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Abstract 
Successfully predicting the future states of systems that are complex, stochastic and 
potentially chaotic is a major challenge. Model forecasting error (FE) is the usual measure of 
success; however model predictions provide no insights into the potential for improvement. 
In short, the ​realized​  predictability of a specific model is uninformative about whether the 
system is inherently predictable or whether the chosen model is a poor match for the system 
and our observations thereof. Ideally, model proficiency would be judged with respect to the 
systems’ ​intrinsic ​ predictability – the highest achievable predictability given the degree to 
which system dynamics are the result of deterministic v. stochastic processes. Intrinsic 
predictability may be quantified with permutation entropy (PE), a model-free, 
information-theoretic measure of the complexity of a time series. By means of simulations we 
show that a correlation exists between estimated PE and FE and show how stochasticity, 
process error, and chaotic dynamics affect the relationship. This relationship is verified for a 
dataset of 461 empirical ecological time series. We show how deviations from the expected 
PE-FE relationship are related to covariates of data quality and the nonlinearity of ecological 
dynamics.  
  
These results demonstrate a theoretically-grounded basis for a model-free evaluation of a 
system’s intrinsic predictability. Identifying the gap between the intrinsic and realized 
predictability of time series will enable researchers to understand whether forecasting 
proficiency is limited by the quality and quantity of their data or the ability of the chosen 
forecasting model to explain the data. Intrinsic predictability also provides a model-free 
baseline of forecasting proficiency against which modeling efforts can be evaluated.  
 
Glossary 
Active information:​  The amount of information that is available to forecasting models 
(redundant information minus lost information; Fig. 1). 
Forecasting error (FE):​ A measure of the discrepancy between a model’s forecasts and the 
observed dynamics of a system. Common measures of forecast error are root mean squared 
error and mean absolute error. 
Entropy: ​Measures the average amount of information in the outcome of a stochastic 
process. 
Information:​ Any entity that provides answers and resolves uncertainty about a process. 
When information is calculated using logarithms to the base two (i.e. information in bits), it is 
the minimum number of yes/no questions required, on average, to determine the identity of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 19, 2018. ; https://doi.org/10.1101/350017doi: bioRxiv preprint 

https://doi.org/10.1101/350017
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

the symbol (Jost 2006). The information in an observation consists of information inherited 
from the past (redundant information), and of new information. 
Intrinsic predictability:​ the maximum achievable predictability of a system (Beckage et al. 
2011).  
Lost information:​ The part of the redundant information lost due to measurement or 
sampling error, or transformations of the data (Fig. 1).  
New information,​ ​Shannon entropy rate:​ The Shannon entropy rate quantifies the average 
amount of information per observation in a time series that is unrelated to the past, i.e., the 
new information (Fig. 1).  
Nonlinearity: ​When the deterministic processes governing system dynamics depend on the 
state of the system.  
Permutation entropy (PE):​ permutation entropy is a measure of the complexity of a time 
series (Bandt & Pompe, 2002) that is negatively correlated with a system’s predictability 
(Garland et al. 2015). Permutation entropy quantifies the combined new and lost information. 
PE is scaled to range between a minimum of 0 and a maximum of 1. 
Realized predictability:​ the achieved predictability of a system from a given forecasting 
model.  
Redundant information:​ The information inherited from the past, and thus the maximum 
amount of information available for use in forecasting (Fig. 1). 
Symbols, words, permutations ​: symbols are simply the smallest unit in a formal language 
such as the letters in the English alphabet i.e., {“A”, “B”,..., “Z”}. In information theory the 
alphabet is more abstract, such as elements in the set {“up”, “down”} or {“1”, “2”, “3”}. Words, 
of length ​m​  refer to concatenations of the symbols (e.g., up-down-down) in a set. 
Permutations are the possible orderings of symbols in a set. In this manuscript, the words 
are the permutations that arise from the numerical ordering of ​m ​ data points in a time series.  
Weighted permutation entropy (WPE):​ a modification of permutation entropy (Fadlallah et 
al., 2013) that distinguishes between small-scale, noise-driven variation and large-scale, 
system-driven variation by considering the magnitudes of changes in addition to the 
rank-order patterns of PE. 
 

Introduction 
Understanding and predicting the dynamics of complex systems are central goals for many 
scientific disciplines (Weigend & Gershenfeld 1993, Hofman et al. 2017). Ecology is no 
exception as environmental changes across the globe have led to repeated calls to make the 
field a more predictive science (Clark 2001, Petchey et al. 2015, Dietze et al. 2018, Dietze 
2017). One particular focus is ​anticipatory predictions​ , forecasting probable future states in 
order to actively inform and guide decisions and policy (Mouquet et al. 2015, Maris et al. 
2018). Robust anticipatory predictions require a quantitative framework to assess ecological 
forecasting and diagnose when and why ecological forecasts succeed or fail. 
  
Forecast performance is measured by ​realized predictability ​(see glossary), often 
quantified as the correlation coefficient between observations and predictions, or its 
complement, ​forecasting error (FE)​ measures, such as root mean squared error (RMSE). 
Hence, realized predictability is in part determined by the model used as for any given 
system, different models will give different levels of realized predictability. Furthermore, it can 
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be unclear, from realized predictability alone, whether the system is stochastic or the model 
is a poor choice. 
 
By contrast, the ​intrinsic predictability ​ of a system is an absolute measure that represents 
the highest achievable predictability (Lorenz 1995, Beckage et al. 2011). The intrinsic 
predictability of a system can be approximated with model-free measure of time series 
complexity, such as Lyapunov exponents or ​permutation entropy ​ (Boffetta et al. 2002, 
Bandt & Pompe 2002, Garland et al. 2015). In principle, intrinsic predictability has the 
potential to indicate whether the model, data, or system are limiting realized predictability. 
Thus, if we know the intrinsic predictability of a system and its realized predictability under 
specific models, the difference between the two is indicative of how much predictability can 
be improved (Beckage et al. 2011). 
 
