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¤Current address: Département des neurosciences fondamentales, Université de Genève,
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Abstract

Perceptual organization is the process of grouping scene elements into whole entities, for
example line segments into contours. Uncertainty in grouping arises from scene
ambiguity and sensory noise. Some classic Gestalt principles of perceptual organization
have been re-framed in terms of Bayesian models, whereby the observer computes the
probability that the whole entity is present. Previous studies that proposed a Bayesian
interpretation of perceptual organization, however, have ignored sensory uncertainty,
despite the fact that accounting for the current level of uncertainty is the main
signature of Bayesian decision making. Crucially, trial-by-trial manipulation of sensory
uncertainty is necessary to test whether humans perform optimal Bayesian inference in
perceptual organization, as opposed to using some non-Bayesian heuristic. We
distinguish between these hypotheses in an elementary form of perceptual organization,
namely judging whether two line segments separated by an occluder are collinear. We
manipulate sensory uncertainty by varying retinal eccentricity. A Bayes-optimal
observer would take the level of sensory uncertainty into account – in a very specific
way – in deciding whether a measured offset between the line segments is due to
non-collinearity or to sensory noise. We find that people deviate slightly but
systematically from Bayesian optimality, while still performing “probabilistic
computation” in the sense that they take into account sensory uncertainty via a
heuristic rule. Our work contributes to an understanding of the role of sensory
uncertainty in higher-order perception.

Author summary

Our percept of the world is governed not only by the sensory information we have access
to, but also by the way we interpret this information. When presented with a visual
scene, our visual system undergoes a process of grouping visual elements together to
form coherent entities so that we can interpret the scene more readily and meaningfully.
For example, when looking at a pile of autumn leaves, one can still perceive and identify
a whole leaf even when it is partially covered by another leaf. While Gestalt
psychologists have long described perceptual organization with a set of qualitative laws,
recent studies offered a statistically-optimal – Bayesian, in statistical jargon –
interpretation of this process, whereby the observer chooses the scene configuration with
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the highest probability given the available sensory inputs. However, these studies drew
their conclusions without considering a key actor in this kind of statistically-optimal
computations, that is the role of sensory uncertainty. One can easily imagine that our
decision on whether two contours belong to the same leaf or different leaves is likely
going to change when we move from viewing the pile of leaves at a great distance (high
sensory uncertainty), to viewing very closely (low sensory uncertainty). Our study
examines whether and how people incorporate uncertainty into perceptual organization,
by varying sensory uncertainty from trial to trial in a simple perceptual organization
task. We found that people indeed take into account sensory uncertainty, however in a
way that subtly deviates from optimal behavior.

Introduction 1

Perceptual organization is the process whereby the brain integrates primitive elements 2

of a visual scene into whole entities. Typically, the same scene could afford different 3

interpretations because of ambiguity and perceptual noise. How the brain singles out 4

one interpretation has long been described to follow a set of qualitative principles 5

defined in Gestalt psychology. For example, contour integration, a form of perceptual 6

organization that consists of the perceptual grouping of distinct line elements into a 7

single continuous contour, is often described by the Gestalt principles of “good 8

continuation” and “proximity”. They state that humans extrapolate reasonable object 9

boundaries by grouping local contours consistent with a smooth global structure [1]. 10

While Gestalt principles represent a useful catalogue of well-established perceptual 11

phenomena, they lack a theoretical basis, cannot make quantitative predictions, and are 12

agnostic with respect to uncertainty arising from sensory noise. This not only limits 13

understanding at the psychological level, it is also problematic within a broader agenda 14

of quantitatively linking neural activity in different brain areas to behavior. For 15

example, neural investigations of the perception of illusory contours, a perceptual 16

organization phenomenon in which the observer perceives object contours when they are 17

not physically present, have largely remained at a qualitative level. An alternative 18

approach that does not suffer from these shortcomings uses the framework of Bayesian 19

inference, whereby the observer computes the probabilities of possible world states given 20

sensory observations using Bayes’ rule [2]. In the realm of perceptual organization, 21

Bayesian models stipulate that the observer computes the probabilities of different 22

hypotheses about which elements belong to the same object (e.g., [3–6]). For the 23

example of contour integration, such hypotheses would be that line elements belong to 24

the same contour and that they belong to different contours. 25

A fully Bayesian approach to perceptual organization would provide a normative 26

way for dealing both with high-level uncertainty arising from ambiguity in the latent 27

structure of the scene, and with low-level (sensory) uncertainty arising from noise in 28

measuring primitive elements of the scene. Crucially, however, previous studies in 29

perceptual organization have not examined whether the decision rule adapts flexibly as 30

function of sensory uncertainty. Such adaptation is a form of probabilistic computation 31

and is one of the basic signatures of Bayesian optimality [7]. This question is 32

fundamental to understanding whether, how, and to which extent the brain represents 33

and computes with probability distributions [8]. A trial-by-trial manipulation of sensory 34

uncertainty is a necessary test of probabilistic computation, because otherwise Bayesian 35

inference would be indistinguishable from an observer using an inflexible, 36

uncertainty-independent mapping [9, 10]. Indeed, manipulation of sensory uncertainty 37

has been a successful approach for studying probabilistic computation in low-level 38

perception, such as in multisensory cue combination [11,12] and in integration of 39

sensory measurements with prior expectations [13,14]. Moreover, tasks with varying 40
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uncertainty have yielded insights into the neural representation of uncertainty [15,16]. 41

