 0.063 0.058 0.055 0.028

500 Line 0.047 0.021 0.041 0.030 0.040 0.012
Quadratic 0.051 0.017 0.053 0.023 0.046 0.012

Cubic 0.046 0.010 0.048 0.022 0.047 0.007
Sine period 1/2 0.060 0.010 0.053 0.016 0.030 0.005
Sine period 1/8 0.053 0.007 0.053 0.004 0.045 0.006

x1/4 0.045 0.018 0.045 0.024 0.040 0.013
Circle 0.056 0.004 0.049 0.021 0.053 0.010
Step 0.046 0.012 0.044 0.023 0.047 0.012
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4 Results on real data

We first sought to identify genetic alterations that modulate the strength of the
functional connection between HIF1A and the expression of its target genes in
pan-kidney cohort in TCGA project [1]. The transcription factor HIF1A is a
master transcriptional regulator of cellular and systemic homeostatic response
to hypoxia by activating the transcription of genes that are involved in crucial as-
pects of cancer biology, including angiogenesis, cell survival, glucose metabolism
and invasion, and is implicated in the development of clear cell renal clear cell car-
cinoma (ccRCC). We examined mRNA expression profiles from 536 ccRCC and
357 non-ccRCC (papillary RCC and chromophobe RCC) patients, somatic mu-
tation profiles from 436 ccRCC and 348 non-ccRCC patients, and copy number
profiles from 528 ccRCC and 354 non-ccRCC patients, which can be downloaded
from the Broad GDAC Firehose website [17]. We used 90 literature-validated tar-
get genes of HIF1A from the Ingenuity Knowledge Base [18] and calculated the
factor scores for each patient by performing maximum-likelihood single factor
analysis on the expression data matrix of these genes. In this example, we consid-
ered the factor score as the unobserved activity of HIF1A at the protein level and
used it as Y . As candidates of Z, we first tested somatic mutation of 85 genes,
which were detected in more than 50 patients by genomic analyses of pan-kidney
cohort. We next considered copy-number alterations of 41 chromosomal arms as
candidates of Z. For this analysis, we would expect to find alteration of von
Hippel-Lindau (VHL) tumor suppressor gene, which leads to overexpression of
HIF1A and is a critical event in the pathogenesis of most ccRCC [19].

Table 3. Five significantly associated gene mutations and genetic alterations modu-
lating HIF1A activity.

modulator type q-value ldcor (no mut/alt) ldcor (mut/alt)

VHL Mutation 0.001 0.24 0.49
3p Deletion 0.001 0.23 0.44
20q Amplification 0.001 0.42 0.20
20p Amplification 0.002 0.42 0.20

PBRM1 Mutation 0.006 0.27 0.51

The modulator analysis of GIMLET yields five significantly associated gene
mutations and genetic alterations modulating HIF1A activity with q-value<0.10
(Table 3). Indeed, GIMLET identified VHL as the most significantly associated
gene mutation. Although PBRM1, identified as the second-most significantly
associated gene mutation, is not reported to directly modulate HIF1A activ-
ity, this result remains significant since almost all PBRM1 mutant cases also
have dysregulation of the hypoxia signaling pathway [20] and it is likely that
PBRM1 and VHL cooperate in kidney carcinogenesis leading to overexpression
of hypoxia-inducible transcription of HIF1A. The analysis also yields three re-
gions significantly modulating HIF1A activity with q-value<0.10. Chromosome

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2018. ; https://doi.org/10.1101/349928doi: bioRxiv preprint 

https://doi.org/10.1101/349928
http://creativecommons.org/licenses/by-nd/4.0/


12 Shimamura T. et al.

3p deletions are observed in approximately 90% of ccRCC, which harbors VHL
and tumor suppressor genes [21].