Here we formalize a conceptual framework connecting intrinsic predictability and realized 
predictability. Our framework enables comparative investigations into the intrinsic 
predictability across systems and provides guidance on where and why forecasting is likely 
to succeed or fail. We use simulations of the logistic map to demonstrate the behaviour of 
PE in response to time series complexity and the effects of both process and measurement 
noise. We confirm a general relationship between PE and FE, using a large dataset of 
empirical time series and demonstrate how the quality, length, and ​nonlinearity ​ in particular 
of these time series influences the gap between intrinsic and realized predictability and the 
consequences for forecasting.  

Conceptual framework 
The foundation for linking intrinsic and realized predictability lies in information theory and 
builds on research demonstrating a relationship between PE and FE for complex computer 
systems (Garland et al. 2015). Information theory was originally developed by Claude 
Shannon as a mathematical description of communication (Shannon 1948) but has since 
been applied across many disciplines. In ecology, several information-theoretic methods 
have proved useful, including the Shannon biodiversity metric in which the probability of 
symbol​ occurrences (see Box 1) is replaced by the probability of species occurrences (Jost 
2006, Sherwin et al. 2017), and the Akaike Information Criterion (Akaike 1974) which is 
widely used for comparing the performance of alternative models (Burnham & Anderson 
2002). Given its importance to our framework, we first provide an introduction to information 
theory with special attention to applications for ecological time series. Since our goal is to 
inform where, when and why forecasting succeeds or fails; we then i) describe how 
information​ may be partitioned into ​new and redundant information​ based on permutation 
entropy, ii) demonstrate how redundant information is exploited by different forecasting 
models, and iii) examine the relationship between permutation entropy and realized 
predictability and how it can inform forecasting. 

An information-theoretic perspective 
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A first step towards predicting the future of any system is understanding ​if​  the observations 
of that system contain ​information​ about the future, i.e. does the system have a memory. 
The total information in each observation can be thought of as a combination of information 
that came from past states (i.e., ​redundant information​) and information that is only 
available in the present state (i.e., ​new information​).  
 
When there is a substantial amount of information transmitted from the past to the present 
(figure 1Aiii), the system is said to be highly redundant. In other words, future states depend 
greatly on the present and past states. In these cases, very little new information is 
generated during each subsequent observation of the system and the resulting time series 
is, in theory, highly predictable (has high intrinsic predictability).  
 
Conversely, in systems dominated by stochasticity, the system state at each time point is 
mostly independent of past states (figure 1Ai). Thus, all of the information will be “new” 
information, and there will be little to no redundancy with which to train a forecasting model. 
In this case, regardless of model choice, the system will not be predictable (has low intrinsic 
predictability). 
 
Imperfect observations introduce uncertainty or bias into time series, and thereby affect the 
redundant information that is available or perceived. Observation errors in particular will 
reduce the redundant information available to forecasting models, thus lowering the realized 
predictability. We refer to this reduction as ​lost information​, which is not an innate property 
of the system but is the result of the practical limitations of making measurements and any 
information-damaging processing of the data (Fig. 1B, Box 2). As such, lost information can 
be mitigated and is an important leverage point for ecologists to improve their forecasts. For 
example, replicate measurements or other forms of data integration that increase estimation 
accuracy and reduce bias will reduce information loss and can improve forecasts. 

Permutation entropy 
Permutation entropy (PE) is a measure of time series complexity that approximates the rate 
at which new information is being generated along a time series (Box 1). PE approximates 
and is inversely related to intrinsic predictability by quantifying how quickly the system 
generates new information. Time series with low permutation entropy have high redundancy 
and are expected to have high intrinsic predictability (Garland et al. 2015). 
 
PE uses a symbolic analysis that translates a time series into a frequency distribution of 
words ​ (see glossary for definition). The frequency distribution of words is then used to 
assess the predictability of the time series. For example, a time series in which a single word 
(i.e. a specific pattern) dominates the dynamics has high redundancy and thus future states 
are well predicted by past states. In contrast, a random time series, in which no single 
pattern dominates, would produce a nearly uniform frequency distribution of words, with 
future states occurring independently from past states. Hence, by quantifying the frequency 
distribution of words, PE approximates how much information is transmitted from the past to 
the present, corresponding to the intrinsic predictability of a time series. 
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When observations are imperfect PE measures the joint influence of new information (from 
either internal or external processes) and lost information (due to the observation process as 
well as data processing). We refer to the redundant information that is not lost and remains 
available as ​active information​, which is the information that can be exploited by 
forecasting models.  

Forecasting and redundant information 
Realized predictability is highest when the chosen forecasting model exploits all the active 
information contained in a time series. For illustration, we forecast the oscillating abundance 
of a laboratory ciliate population (Veilleux 1976) with three different approaches (Figure 1C): 
i) the mean of the time series (a model which uses relatively little of the active information), 
ii) a linear autoregressive integrated moving-average model (ARIMA) that uses the 
local-order structure of the time series in addition to the mean (a model which uses an 
intermediate amount of the active information), and iii) empirical dynamic modelling (EDM) 
that can incorporate ​nonlinearities ​, when present, in addition to the mean and local-order 
structure (a model which can feasibly use more active information). The time series was split 
into training data and test data. Forecasting models were fit to the training data and used to 
make forward predictions among the test data. The forecast performance of the models (i.e. 
the realized predictability) varied with the amount of information they used, which depended 
on structural differences among the models that exploit the active information coming from 
the past. EDM and ARIMA had similar performance suggesting that the time series entailed 
little nonlinearities for the EDM to exploit. 

The relationship between realized and intrinsic predictability 
With a perfect forecasting model, realized predictability - measured by forecasting error (FE) 
- and intrinsic predictability - measured by permutation entropy (PE) - will be positively 
related. More specifically, the relationship will pass through the origin and monotonically 
increase up to the maximum limit of PE = 1 (Fig. 1D, the boundary between the white and 
grey regions; Garland et al. 2015).  In the top right of this figure are systems with high PE 
and therefore low redundancy and high forecasting error. In the bottom-left of the figure are 
systems with low PE and therefore high redundancy and low forecast error. The boundary is 
the limit for a perfect model that maximizes the use of active information.  
 