In the current study, we investigate the effect of varying sensory uncertainty on an 42

elementary form of perceptual organization. Specifically, we manipulate sensory 43

uncertainty unpredictably on a trial-to-trial basis by changing stimulus retinal 44

eccentricity in a simple collinearity judgment task. Our experimental manipulation 45

allows for a stronger test of the hypothesis that perceptual grouping is Bayes-optimal, 46

at least for the atomic case of collinearity judgment of two line segments. However, this 47

is not enough; proper comparison of Bayesian models against plausible alternatives is 48

critical in establishing the theoretical standing of the Bayesian approach [17–19]. As an 49

alternative to performing the complex, hierarchical computations characteristic of 50

optimal Bayesian inference, the brain might draw instead on simpler non-Bayesian 51

decision rules and even non-probabilistic heuristics [20,21] such as grouping scene 52

elements based on some simple, learned rule. In contour integration, line elements 53

would belong to the same contour if they were close enough in space and orientation, 54

independently of other properties of the scene. Therefore, we rigorously compare the 55

Bayes-optimal decision rule against alternative non-Bayesian ones, both probabilistic 56

and non-probabilistic. While we find compelling evidence of probabilistic computation, 57

a probabilistic, non-Bayesian heuristic model outperforms the Bayes-optimal model, 58

suggesting a form of sub-optimality in the decision-making process. Our study paves the 59

way for a combined understanding of how different sources of uncertainty affect 60

perceptual organization. 61

Results 62

Subjects (n = 8) performed a collinearity judgment task (Fig 1A). On each trial, the 63

participant was presented with a vertical occluder and the stimulus consisted of two 64

horizontal lines of equal length on each side of the occluder. At stimulus offset, the 65

participant reported whether the two lines were collinear or not via a single key press. 66

To avoid the learning of a fixed mapping, we withheld correctness feedback. In different 67

blocks in the same sessions, participants also completed a height judgment task (Fig 1B), 68

with the purpose of providing us with an independent estimate of the participants’ 69

sensory noise. In both tasks, sensory uncertainty was manipulated by varying retinal 70

eccentricity on a trial to trial basis (Fig 1D). We investigated whether people took into 71

account their sensory noise σx(y), which varied with eccentricity level y, when deciding 72

collinearity. 73

We found a main effect of vertical offset on the proportion of collinearity reports 74

(two-way repeated-measures ANOVA with Greenhouse-Geisser correction; 75

F(3.69,114) = 101, ε = 0.461, p < 0.001, η2p = 0.766) and a main effect of eccentricity 76

(F(2.38,169) = 51.2, ε = 0.794, p < 0.001, η2p = 0.419), suggesting that the experimental 77

manipulations were effective (Fig 2A,B). We also found a significant interaction between 78

offset and eccentricity (F(4.38,30.7) = 7.88, ε = 0.183, p < 0.001, η2p = 0.529), which is 79

evident in the psychometric curves across subjects (Fig 2C). 80

We did not find significant effects of learning across sessions (see S1 Appendix), so in 81

our analyses for each subject we pooled data from all sessions. 82

Models 83

We describe here three main observer models which correspond to different assumptions 84

with respect to when the observer reports “collinear”, that is three different forms of 85

decision boundaries (Fig 3). 86

We first consider the behavior of a Bayes-optimal observer (“Bayes”) who utilizes 87

the probability distributions defined in the generative model (Fig 1C) to make decisions 88
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Fig 1. Tasks and generative model. A: Collinearity judgment task. After stimulus
offset, participants reported if the line segments belonged to the same line or different
lines. B: Height judgment task. Participants reported whether the left line segment was
higher or the right line segment was higher. C: Generative model of the collinearity
judgment task. Trial type C = 1 when the two lines segments are collinear, and C = 0
when line segments are non-collinear. On a given trial, the stimulus pair yL, yR
randomly appeared around one of four eccentricity levels (y = 0, 4.8, 9.6, and16.8),
measured by degrees of visual angle (dva). For all models, the observer’s measurements
xL, xR are assumed to follow a Gaussian distribution centered on the true stimulus
yL, yR, respectively, with standard deviation σx(y) dependent on eccentricity level y. D:
Possible eccentricity levels (in dva). E: Stimulus distribution for collinearity judgment
task. When C = 1, the vertical position of the left line segment yL is drawn from a
Gaussian distribution centered at y with fixed standard deviation. The vertical position
of the right segment yR is then made equal to yL. When C = 0, yL and yR are
independently drawn from the same Gaussian.

that maximize the probability of being correct, given the available sensory 89

measurements. In particular, the Bayes-optimal observer accounts for uncertainty when 90
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Fig 2. Collinearity judgement task data. A: Accuracy as a function of retinal
eccentricity level (chance probability = 0.5). B: Proportion of reporting “collinear” as a
function of vertical offset between the two line segments. C: Proportion of reporting
“collinear” as a function of vertical offset of the two line segments at each eccentricity
level. Error bars indicate Mean ± 1 SEM across 8 subjects.