We next examined drug-treated gene expression profiles from Broad Insti-
tute The Library of Integrated Cellular Signatures (LINCS) Center for Tran-
scriptomics [22]. We sought to use these data to identify drugs that inhibit
the strength of the functional connection between FOXM1 and CENPF which
are master regulators of prostate cancer malignancy [23] and the expression of
their target genes. A total of perturbational gene expression profiles of 22,268
probes for 6,684 experiments treated with 271 compounds after 24 hours under
different doses (0.04, 0.12, 0.37, 1.11, 3.33, and 10 um) in the two prostate can-
cer cell lines, PC3 and LNCaP, has been downloaded from the LINCS L1000
dataset [22]. The expression values for each profile were normalized by robust
z-scores relative to control (plate population) and summarized using the median
across replicates. If there are multiple probes which correspond to the same gene,
the probe with the highest variance across all samples was selected as a single
representative probe. Finally, the expression matrix data of 12,716 genes and
1,976 samples were used for further analysis. We used the expression of FOXM1
and CENPF as X and their unobserved activity as Y which was defined using
maximum-likelihood single factor analysis on the expression data matrix for the
173 and 55 literature-validated targets of FOXM1 and CENPF from the Inge-
nuity Knowledge Base [18]. Drug target genes for each compound under a given
dose level were defined as differentially expressed genes which were significantly
lower in drug-treated cell lines than in vehicle-treated cell lines using one-tailed
t-test (p-value<0.001). As candidates of Z, the drug-perturbational activity for
each sample under each of 1850 different pertubagens was then estimated us-
ing enrichment scores (maxmean statistics) of these drug target gene sets for
Gene Set Analysis [24]. We applied GIMLET to identify functional pertubagens
modulating FOXM1 and CENPF activity.

Table 4. Thirteen significantly associated modulators (pertubagens) modulating
FOXM1 and CENPF activity.

modulator dose cell line target -log10(q-value)

Vorinostat 10um PC3 HDAC1 9.91
Withaferin A 3.33um PC3 MMP2 9.63

Dasatinib 0.37um PC3 ABL1 9.02
Dasatinib 0.12um PC3 ABL1 8.38
JW-7-24-1 10um PC3 LCK 8.38
OSI-027 10um PC3 mTOR 8.38
Radicicol 10um PC3 HSP90 8.38

PHA-793887 3.33um LNCaP CDK2 8.30
WYE-125132 10um PC3 mTOR 8.07
GSK-1059615 0.37um PC3 PI3K 7.39

Sirolimus 0.37um LNCaP mTOR 7.38
WYE-125132 10um PC3 mTOR 7.38

Celastrol 1.11um LNCaP PSB5 7.20
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The analysis yields 13 pertubagens which significantly inhibit the regulation
of FOXM1 and CENPF with global q-value< 10−7 (Table 4). Indeed, these per-
tubagens support inhibition of tumor progression in human prostate cancer by
several resent studies. For example, Vorinostat known as suberanilohydroxamic
acid is a member of a larger class of compounds that inhibit histone deacety-
lases (HDAC) [25]. The past study has also shown that Vorinostat may inhibit
tumor growth by both oral and parenteral administration in prostate cancer
[26]. Withaferin A, a major bioactive component of the Indian herb Withania
somnifera, induces cell death and inhibits tumor growth in human prostate can-
cer [27]. Activation of the PI3K-AKT-mTOR pathway is extremely common, if
not universal, in castrate-resistant prostate cancer [28]. Some PI3K and mTOR
inhibitors are currently under investigation in clinical trials for CRPC includ-
ing the dual inhibitor NVP-BEZ235 [29], and the mTOR inhibitor RAD001 or
everolimus [30,31].

The analyses with two examples thus show that GIMLET can identify genetic
alterations and functional pertubagens modulating the relationship between a
given set of regulators and the expression of their target genes in particular
cancer subtypes.

5 Discussion

The identification of modulators is a challenging problem for the researchers who
study gene regulation. The paradigm introduced by [4] and the state-of-the-art
classical methods for the identification of modulators are quite useful because
they allow us to identify the content-specific modulators of a transcription factor
activity using gene expression data. However, these methods are restricted to the
capturing of a particular type of dependency between univariate random vari-
ables, and it can be difficult to describe more complex multivariate dependency
structures, where multiple transcription factors and modulators are functionally
related. We have developed a more general class of the identification of modula-
tors, in the framework of energy statistics and a specific implementation, called
GIMLET. An appealing property of the proposed method is that it can measure
all types of dependency, including non-monotonic and non-linear relationships,
between random vectors in an arbitrary dimension easily. Our simulation results
demonstrate that GIMLET outperforms MINDy in terms of statistical power and
type I error rate. The analysis with a real example thus shows that GIMLET can
identify genetic alterations and functional pertubagens modulating transcription
factor activities. We believe that the presented method may be useful for a range
of biological applications, and it can represent a breakthrough in gene regulation
research.
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