Lost information complicates the interpretation of the PE - FE relationship by obscuring the 
system’s actual intrinsic predictability. We illustrate this case in figure 1D using two 
hypothetical systems: one with high intrinsic predictability and a large amount of lost 
information, and one with lower intrinsic predictability but relatively little lost information. 
Despite the differences in the redundancy of two systems, the PE of their time series can be 
very similar (even identical) because PE does not differentiate between new and lost 
information.  
 
For this example, both systems in figure 1D start with high FE relative to their PE. Selecting 
more appropriate forecasting models causes a reduction in FE but no change in PE. 
Reducing lost information (e.g. by increasing the frequency of measurements) decreases 
both PE and FE. The system with a high redundancy and a low ​Shannon entropy rate ​ has 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 19, 2018. ; https://doi.org/10.1101/350017doi: bioRxiv preprint 

https://doi.org/10.1101/350017
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

a greater overall potential for improving forecasting skill through the recovery of lost 
information. In contrast, the system with low redundancy has limited scope to further improve 
forecasting skill; forecasting is less limited by lost information, but rather by its lower 
redundancy. As such, the lowest possible forecast error will be substantially higher in the 
second system than in the first system because the intrinsic predictability of the second is 
inherently lower and cannot be changed.  

 
 
Figure 1A. ​The total information content of an observation of a system at a given state in 
time, ​S​ t​ , is depicted by filled circles with past states (​S​ t​ -1​ and ​S​ t​ -2​) represented by shades of 
grey. i) lack of overlap between past and present states illustrating a case where no 
information is transmitted from past states (i.e. a purely stochastic system), with low 
redundancy and high Shannon entropy rate, ii) intermediate overlap indicating a case when 
some information is transferred from past to present (i.e. a deterministic system strongly 
driven by stochastic forcing), with intermediate redundancy and Shannon entropy rate, iii) 
large overlap indicating a case when the current state is mostly determined by the previous 
state (i.e. a highly deterministic system), with high redundancy and low Shannon entropy 
rate. Note that both the redundancy and Shannon entropy rate of a system are intrinsic 
properties of the system and will only change if the system itself changes. 
 
Figure 1B.​ The total information of an observation (black circle) is composed of new 
information and redundant information; redundant information is composed of active and lost 
information. A system’s redundancy determines its intrinsic predictability. Information may be 
lost due to observation error and data processing (​lost information​ ). This reduces the 
redundant information that can be used for forecasting (​active information​ ). Lost information 
is not an intrinsic property of the system but rather represents practical limitations on our 
ability to make accurate measurements. The rate at which new information is being 
generated (Shannon entropy rate) may be approximated with permutation entropy. Because 
permutation entropy quantifies the joint contribution of the Shannon entropy rate and the lost 
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information, efforts that minimize the amount of lost information not only maximize the 
redundant information that can actively be used for forecasting but also improve the 
estimation of the intrinsic Shannon entropy rate.  
 

 
 
Figure 1C.​ The realized predictability is the degree to which forecast models can exploit the 
active information of a time series. Consider, for example, a time-series on the abundance of 
a species (black line) of which the first 21 days are used to train (parameterize) three 
forecasting models: a forecast that uses the simple mean of the training data set (red), an 
Autoregressive integrated moving average (ARIMA) model (green), and an Empirical 
Dynamical Model (EDM, blue). The forecasting performance of these models is assessed 
using the remaining time series (after day 22). The inset shows the normalized root mean 
squared error (nRMSE) as a measure of deviation between predicted and observed values 
(i.e. forecast error) for each of the three forecasting models. ARIMA and EDM exploit the 
available structure in the data better than the mean forecast, as illustrated by the coloured 
wedges filling different amounts of the area of active information. 
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Figure 1D.​ In the relationship between PE and FE a system can be moved toward the ideal 
grey boundary with forecast models that make better use of active information or by reducing 
information loss, not necessarily in that order. The two panels depict how to reach the 
greatest achievable forecasting skill in two different systems that have the same initial 
permutation entropy but differ in their relative amounts of new and redundant information 
(i.e. they differ in their intrinsic predictability). As these intrinsic properties of the system 
cannot be changed, improvements to forecast skill rely on fully exploiting the active 
information available (e.g., improved forecasting model) and minimizing information loss 
(e.g., improved sampling) to better approximate the true Shannon entropy rate, which 
establishes the lower boundary (grey area).  
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Box 1 Theory and estimation of  PE and WPE 
 
Information theory provides several measures for approximating how much new information 
is expected per observation of a system (e.g. the Shannon-entropy rate and the 
Kolmogorov-Sinai entropy). However, these measures are only well defined for infinite 
sequences of discrete random variables and can be quite challenging to approximate for 
continuous random variables, especially if one only has a finite set of imperfect observations. 
Permutation entropy is a measure aimed at robustly approximating the Shannon-entropy 
rate of a times series (or the Kolmogorov-Sinai entropy if the time series is stationary). 
 