deciding whether a measured offset between the line segments is due to non-collinearity 91

or to sensory noise by choosing the category (C = 1 or C = 0) with the highest posterior 92

probability p(C|xL, xR), where xL, xR are measurements of the two line segments on a 93

particular trial. This strategy translates into reporting “collinear” when xL, xR fall 94

within the optimal decision boundary, which is a function of (a) both measurements – 95

not simply their difference –, (b) sensory noise (that is, eccentricity) in the trial, and (c) 96

the prior belief about the proportion of collinear trials p(C = 1) (Fig 3B). Note that a 97

strictly optimal observer would have a prior that matches the experimental distribution, 98

p(C = 1) = 0.5. Here we relaxed the assumption and allowed p(C = 1) to be a free 99

parameter. The Bayes-optimal model assumes that the observer knows the noise level 100

associated with the current trial (see Model variants for a relaxation of this assumption). 101
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Fig 3. Decision boundaries for fixed-criterion (Fixed), Bayesian (Bayes)
and linear heuristic (Lin) models (left to right). The probability of reporting
“collinear” given stimulus and eccentricity condition is equal to the probability that the
observer’s measurements of vertical positions of left and right line segments fall within
the boundary defined by the model.

To investigate whether people apply instead a learned stimulus mapping that is 102

uncertainty independent, we tested a fixed-criterion model (“Fixed”) in which the 103

observer responds that two line segments are collinear whenever the measured offset 104

|xL − xR| is less than a fixed distance κ (a free parameter of the model). This 105

corresponds to an eccentricity-invariant decision boundary (Fig 3A). 106

Finally, we also considered an instance of probabilistic, non-Bayesian computation 107

via a heuristic model (“Lin”) in which the observer takes stimulus uncertainty into 108
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account in a simple, linear way: the observer responds “collinear” whenever the 109

measured offset |xL − xR| is less than an uncertainty-dependent criterion, 110

κ(y) = κ0 + κ1σx(y) (1)

where κ0 and κ1 are free parameters of the model (Fig 3C). 111

Model comparison 112

To fully account for parameter uncertainty, we used Markov Chain Monte Carlo 113

(MCMC) to sample the posterior distributions of the parameters for each model and 114

individual subject. To estimate goodness of fit (that is, predictive accuracy) while 115

taking into account model complexity, we compared models using the leave-one-out 116

cross-validation score (LOO), estimated on a subject-by-subject basis directly from the 117

MCMC posterior samples via Pareto smoothed importance sampling [22]. Higher LOO 118

scores correspond to better predictive accuracy and, thus, better models. 119

We found that the fixed-criterion model fits the worst 120

(LOOBayes − LOOFixed = 25.6± 13.6, LOOLin − LOOFixed = 69.3± 16.5; Mean ± SEM 121

across subjects), while also yielding the poorest qualitative fits to the behavioral data 122

(Fig 4A). This result suggests that participants used not only their measurements but 123

also sensory uncertainty from trial to trial, thus providing first evidence for probabilistic 124

computation in collinearity judgment. Moreover, we find that the linear heuristic model 125

performs better than the Bayesian model (LOOLin − LOOBayes = 43.7± 13.3), 126

suggestive of a suboptimal way of taking uncertainty into account. 127

To allow for model heterogeneity across subjects, we also combined model evidence 128

from different subjects using a hierarchical Bayesian approach that treats the model as 129

a random variable to accommodate between-subject random effects [23]. This method 130

allowed us to compute the expected posterior frequency for each model, that is the 131

probability that a randomly chosen subject belongs to a particular model in the 132

comparison. This analysis confirmed our previous model comparison ordering, with the 133

Fixed model having the lowest expected frequency (0.11± 0.09), Bayes the second 134

highest (0.18± 0.11) and Lin by far the highest (0.71± 0.13). We also calculated the 135

protected exceedance probability [24], that is the probability that a particular model is 136

the most frequent model in the set, above and beyond chance. We found consistent 137

results – namely the Fixed model has the lowest protected exceedance probability 138

(0.048), followed by Bayes (0.062), and Lin (0.89). 139

Validation of noise parameters 140

In all analyses so far, the observer’s sensory noise levels at each eccentricity level σx(y) 141

were individually fitted as free parameters (four noise parameters, one per eccentricity 142

level). To obtain an independent estimate of the subjects’ noise, and thus verify if the 143

noise parameters estimated from the collinearity task data truly capture subjects’ 144

sensory noise, we introduced in the same sessions an independent Vernier discrimination 145

task (height judgment task) [25, 26]. In this task, participants judged whether the right 146

line segment was displaced above or below the left line segment (Fig 1B and Fig 5A). 147