Rather than estimating probability mass functions from ​symbol​ frequencies or frequencies 
of sequences of symbols, as is done with traditional estimates of the Shannon-entropy rate, 
permutation entropy uses the frequencies of orderings of sequences of values; it is an 
ordinal analysis (see Fig. B1-1 below for a visual explanation). The ordinal analysis of a time 
series maps the successive time-ordered elements of a time series to their value-ordered 
permutation of the same size. As an example, if then its ordinalx , x , x ] [11, 6, 8] [ 1  2  3 =     
pattern, or word, , is 2-3-1 since (see red time series fragment in([x , x , x ])  ϕ 1  2  3 x2 ≤ x3 ≤ x1  
box figure I A). PE is calculated by counting the frequencies of these words (or 
permutations ​) that arise after the time series undergoes this ordinal analysis. That is, given 
a time series  (box figure I A), let be defined as the set of all permutations (possibleSm  
words)  of order (word length)  and time delay , describing the delay betweenπ m τ  
successive points in the time series (box figure I B for ​m = 3​  and  = 1). For eachτ  
permutation we estimate its relative frequency of occurrence for the observed time π ∈ Sm  
series after performing ordinal analysis on each delay vector, 

, where  denotes set cardinality (box figure I C). Then(π) p = N−m+1
|{i | i≤N−m, ϕ([x , x ,...,x ])=π}|i i−1 m−1  ·| |  

permutation entropy of order  is calculated as .m ≥ 2 (m) (π)log (p(π))h =  − ∑
 

π∈Sm
p 2   

Since, , it is common to normalize permutation entropy by dividing by(m) og (m!)0 ≤ h ≤ l 2  
. With this convention, maximal  and minimal  is equal to 0. Since inog (m!)l 2 (m)h = 1 (m)h  

the infinite word length limit, permutation entropy is equivalent to the Kolmogorov-Sinai 
entropy as long as the observational uncertainty is sufficiently small (​Amigó et al. 2005 ​), we 
can approximate the intrinsic predictability of an ecological time series by computing 

.(m)1 − h  
 
For the ordinal analysis of a time series, ranks are only well defined if all values are different. 
If some values are equal (so called ‘ties’), the ordinal analysis is not possible. Several 
approaches are available to break the ties: the "first" method results in a permutation with 
increasing values at each index set of ties, and analogously "last" with decreasing values. 
The "random" method puts these in random order whereas the "average" method replaces 
them by their mean, and "max" and "min" replaces them by their maximum and minimum 
respectively, the latter being the typical sports ranking. 
 
In contrast, an ordinal analyses is also affected by small scale fluctuations due to 
measurement noise which can obscure the influence of large scale system dynamics. 
Weighted permutation entropy (WPE) ​reduces the influence of small-scale fluctuations by 
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taking into account the relative magnitudes of the time series values within each word 
(Fadlallah et al. 2013). That is, each word’s (  contribution to the, , .., ])X t = [xt  xt−τ . xt−τ(m−1)  
probability mass function is weighted by its variance, ​viz.​ , . Using this(X ) var(X )w t ≡  t  
weighting function, the weighted probability of each permutation is estimated by:

 where if and only if  and otherwise. The(π)pw =
(X ) ∑

 

t≤N−m
w t

(X ) ·δ(ϕ(X ), π)∑
 

t≤N−m
w t t

(x, )δ y = 1 x = y (x, )  δ y = 0  

weighted permutation entropy of order  is then defined asm ≥ 2  

. Similar to PE, the weighted permutation entropy is(m) (π)log (p (π))hw =  − ∑
 

π∈Sm
pw 2 w  

normalized by . We use weighted permutation entropy for all analyses presented inog (m!)l 2  
this manuscript.  
 
The estimation of PE to time series requires specifying a order ​m​  and time delay . Theτ  
shorter the chosen word length, the fewer possible words there are and the better we can 
estimate permutation frequencies. However,  the ability to distinguish patterns is limited by 
the possible number of unique permutations. Hence, when word lengths are too short or too 
long, the frequency distribution is more uniform. In practice the total length of the time series 
limits the choice of possible word lengths and hence the number of unique words that can be 
resolved (Riedl et al. 2013). Regarding the time delay , most applications to study theτ  
complexity of a time series use a  (Riedl et al. 2013). If , Bandt (2005) notes the1τ =  1τ >   
interesting property of the permutation entropy to be small, if the series has main period ​p​  for 

 = ​p ​ / 2 and 3 ​p ​ / 2, and to be large for  = ​p​  and  = 2 ​p​ . We refer to Riedl et al. 2013 whoτ τ τ  
provide practical considerations regarding setting permutation order ​m​  and time delay .τ   
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Figure B1.​ We illustrate how to estimate permutation entropy from an empirical time series 
(A) assuming m = 3 and  = 1. A permutation order m = 3 allows for a set of 6 (i.e. 3!)τ  
permutations, shown in panel B. The occurrence of each permutation  is then counted andπ  
divided by the total number of permutations as an estimate of their proportional frequency 
(panel C). For example, permutations 2-3-1 (shown in red) and 3-2-1 are each only found 
once in the time series, whereas 1-2-3 and 3-1-2 are found twice, leading to frequencies of 
0.17, 0.17, 0.33 and 0.33, respectively. The permutation entropy is then calculated as the 
Shannon entropy of proportional frequencies. For the given time series this is 1.92, which is 
normalized by log ​2​(3!) yielding a permutation entropy of 0.74. 
(End of Box 1) 
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Box 2 with information on the limitations of PE / WPE 
  
When analyzing time series, ecologists typically employ a number of data pre-processing 
methods. These methods are used to reduce low-frequency trends or periodic signals 
(detrending), reduce high-frequency variation (smoothing), standardize across the time 
series or reduce the influence of extreme values (transformation), deal with uncertain or 
missing data points (gap or sequence removal, and interpolation), to examine specific time 
step sizes (downsampling), or to combine different time series (aggregation). The following 
table summarizes the anticipated effects on permutation entropy of a suite of commonly 
used pre-processing methods. In many cases, whether a method increases or decreases 
permutation entropy will depend on the specific attributes of the time series (e.g., its 
embedding dimension, autocorrelation, covariance structure, etc.) and the permutation order 
(​m​ ) at which its permutation entropy is approximated. This is illustrated by specific examples 
in Figure B2 which contrasts the permutation entropies (using ​m​  = 3) of three hypothetical 
time series before (top row) and after (bottom row) the application of (a-b) linear detrending, 
(c-d) log-transformation, (e-f) interpolation of a missing or removed data point with a cubic 
smoothing spline. As these examples illustrate, with the exception of affine transformations, 
every pre-processing method discussed has the ability to alter our estimation of how much 
predictive information is contained in a time series. As such, performing pre-processing of a 
time series before permutation entropy is determined is not recommended. If the question to 
be addressed depends on such pre-processing, then care must be taken to understand how 
preprocessing is affecting the information estimate. 
 

Data 
processing 

method 

Examples Effect on Remark 

Permutation 
entropy (PE) 

Weighted 
permutation 

entropy 
(WPE) 

Detrending Linear, nonlinear 
(e.g., GAM), 
differencing 

Increase or 
decrease 

Increase or 
decrease 

Effect will depend on attributes of the time series for any chosen 
permutation order > 2. 

Transformation , log(x),x )/σ  ( − x  
4​√(x), Fisher, etc. 

None Increase, 
decrease, or 

none 

Normalization or rescaling will have no effect as long as the 
transformation is linear. Nonlinear transformations that compress 
large values (e.g., log(​x​ )) will increase WPE. Nonlinear 
transformations that amplify large values (e.g., Fisher) will 
decrease WPE. 

Gap or 
sequence 
removal 

Missing data (NAs), 
below detection level 
(zeros), species 
absences (zeros), 
constant values 
(poor precision) 

Increase or 
decrease 

Increase or 
decrease 

Zeros should be retained if they represent true species absences 
(decreasing PE and WPE). Otherwise zeros and constant values 
can be removed (increasing or decreasing PE and WPE, ​see 
main text​ ) or replaced by uncorrelated noise (increasing PE and 
WPE). The effect of concatenation will depend on attributes of the 
time series and gap size. Better to not count words that bridge 
gaps. 

Interpolation To infer gaps or to 
make time series 
equidistant 

Increase or 
decrease 

Increase or 
decrease 

More likely to decrease than increase. Increases may occur for 
some nonlinear methods depending on attributes of the time 
series and the chosen permutation length. Better to ignore 
time-step uncertainty, assume equidistance, and not count words 
that bridge gaps. 
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Smoothing Time-averaging, 
time-summation 

Decrease Decrease Like linear interpolation decreases PE and WPE by increasing the 
count of only-ascending or only-descending permutations. 

Downsampling Regular subsetting 
to increase time-step 
size 

Increase or 
decrease 

Increase or 
decrease 

Effect will depend on attributes of the time series (particularly its 
intrinsic embedding dimension) and the chosen permutation 
length. 

Time series 
aggregation 

Combining species 
to functional group 

Increase or 
decrease 

Increase or 
decrease 

Effect will depend on attributes of the time series being 
aggregated (e.g., their relative magnitudes, covariance, etc.). 

 
 

Figure B2.​ Anticipated effects of a suite of commonly used pre-processing methods 
 on (non-weighted) permutation entropy (PE) using three hypothetical time series before (top 
row) and after (bottom row) the application of (a-b) linear detrending, (c-d) 
log-transformation, and (e-f) interpolation of a missing or removed data point with a cubic 
smoothing spline. 
 
(End of Box 2)  
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Materials & Methods  
Forecasting with EDM 
Empirical dynamic modelling is a set of nonlinear forecasting techniques brought to the 
attention of ecologists through the work of Sugihara (1994). The method is based on the 
idea that a system’s attractor generating the dynamics of a time series can be reconstructed 
via delay coordinate embedding (Takens 1981, Sauer et al. 1991), which can then be used 
to forecast system dynamics (e.g., Lorenz 1969, Weigend & Gershenfeld 1993, Farmer & 
Sidorowich 1987, Garland et al. 2015, Sauer in Weigend & Gershenfeld 1993, Casdagli & 
Eubank 1992, Smith 1992). The variant of these methods we use in this manuscript is based 
on the simplex projection and S-map method (Sugihara 1994) through the rEDM package.  
  
The EDM approach first identifies the optimal embedding dimension ​E​  of the training data by 
fitting a model using simplex projection (Sugihara 1994). The embedding dimension ​E 
determines the number of temporal lags used for the delay coordinate embedding. We 
tested values for ​E​  between 1 and 10 and selected the value of ​E​  with the highest forecast 
skill using leave-one-out cross validation (Sugihara 1994). We then fitted the tuning 
parameter ​𝛉  ​ on the training data using the S-map model. ​𝛉  ​ describes the nonlinearity of the 
system and was varied in 18 steps between 0 and 10 (with log scaled intervals) to find the 
lowest error using leave-one-out cross validation on the training data.  
 
In contrast to other forecasting methods such as ARIMA, the EDM approach searches 
across multiple time series models by finding the optimal in sample combination of 
embedding dimension and tuning parameter using cross-validation. Due to this model 
selection step, EDM tests a suite of forecasting models equal to the combination of ​𝛉​  and ​E​ . 
When ​𝛉​  is 0, the EDM model corresponds to an autoregressive model of the order of the 
embedding dimension (i.e. an AR3 model if E = 3). Values of 𝛉 greater than 0 can account 
for increasing degrees of state-dependence.  

Assessment of forecast error 
 
We quantified forecasting error with the root mean squared error (Hyndman & Koehler 
2006), 

    

RMSE =  , √ k

∑
k

i=1
(c  − p )i i

2

 
 

where ​k​  is the number of observed ​c​ i​  values (i.e. abundances) and ​p​ i​  are their corresponding 
predicted values. To compare forecast errors across time series that vary widely in units and 
variability, we normalized their RMSE by the range of observed values using  
  

nRMSE = .RMSE
max(c ) − min(c )i i
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Smaller nRMSE corresponds to smaller forecasting error. Visual summaries of the observed 
and predicted dynamics are provided in the supplementary materials, including profiles of ​E 
and ​𝛉​  and the values chosen for predicting the test data. 

Calculation of permutation entropy  
We calculated the weighted permutation entropy (WPE) of time series using the methods 
outlined in Box 1 (R code will be made available upon publication).  