Importantly, the observer’s optimal decision rule in this task is based solely on the sign 148

of the observer’s measured offset between the line segments, and does not depend on 149

sensory noise (that is, respond “right segment higher” whenever xR > xL). Moreover, 150

trials in this task matched the stimulus statistics used in non-collinear trials of the 151

collinearity judgment task. Therefore, the height judgment task afforded an 152

independent set of estimates of subjects’ noise levels. 153

Repeated-measures ANOVA indicated a main effect of the vertical offset between the 154

two line segments on the proportion of reports “right higher” (F(2.58,80.1) = 320, 155
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Fig 4. Model fits and model comparison for fixed-criterion (Fixed),
Bayes-optimal (Bayes) and linear heuristic (Lin) models (from left to
right). A: Model fits to proportion of responding collinear as a function of vertical
offset of the two line segments. Error bars indicate Mean ± 1 SEM across subjects.
Shaded regions indicates Mean ± 1 SEM of fits for each model, with each model on a
separate row. B: Model comparison via leave-one-out cross-validation score (LOO). Bars
indicate individual subjects’ LOO scores for every model, relative to the fixed-criterion
model. A positive value indicates that the model in the corresponding row had a better
LOO score than the fixed-criterion model. Shaded regions indicate Mean ± 1 SEM in
LOO differences across subjects. The Lin model won the model comparison, whereas
Fixed was the worst model.

ε = 0.323, p < 0.001, η2p = 0.912), no main effect of eccentricity (F(1.99,141) = 0.300, 156

ε = 0.662, p = 0.740, η2p = 0.004), and an interaction between eccentricity and offset 157

(F(4.67,32.7) = 8.75, ε = 0.195, p < 0.001, η2p = 0.556). These findings confirm that, as 158

expected, participants in the height judgement task took into account the offset, and 159

their performance was also affected simultaneously by offset and eccentricity (that is, 160

sensory noise). 161

We found that sensory noise parameters estimated from the best model (Lin) in the 162

collinearity task were well correlated – across subjects and eccentricities – with those 163

estimated from the height judgment task (r = 0.87) (Fig 5B), indicating that the model 164

is correctly capturing subjects’ noise characteristics in collinearity judgment. 165

We next examined whether the model comparison between Bayes, Fixed, and Lin 166

could be constrained using the parameter estimates obtained from the height judgment 167

task, and whether such a constrained comparison would alter our findings. For each 168

subject and each eccentricity level, we imported the maximum-a-posteriori noise 169

parameter of that subject at that eccentricity level, as estimated from the height 170

judgment task, into the model for the collinearity task. This left the Bayes, Fixed, and 171

Lin models with only 2, 2, and 3 parameters, respectively, which we estimated via 172

MCMC as previously described. The fits of the constrained models were comparable to 173

those of their unconstrained counterparts (compare Fig 5C to 4A). The quantitative 174

comparison of the constrained models was also consistent with that of the unconstrained 175

models (compare Fig 5D to 4B): LOOBayes − LOOFixed = 93.5± 26.7, 176

LOOLin − LOOFixed = 142.4± 28.3. Overall, this analysis shows that our models 177
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Fig 5. Height judgment task results. A: Height judgment task data. Proportion
of reporting “right line segment higher” is plotted as a function of vertical offset
between line segments. Error bars indicate Mean ± 1 SEM across subjects. B: Noise
parameters estimated from the best-fitting model, linear heuristic (Lin), on collinearity
judgment task vs. noise parameters estimated from the height judgment task, in dva.
Each dot corresponds to a subject’s estimated noise parameters for a given eccentricity
level. C: Models’ fits to collinearity judgment task data when noise parameters
estimated from the height judgment task were imported into the models. Shaded
regions indicate Mean ± 1 SEM of fits. See Fig 4A for comparison. D: Model
comparison on collinearity judgment task data via LOO, constrained by importing noise
parameters from the height judgment task. Results are consistent with the model
comparison ordering we found in the original unconstrained fits, with free noise
parameters (see Fig 4B for comparison).

correctly captured subjects’ noise features, and that our conclusions are not merely due 178

to excessive flexibility of our models, as we obtain the same results with models with 179

very few free parameters. 180

Suboptimality analysis 181

In the previous sections we have found that the Lin model wins the model comparison 182

against the Bayes-optimal model, suggestive of suboptimal behavior among participants. 183

Here we closely examine the degree of suboptimality in terms of the loss of accuracy in 184
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the collinearity task with respect to Bayesian optimal behavior. 185

In order to assess the accuracy that an observer with a given set of noise parameters 186

could achieve, had they performed Bayes-optimally, we proceeded as follows. For each 187

subject, we generated a simulated dataset from the Bayes-optimal model using the 188

maximum-a-posteriori noise parameters σx(y) estimated from both the collinearity 189

judgment task and the height judgment task. We used both estimates to ensure that 190

our results did not depend on a specific way of estimating noise parameters. For this 191

analysis, we assumed optimal parameters, that is pcommon = 0.5 and no lapse (λ = 0). 192

We found a significant difference between observed accuracy and estimated optimal 193

accuracy based on collinearity judgment noise, as shown in Fig 6 (two-way 194

repeated-measures ANOVA with Greenhouse-Geisser correction; F(1.00,7.00) = 37.8, 195

ε = 1.00, p < 0.001, η2p = 0.844). There is a significant main effect of eccentricity 196

(F(2.03,14.2) = 128, ε = 0.675, p < 0.001, η2p = 0.948), which is expected from the 197

experimental manipulations. We also found no significant interaction between optimality 198

condition and eccentricity (F(2.22,15.5) = 2.31, ε = 0.738, p = 0.106, η2p = 0.248). 199