Logistic Map Time Series 
To demonstrate how both intrinsic and realized predictability change along a continuum from 
simple to complex and chaotic time series, we applied permutation entropy to time series 
from a well known population dynamic model, the Logistic Map: 

x​ t+1​  = r​  ​ x​ t ​ (​  ​ 1 - x​ t ​ ).  
This model maps the current year’s population size to next year’s population size with simple 
density-dependence between non-overlapping generations. Although simple, this first-order, 
nonlinear function produces a wide range of dynamical behavior, from stable and oscillatory 
equilibria to chaotic dynamics (May 1976). We include this range of behavior by simulating 
the logistic map for 500 incremental growth rates between ​r = ​ 3.4 and ​r = ​ 3.9. We simulated 
each growth rate for 10,000 time steps keeping the last 3000 times steps for analysis. 
Weighted permutation entropy of time series was calculated for permutation order, ​m,​  from 3 
to 5 and for time delay, 𝜏, from 1 to 4. For simplicity, we will refer to weighted permutation 
entropy only in the results section and use the generic term permutation entropy everywhere 
else. Forecasting error for each time series was calculated using the normalized root mean 
squared error of an EDM forecast of the last 200 time steps. 
 
Because ecological systems are influenced by both deterministic and stochastic drivers and 
the logistic map is purely deterministic, we sought to evaluate how stochasticity (noise) 
affects weighted permutation entropy and forecast error. To do so, we independently added 
both observational noise and process noise to the simulated population sizes by drawing 
random values from Gaussian distributions with standard deviations of either 0, 0.0001, 
0.001, or 0.01 (Bandt & Pompe 2002). If the new population size was not between 0 and 1, a 
new value was drawn. Observational noise was added to the population size time series 
after the simulation, whereas process noise was added to population size at each time step 
during the simulation.  

Empirical Time Series Data 
For empirical evidence of a relationship between permutation entropy and forecasting error, 
we examined a large variety of ecological time series that differ widely in complexity and 
data quality. We further investigated whether deviations from the expected general 
relationship can be explained by time series covariates such as measurement error (proxied 
here by whether the data originated from field versus lab studies), the nonlinearity of the time 
series (as quantified by the theta parameter of an EDM), or time series length. This allowed 
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us to identify possible predictors of time series complexity and the potential with which the 
time series of a system can be moved along the permutation-forecasting error (PE-FE) 
relationship to maximize realized predictability. 

Time series databases and processing 
We compiled laboratory time series from the literature and field time series from the publicly 
available Global Population Dynamic Database (GPDD) for our analysis. The GPDD is the 
largest compilation of univariate time series available, spanning a wide range of geographic 
locations, biotopes and taxa (NERC Centre for Population Biology, 1999, Inchausti & Halley 
2001). The GDPP database was accessed via the rGDPP package in R 
(https://github.com/ropensci/rgpdd). We added laboratory time series from studies by Becks 
et al. 2005, Fussmann et al. 2000, and the datasets used in a meta-analysis by Hiltunen et 
al. 2014. Time series with less than 30 observations, gaps greater than 1 time step and more 
than 15% of values being equal (and hence having the same rank in the ordinal analysis, i.e. 
ties) were excluded, resulting in a total of 461 time series.  Each time series was divided into 
training (initial ⅔  of the time series) and test data (the last ⅓ of the time series), with the 
EDM model performing best on the training set being used to estimate forecast error in the 
test set. We calculated the weighted permutation entropy (WPE) of each empirical time 
series using a permutation order, ​m​ , of 3 and a time delay, 𝛕, of 1 . Results were robust to 
the choice of ​m​  ∈ [2, 5] and 𝛕 ∈ [1, 4]. The three different ways to deal with ties (i.e. 
“random”, “first”, “average”) did not qualitatively affect the results, with results being robust to 
variation in time series minimum length and tie percentage 
 

Statistical analysis 
All analyses were performed in the statistical computing environment R (R Development 
Core Team, 2018). We used the lme4 package to fit mixed models to investigate the 
relationship between forecast error and permutation entropy (Bates et al. 2015), with 
forecasting error being the dependent variable. The independent variables were permutation 
entropy, the data type, the number of observations (​N​ ), the proportion of zeros in the time 
series (zero_prop), the proportion of ties in the time series (ties_prop), and, from the EDM 
analysis, the nonlinearity (​𝛉​ ) and the embedding dimension (​E​ ) of the time series. The data 
type, i.e. whether time series were measured in the lab or in the field, was included with our 
hypothesis being that lab measurements have lower observation error. Zero and tie 
proportions were included as they pose problems to the estimation of PE, as do short time 
series (see Box 2).  
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Results 

Logistic Map Time Series 
The expected relationship between weighted permutation entropy and forecasting error 
occured in the simulations of the logistic map. Both WPE and FE generally increase as the 
growth rate, ​r​ , increases and the dynamics of the logistic map enter the realm of 
deterministic chaos (Fig. 2D). Correspondingly, both WPE and FE decline when chaotic 
dynamics converge to limit cycles (Fig. 2, gold example with r ≈ 3.84).  
 