Analogously, for height judgement noise parameters, there is also a significant difference 200

between observed accuracy and estimated optimal accuracy (F(1.00,7.00) = 7.45, ε = 1.00, 201

p = 0.029, η2p = 0.516), a significant main effect of eccentricity (F(1.85,13.0) = 54.4, 202

ε = 0.618, p < 0.001, η2p = 0.886), and no significant interaction between optimality 203

condition and eccentricity (F(2.16,15.1) = 3.46, ε = 0.720, p = 0.055, η2p = 0.331). These 204

results confirm the results of the model comparison in that there is a statistically 205

significant difference between our subjects’ performance and optimal behavior. 206

However, a statistically significant difference does not necessarily imply a substantial 207

difference in terms of performance, as previous studies have shown that participants can 208

be “optimally lazy” by deviating from optimal performance in a way that has minimal 209

impact on overall expected score in a task [27]. We quantified our subjects’ performance 210

in terms of efficiency, that is the proportion of correct responses with respect to optimal 211

behavior. Our subjects exhibited an overall efficiency of 0.953± 0.007 (based on 212

collinearity judgment noise), or 0.959± 0.015 (based on height judgement noise), which 213

suggests that our subjects were only slightly suboptimal (see Discussion). 214

Observed accuracy
Accuracy if optimal (Collinearity judgement noise)
Accuracy if optimal (Height judgement noise)

Fig 6. Suboptimality analysis. Black line: Observed accuracy across four
eccentricity levels (chance probability = 0.5). Error bars indicate Mean ± 1 SEM across
subjects. Green line: Estimated accuracy if subjects perform Bayes-optimally, with
noise parameters obtained via the collinearity judgement task. Blue line: Estimated
accuracy with noise parameters obtained via the height judgment task. Performance
was slightly suboptimal across participants.
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Model variants 215

We consider here several alternative observer models that relax some key assumptions 216

we made when constructing our main observers, to verify whether our findings still hold. 217

Mismatch of noise parameters 218

So far, we have assumed that observers utilize directly their noise parameters σx(y) 219

when computing the decision rule. Here we propose a variant of the Bayes-optimal 220

model, “Mismatch”, in which the observer instead uses a set of assumed noise 221

parameters that may deviate from the true standard deviations of their measurement 222

distributions [28]. This model is identical to the Bayes-optimal model except that all 223

four σx(y) are substituted with σx,assumed(y), the assumed noise parameters, in the 224

calculation of the decision variables. To limit model complexity, we chose for the 225

assumed noise parameters a parametric form which is a linear function of the true noise 226

parameters σx(y). To avoid issues of lack of parameter identifiability [29], for the 227

Mismatch model we also fixed pcommon = 0.5. Thus, the Mismatch model has the same 228

number of free parameters as Lin, and one more than Bayes. 229

After relaxing the Bayes-optimal model to allow for assumed noise parameters, we 230

found that the Mismatch model fits better than the original Bayes model 231

(LOOMismatch − LOOBayes = 29.8± 13.0), and, thus, better than the Fixed model as 232

well, which was already the worst in the comparison 233

(LOOMismatch − LOOFixed = 55.5± 14.0). However, we found that the Lin model is still 234

the best-fitting model (LOOMismatch − LOOLin = −13.9± 5.4). All combined, these 235

results suggest that a degree of suboptimality in the observers might have arisen from a 236

lack of knowledge of their own noise characteristics [28], but such mismatch is not 237

enough to entirely explain the observed pattern of behavior. 238

Trial dependency 239

We also tested for potential influence of stimulus uncertainty from previous trials 240

(“History” model) on the response of the current trial. Specifically, for the History 241

model we extended the formula of the decision boundary of the Lin model to be a linear 242

function of the noise parameters of the current trial, as before, plus the noise associated 243

with up to four previous trials, that is σx(yt),σx(yt−1),σx(yt−2),σx(yt−3),σx(yt−4), 244

respectively, each one with a separate weight. 245

We found no evidence of trial dependency, for the History model fits about as well or 246

even slightly worse than Lin (LOOHistory − LOOLin = −2.4± 0.24). In particular, we 247

also found that the maximum-a-posteriori weights associated with σx(yt−1) to σx(yt−4) 248

were all not significantly different from zero across participants (respectively, t(7) = 1.45, 249

p = 0.19; t(7) = 0.0754, p = 0.94; t(7) = −1.18, p = 0.28; t(7) = −1.27, p = 0.24). These 250

results show that sensory uncertainty from previous trials had no effect on the observers’ 251

decision in the current trial. 252

Nonparametric examination 253

In the Lin model (and variants thereof), so far we assumed a linear parametric 254

relationship between the decision boundary and the noise level σx(y), as per Eq 1. 255

Here we loosened this constraint and fitted the decision boundary for each 256

eccentricity level as an individual parameter. Due to its flexible nature, we consider this 257

“Nonparametric” model merely as a descriptive model, which we expect to explain the 258

data very well. We use the Nonparametric model as a means to provide an upper-bound 259

on the LOO score for each individual, so as to have an absolute metric to evaluate the 260

performances of other models (in a spirit similarly to estimating the entropy of the data, 261
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that is an estimate of the intrinsic variability of the data which represents an upper 262

bound on the performance of any model [30]). As expected, given the large amount of 263

flexibility, the Nonparametric model fits better than Lin 264

(LOONonparametric − LOOLin = 14.6± 6.5), but we note that the difference in LOO is 265

substantially less than the difference between Lin and Bayes (43.7± 13.3), or Lin and 266

Fixed (69.3± 16.5), suggesting that Lin is capturing subjects’ behavior quite well, close 267

to a full nonparametric description of the data. 268

We can also use the Nonparametric model to examine how close the parametric 269

estimates of decision boundary from Lin, our best model so far, are to those obtained 270

nonparametrically. We observed that the average decision boundary across 8 subjects, 271

as a function of eccentricity, was consistent with the average nonparametric estimates of 272

the decision boundary at every eccentricity level (Fig 7A,B). This agreement means that 273

the decision boundaries adopted by observers in the task were, indeed, approximately 274

linear in the eccentricity levels, as assumed by the linear heuristic model. 275

Lin

Nonparametric

A B

y = 0
y = 4.8
y = 9.6
y = 16.8

Fig 7. Nonparametric model. A: Decision boundary estimates of linear heuristic
model (Lin) vs. decision boundary estimates of the Nonparametric model at different
eccentricity levels (Mean ± 1 SEM). B: Decision boundary at every eccentricity level
fitted non-parametrically vs. Decision boundary at every eccentricity level fitted from
the Lin model. Even when allowed to vary freely (“non-parametrically”), the decision
boundaries are approximately linear in eccentricity, as per the Lin model.

Discussion 276

To study how people group together elements of a visual scene, we designed a 277

behavioral experiment in which participants were asked to judge whether two line 278

segments partially occluded belonged to the same line. Using computational observer 279

models to describe the obtained data, we found that people utilize sensory uncertainty 280

when making collinearity judgements, however in a slightly suboptimal way. Crucially, 281

our results are robust to changes in model assumptions, such as noise model mismatch, 282

history effects, and different decision boundaries, and we independently validated our 283

parameter estimates in a different task. With trial-by-trial manipulation of eccentricity 284

in a collinearity judgment task, our study presents the first rigorous examination of the 285

role of sensory uncertainty for probabilistic computations in perceptual organization. 286

The present study is linked to the broader effort to study hierarchical Bayesian 287

inference in perception, whereby the observer is required to marginalize over stimulus 288

values (here, line offset) to build a posterior over latent, discrete causal scenarios (here, 289

same line of different lines). Such framework was adopted and tested in a variety of 290
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domains such as cue combination [31], change detection [32], perception of sameness [33], 291

and causal inference [34]. In particular, our models share the same formal structure of 292

models of causal inference in multisensory perception [34,35]. In such tasks, the 293

observer receives sensory measurements of possibly discrepant cues from distinct sensory 294

modalities (e.g., vision and hearing), and has to infer whether the cues originated from 295

the same source (C = 1) or from different sources (C = 0) – leading to, respectively, cue 296

integration and cue segregation. Previous work has shown that Bayesian causal inference 297

models provide a good qualitative description of human performance in multisensory 298

perception with discrepant cues, but quantitative comparison hints at deviations from 299

exact Bayesian behavior [30], not unlike what we find here. Our study differs from 300

previous work in that here we focus on an atomic form of perceptual organization. 301

While in our study we closely examined the effect of varying sensory uncertainty, our 302

task did not strictly introduce ambiguity, a integral element of Gestalt perception. 303

Ambiguity translates to overlapping stimulus distributions, and ambiguous trials are 304

only found in the collinear category of our task. With the presence of ambiguity, an 305

observer will not be able to achieve perfect performance even when sensory noise is 306

completely absent. Shapes defined by illusory contours such as variants of the Kanizsa 307

triangle were previously used to study representations of illusory contours in the cortical 308

areas of the brain in functional imaging [36, 37], rendering them potential candidates for 309

stimuli that can incorporate both ambiguity and sensory uncertainty. 310

Nevertheless, by studying the role of sensory uncertainty alone, our study presents a 311

more careful account of Bayesian inference in perceptual organization. In particular, we 312

compared the Bayesian observer model against other observer models that each describe 313

an alternative plausible decision strategy. We were able to distinguish a fixed stimulus 314

mapping that mimics Bayesian inference from probabilistic computation, which requires 315

the observer to flexibly adjust their decision boundary according to sensory uncertainty. 316

Despite evidence for probabilistic computations, we found that data was better 317

explained by a non-Bayesian heuristic model. 318

A possible explanation for subjects’ heuristic strategy, which differed slightly but 319

systematically from optimal performance, might be that they had received insufficient 320

training. While we found no evidence of learning across sessions, it is possible that 321

participants would have learnt to perform optimally had they received correctness 322

feedback on the task, possibly with greater incentives to motivate their learning. The 323

main purpose of our experiment was to explore the role of sensory uncertainty – thus, 324

we limited the amount of training trials with performance feedback on purpose, to 325

prevent the possible learning of a fixed mapping of stimulus to collinearity condition 326

that is independent of sensory uncertainty. The tradeoff between providing sufficient 327

training trials and avoiding learning of fixed mapping makes it difficult to test 328