The effect of stochastic noise on the WPE-FE relationship depended on the type of noise 
considered. While process noise strongly affects both WPE and FE (Fig. 3A) observational 
noise affects forecasting error more strongly than WPE (Fig. 3B). Indeed, the relationship 
between WPE and FE is largely obscured at high process noise but remains positive at high 
observational noise (Fig. 3A,B, top panels), particularly when dynamics are chaotic.  When 
the dynamics are chaotic, the weighting in WPE is very effective at reducing the influence of 
observational noise on estimates of permutation entropy. However, when the dynamics 
exhibit stable limit cycles, WPE is sensitive to noise and this depends strongly on the chosen 
time delay, 𝛕, and word length, ​m​ . For example, applying 𝛕=2 for a 2-point limit cycle with a 
small amount of noise produces a WPE close to one, appearing as white noise as all 
permutations occur with equal probability. Limit cycles are best analyzed with 𝛕=1 to capture 
the oscillations, although with ​m​ =3 small amounts of noise still result in two permutations 
occurring with equal frequency (1-3-2 or 2-3-1) and so WPE is elevated with respect to the 
no-noise case despite the high redundancy of the limit cycles (Fig. 3B, dark blue and gold 
points).  
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Figure 2.​ Simulations of the deterministic logistic map with no added process or observation 
noise. A) The last 30 time steps of three times series are plotted to demonstrate different 
behaviors, including 2-point limit cycles (r ≈ 3.41; dark blue), chaotic behavior (r ≈ 3.73; 
green), and 3-point limit cycles within the chaotic realm (r ≈ 3.84; gold). B) A bifurcation 
diagram of the logistic map attractor for growth rates between r = 3.4 and 3.9. C) Weighted 
permutation entropy (WPE) of the logistic map time series as the growth rate, ​r​ , changes for 
permutation order, ​m​ , of 3 (light grey), 4 (dark grey) and 5 (black), and time delay, ​𝛕​  of 1. D) 
forecast error quantified by the ​normalized root mean squared error (nRMSE) of an EDM 
forecast (​E ​ = 2, ​𝛕  ​ = 1) of the last 200 time steps of each simulation plotted against WPE 
(​m​ =5, ​𝛕​ =1). The color coding corresponds to the growth rates in ‘B’.  
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Figure 3.​ The relationship between weighted permutation error (WPE; ​m​ =5,  ​𝛕​ =1) and 
forecasting error (measured as nRMSE) at three levels of A) process noise and B) 
observational noise. As the y-axis range and scale changes between subplots, the ‘no noise’ 
case is plotted in grey as a visual reference. The color coding corresponds to the growth 
rates in Fig. 2B. Systems with higher process noise exhibit both higher WPE and higher 
forecasting error. WPE is robust to observational noise when dynamics are chaotic, however 
limit cycles cause elevated estimates of WPE dependent on the choice of ​m​  and ​𝛕​ . 
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Empirical Time Series Results 
The 461 empirical time series vary in length (median = 50, min = 30, max = 197) and, as 
measured by WPE, complexity (median = 0.84, min = 0.076, max = 1). Forecasting error 
(nRMSE) ranges from 0.0000093 to 1.37, with a median of 0.19. Our analysis shows the 
expected positive relationship between permutation entropy and forecast error, with more 
complex time series (high WPE) yielding higher forecasting error (Table 1, center panel of 
Fig. 4). No difference in mean forecast error nor a difference in slope is detected between 
time series originating from lab or field studies (Table 1). Exploring the effects of time series 
covariates indicates that longer time series had lower FE, whereas time series with larger 
dimensionality (​E​ ) and greater nonlinearity (​θ​ ) as measured by EDM show higher FE (Table 
1). These covariates increase the amount of variation in FE explained across time series to 
35% (CI: 29 - 42%). An analysis of the partial R​2​ of all fixed effects in the model revealed 
that PE individually explained the largest amount of variation among predictors (21%, CI: 15 
- 27%), followed by time series length (18%, CI: 12 - 24%), time series nonlinearity ​θ​  (6%, 
CI: 2 - 10%) and the chosen embedding dimension ​E ​ (4%, 1 - 9%). Zero and tie proportions, 
as well as whether time series were from the field or the lab (type) explained less than 1% of 
the observed variation. 
 
The PE v. FE relationship allows us to identify time series which were predicted better, equal 
to or worse than expected regarding their complexity (Fig. 4 a-f). Time series ‘b’ and ‘c’ fall 
along the expected relationship and hence are well predicted despite large differences in 
complexity. Time series ‘a’ shows a clear trend which is well predicted. In contrast, time 
series ‘d’-’f’ have higher than expected forecast error.  Time series ‘d’ shows higher than 
expected error due to a strong outlier in the predicted values early in the test dataset. Time 
series ‘e’ is consistently poorly predicted, potentially due to wrong model choice or due to the 
short time series length. Time series ‘f’ is complex (high PE) with predictions missing the 
ongoing downward trend in the test data.  
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Table 1:​  Model table presenting fixed effects of the mixed model analysis relating 
forecasting error to permutation entropy (PE), and additional time series covariates. 
Parameter estimates (​B​ ), 95% confidence intervals (CI) and p-values are provided. 
Forecasting error increases with weighted permutation entropy across 461 ecological time 
series. 
 

  Forecasting error (nRMSE) 

  B CI p 

Fixed Parts 

(Intercept) 0.0893 0.0106 – 0.1681 .027 

PE 0.4796 0.3944 – 0.5648 <.001 

type -0.0751 -0.2988 – 0.1486 .511 

Sample size (N) -0.0017 -0.0021 – -0.0013 <.001 

Zero prop. 0.4062 0.0719 – 0.7405 .018 

Ties prop. -0.3344 -0.7698 – 0.1009 .133 

Embedding dimension (E) 0.0088 0.0051 – 0.0124 <.001 

Nonlinearity (theta) 0.0113 0.0072 – 0.0154 <.001 

PE:type 0.1006 -0.1714 – 0.3726 .469 
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Figure 4.​ Relationship between weighted permutation entropy and forecast error (nRMSE, 
note square root scale of y axis) across 461 time series (middle panel) and specific 
exemplary time series (observations in black, forecasts in red, a-f). Forecast error increases 
with complexity of the time series as indicated by the higher permutation entropy value. The 
slope of the relationship was the same for time series from field and laboratory systems. The 
upper panels (a-c) show time series with forecast error lower than (a) or as expected (b-c) 
given their level of complexity, whereas the lower panels (d-f) illustrate time series which 
have higher than expected forecast error.  
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Discussion  
The urgent need for ecologists to provide operational forecasts to managers and decision 
makers requires that we understand when and why forecasts succeed or fail (Clark et al. 
2001, Dietze 2017). We propose that the measurement of the intrinsic predictability of an 
ecological system can help reveal the origin of predictive uncertainty and indicate whether 
and how it can be reduced.  
 