behaviorally the hypothesis that sub-optimality stems from insufficient training. A 329

possible alternative avenue for exploring the effect of task learning could be through 330

training an artificial neural network on the same psychophysical task, and examining 331

how performance evolves as a function of training epochs, and whether this mimics 332

human behavior. For example, a hierarchical, probabilistic and stochastic neural 333

network such as Deep Boltzmann Machine is a desirable candidate as it can learn to 334

generate sensory data in an unsupervised fashion, a procedure that provides a plausible 335

account for visual cortical processing [38,39]. Notably, such stochastic hierarchical 336

generative model was used to show that visual numerosity – a higher-order feature – can 337

be invariantly encoded in the deepest hidden layer of the neural network [40], and could 338

analogously give rise to illusory contours neurons as found in monkeys [38]. 339

Our finding that elementary perceptual organization is probabilistic – albeit slightly 340

suboptimal – leads naturally to a fundamental open question in neuroscience, that is 341

whether and how the visual system performs (or approximates) probabilistic inference in 342
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the presence of complex, naturalistic stimuli. There is a trade-off between stimulus 343

complexity and modeling tractability in that we experimenters do not normally have 344

access to the generative model of a complex visual scene, preventing the deployment of 345

powerful statistical tools from ideal-observer analysis such as those used in the current 346

work. However, for example, a recent theoretical paper introduced a flexible, parametric 347

model of overlapping and occluded geometric shapes that resemble the pattern of a bed 348

of leaves (“dead leaves” [41]). Our rigorous model comparison approach, combined with 349

such complex psychophysical stimuli, provides a viable direction for future studies 350

interested in further exploring the probabilistic nature of perceptual organization. 351

Materials and Methods 352

Subjects 353

8 subjects (6 female), aged 20-30, participated in the experiment. Subjects received $10 354

for each of four 1-hour sessions, plus a completion bonus of $10. The Institutional 355

Review Board at New York University approved the experimental procedures (protocol 356

#IRB-FY2016-599: “Visual perception, attention, and memory”) and all subjects gave 357

written informed consent. 358

Apparatus and stimuli 359

The stimuli were shown on a 60 Hz 9.7-inch 2048-by-1536 pixel display. The display 360

(LG LP097QX1-SPA2) was the same as that used in the 2013 iPad Air (Apple). The 361

screen was secured to an arm with height adjusted to each subject’s eye level. A chin 362

rest was horizontally aligned with the center of the screen. The distance between the 363

eyes and the display was 27.5 cm. To minimize potential biases caused by external 364

visual cues, we added a large black panel surrounding the display. The display was 365

connected to a Windows desktop PC using the Psychophysics Toolbox 366

extensions [42,43] for MATLAB (MathWorks, Natick, MA). 367

On each trial, a dark gray occluder (23 cd/m2) with a width of 5.6 degrees of visual 368

angle (dva) was displayed against a light gray background (50 cd/m2). A white 369

(159 cd/m2) fixation dot 0.24 dva in diameter was shown in the lower central part of the 370

occluder; this dot corresponded to a retinal eccentricity of 0 dva. The stimuli consisted 371

of two horizontal white line segments on both sides of the occluder. The line segments 372

were all 5.6 dva in width and 0.16 dva in height. The vertical “base position” y of a pair 373

of line segments had one of four levels of retinal eccentricity (0, 4.8, 9.6, and 16.8 dva). 374

Trial procedure 375

Subjects completed two tasks, which we call collinearity judgment task and height 376

judgment task. On each trial in the collinearity judgment task (Fig 1A), the occluder 377

and fixation dot were displayed for 850 ms, followed by the stimulus for 100 ms. On a 378

“non-collinear” trial, the vertical positions of the two line segments were independently 379

drawn from a normal distribution centered at one of the four “base” eccentricity levels 380

(0, 4.8, 9.6, or 16.8 dva), with a standard deviation of 0.48 dva (Fig 1E); on a “collinear” 381

trial, we drew the vertical position of the line segment on one side and matched the line 382

segment on the other side. In each session, 50% of the trials were “collinear” and 50% 383

were “non-collinear”, randomly interleaved. At stimulus offset, the fixation dot turned 384

green to prompt the subject to indicate whether the two line segments were collinear. 385

The participant pressed one of 8 keys, corresponding to 8 choice-confidence 386

combinations, ranging from high-confident collinear to high-confident non-collinear. 387
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Response time was not constrained. No performance feedback was given at the end of 388

the trial. 389

Height judgment task trials followed the same procedure (Fig 1B), except that the 390

subject was asked to report which of the two line segments was highest (“left” or 391

“right”). We generated the line segments in the same fashion as in the “non-collinear” 392

condition of the collinearity judgment task. Audio feedback was given after each 393

response to indicate whether the choice was correct. 394

For the analyses described in this paper, we only considered choice data 395

(“collinear/non-collinear”, “left/right”), leaving analysis of confidence reports to future 396

work. 397

Experiment procedure 398

During each session, subjects completed one height judgment task block, followed by 399

three collinearity judgment task blocks, and finished with another height judgment task 400

block. Each height judgment task block consisted of 60 trials, and each collinearity 401

judgment task block consisted of 200 trials. 402

A demonstration of the experimental procedure was given to each subject at the 403

beginning of the first session. Participants were informed that there were an equal 404

number of left/right trials in the height judgment task as well as an equal number of 405

collinear/non-collinear trials in the collinearity judgment task. To familiarize subjects 406

with the stimulus distribution and to check for understanding of the tasks, participants 407

completed 16 practice trials at the beginning of each session. Stimulus presentation time 408

was longer on practice trials (500 ms), and audio correctness feedback was given at the 409

end of each practice trial. We did not analyze the responses on the practice trials. 410