Our results show that realized and intrinsic predictability positively covary. The simulation 
study revealed that the relationship can be obscured by stochastic process noise, while 
measurement noise led to more scatter but preserved the positive slope (Fig 3). Although 
process noise often dominates over measurement noise in ecological time series (Ahrestani 
et al. 2013), the positive relationship between intrinsic and realized predictability we revealed 
across a wide range of empirical time series supports the applicability of our framework. In 
our analysis, permutation entropy explained the largest amount of variation (21%) in forecast 
error, followed by time series length, dimensionality and nonlinearity, jointly accounting for 
35% of the variation. Time series that fell onto the expected relationship (Fig 4b,c) were well 
predicted given their complexity, whereas clear outliers (e.g. Fig 4e) would not require the 
use of PE to be identified as such. The relationship however allowed us to identify potential 
problems with forecasts of time series that have reasonable forecasts error, but which may 
be affected by overfitting (Fig 4a), outliers (Fig 4d) or regime shifts (Fig 4e) that may have 
gone unnoticed when looking at FE alone, particularly if applying automated or 
semi-automated forecasting methods across hundreds or thousands of time series (White et 
al. 2018). 
 
The value of intrinsic predictability to guide forecasting 
A major advantage of permutation entropy is the independence from any assumed 
underlying model of the system, which makes this “model-free” method highly 
complementary to existing model-based approaches. For instance, Dietze (2017) recently 
proposed a model-based framework that partitions the contribution of various factors to 
predictive uncertainty, including the influence of initial conditions, internal dynamics, external 
forcing, parameter uncertainty and process error at different scales. If, for example, the 
dominant factor affecting near-term forecasts is deemed to be internal dynamics, then insight 
into intrinsic predictability would demonstrate how stable those internal dynamics are. 
Similarly, if a lot of variation remains unexplained by the model (i.e. the process error not 
explained by the known internal dynamics, initial conditions, external drivers, and estimated 
parameters), then “model-free” methods can provide insight into whether that variation is 
largely stochastic or contains unexploited structure that could be captured with further 
research into the driving deterministic processes. Finally, permutation entropy could be 
applied to the predicted dynamics of models to ascertain whether they accurately reflect 
properties of the observed dynamics, such as their complexity, similar to comparing the 
nonlinearity of a time series with the dynamics of the best model  using the the EDM 
framework (Storch et al. 2017). Thus, intrinsic predictability provides diagnostic insights into 
predictive uncertainty and guidance for improving predictions.  
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Comparative assessments of intrinsic predictability 
The model-free nature of permutation entropy is advantageous in cross-system and 
cross-scale comparative studies of predictability. Whereas comparing all available 
forecasting methods on a given time series and predicting with the best-performing method 
would give us the best realized predictability (e.g. Ward et al. 2014), we would miss out on 
the comparative insight gained from aligning very different time series along the complexity 
gradient quantified by permutation entropy. Such a comparison could afford insight into 
whether intrinsic predictability differs across levels of ecological organization, taxonomic 
groups, habitats, geographic regions or anthropogenic impacts (Petchey et al. 2015). 
Determining the most appropriate covariates of monitored species (e.g. body size, life history 
traits, and trophic position) that minimize lost information would also inform monitoring 
methods. Furthermore, monitoring how realized and intrinsic predictability converge over 
time provides a means to judge improvements in predictive proficiency (Petchey et al. 2015, 
Houlahan et al. 2017, Dietze 2017). To do so, we need to apply available forecasting models 
to the same time series and measure their forecast error in combination with their intrinsic 
predictability. The monitoring of predictive proficiency has greatly advanced weather 
forecasting as a predictive science (Bauer et al. 2015). The analysis of univariate time series 
presented here only begins to put the intrinsic predictability of different systems into 
perspective. A primary goal is hence to expand the availability of long-term, highly resolved 
time series to determine potential covariates and improve our general understanding of 
ecological predictability (Petchey et al. 2015, Ward et al. 2014). 
 
Reliable assessment of intrinsic predictability 
Permutation entropy requires time series data of suitable length and sampling frequency to 
infer the correct permutation order and time delay (Riedl et al. 2013). Long ecological time 
series measured at the appropriate time scales are rare, despite the knowledge that they are 
among the most effective approaches at resolving long-standing questions regarding 
environmental drivers (Lindenmeyer et al. 2012, Giron-Nava et al. 2017, Hughes et al. 
2017). This problem is beginning to be resolved with automated measurements of system 
states, such as chlorophyll-a concentrations in aquatic systems (Thomas et al. 2018, Blauw 
et al. 2018), assessment of community dynamics in microbiology (Martin-Platero et al. 2018, 
Faust et al. 2015, Trosvik et al. 2008), and phenological (Pau et al. 2011) and flux 
measurements (Dietze 2017). Such high-frequency, long-term data are likely to provide a 
more accurate picture of the range of possible system states, even when systems are 
non-ergodic and change through time (e.g. Fig 4f). In fact, given the ease with which it is 
computed, PE can be assessed with a moving window across time or space to determine if a 
system is stationary or changing. As such, PE may be used as an early warning signal for 
system tipping points and critical transitions (Scheffer et al. 2009, Dakos et al. 2017) or to 
evaluate the effect of a management intervention on the system state. 
 
Although the full potential of permutation entropy to guide forecasting is not yet realized, 
many other fields are starting to take advantage of its diagnostic potential. In paleoclimate 
science, permutation entropy has proven useful for detecting hidden data problems caused 
by outdated laboratory equipment (Garland et al. 2016), and in the environmental sciences it 
has provided insight into model-data deviations of gross primary productivity to further 
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understand the global carbon cycle (Sippel et al. 2016). In epidemiology a recent study on 
the information-theoretic limits to forecasting of infectious diseases concluded that for most 
diseases the forecast horizon is often well beyond the time scale of outbreaks, implying 
prediction is likely to succeed (Scarpino & Petri 2017).  
Our result showing that permutation entropy covaries with forecast error highlights the 
potential of using permutation entropy to better understand time series predictability in 
ecology and other disciplines. 
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