Data analysis 411

In order to visualize psychometric curves with enough trials, we binned the offset values 412

between the left and right line segments into the following intervals: (−∞,−3.31], 413

(−3.31,−2.08], (−2.08,−1.17], (−1.17,−0.38], (−0.38, 0.38], (0.38, 1.17], (1.17, 2.08], 414

(2.08, 3.31], (3.31,∞), in dva. These values were chosen to include a comparable number 415

of trials per interval, based on the quantiles of the Gaussian distribution of the offset 416

used in the experiment. For the collinearity judgment task, we computed the proportion 417

of trials in which subjects reported “collinear” at each offset bin and retinal eccentricity 418

level. For the height judgment task, we computed the proportion of trials in which 419

subjects reported “right higher” at each offset bin and retinal eccentricity level. 420

Repeated-measures ANOVA with offset bin and eccentricity level as within-subjects 421

factors were performed separately on the proportion of reporting “collinear” in the 422

collinearity judgment task and the proportion of reporting “right higher” in the height 423

judgment task. We applied Greenhouse-Geisser correction of the degrees of freedom in 424

order to account for deviations from sphericity [44], and report effect sizes as partial eta 425

squared, denoted with η2p. 426

For all analyses the criterion for statistical significance was p < .05, and we report 427

uncorrected p-values. Unless specified otherwise, summary statistics are reported in the 428

text as mean ± SEM between subjects. Note that we used the summary statistics 429

described in this section only for visualization and to perform simple descriptive 430

statistics; all models were fitted to raw trial data as described next. 431

Model fitting 432

For each model and subject, the noise parameters σ2
x(y) for y = 0, 4.8, 9.6 and 16.8 dva 433

were fitted as individual parameters. 434
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We calculated the log likelihood of each individual dataset for a given model with 435

parameter vector θ by summing the log probability of trial i over all N trials, 436

log p(data|θ,model) =
N∑
i=1

log p(Ĉi|θ,model) =
N∑
i=1

log pθ,model(Ĉi|yLi
, yRi

, σ2
x(yi))

(2)
where the response probability pθ,model(Ĉi|yLi , yRi , σ

2
x(yi)) is defined in S1 Appendix. 437

We fitted the models by drawing samples from the unnormalized log posterior 438

distribution of the parameters p(θ|data) using Markov Chain Monte Carlo (parallel slice 439

sampling [30,45]) for each subject. The posterior distribution of the parameters is 440

proportional to the sum of data likelihood (Eq 3) and a factorized prior over the each 441

parameter j, 442

log p(θ|data,model) = log p(data|θ,model) +
∑
j

log p(θj |model) + const. (3)

We used log-transformed coordinates for scale parameters (e.g., noise), and for all 443

parameters we assumed a uniform non-informative prior (uniform in log space for scale 444

parameters) [46], within reasonably large bounds. Three parallel chains were ran with 445

starting point set at maximum likelihood point estimates of the parameters, evaluated 446

with Bayesian Adaptive Direct Search [47], to ensure that the chains were initialized 447

within a high posterior density region. 448

After running all chains, we computed Gelman and Rubin’s potential scale reduction 449

statistic R for all parameters to check for convergence [48]. An R value that diverges 450

from 1 indicates convergence problems, whereas a value close to 1 suggests convergence 451

of the chains. The average difference between R value and 1 across all parameters, 452

subjects and models is 1.16× 10−4, and all R values fall within (0.99, 1.003], suggesting 453

good convergence. To verify compatibility between different runs, we also visually 454

inspected the posteriors from different chains. We merged samples from all chains for 455

each model and subject in further analyses. 456

To visualize model fits (or posterior predictions) in Fig 4 and 5, we computed the 457

posterior mean model prediction for each subject based on 60 independent samples from 458

the posterior (equally spaced in the sampled chains). We then plotted average and 459

standard deviation across subjects. 460

Model comparison 461

To estimate the predictive accuracy of the models while taking into account model 462

complexity, we compared models using the leave-one-out cross-validation score (LOO). 463

Leave-one-out cross-validation is a model evaluation technique in which all but one trial 464

of a dataset is used as training set to make prediction on the left-out trial using the 465

fitted model. This process is repeated until all trials have been iterated through. For 466

the purpose of computational efficiency, we estimate the leave-one-out cross validation 467

score via Pareto smoothed importance sampling [22], which uses samples from the 468

posterior distribution of the parameters θ, 469

LOO =
N∑
i=1

log

∑
k wi,kp(Ĉi|θk,model)∑

k wi,k
, (4)

where θk is the k-th posterior sample for the corresponding model and wi,k is the 470

importance weight of trial i for sample k. 471
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