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Abstract 30 

 31 

Genome wide association studies (GWAS) have identified several hundred susceptibility loci 32 

for Type 2 Diabetes (T2D). One critical, but unresolved, issue concerns the extent to which 33 

the mechanisms through which these diverse signals influencing T2D predisposition 34 

converge on a limited set of biological processes. However, the causal variants identified by 35 

GWAS mostly fall into non-coding sequence, complicating the task of defining the effector 36 

transcripts through which they operate. Here, we describe implementation of an analytical 37 

pipeline to address this question. First, we integrate multiple sources of genetic, genomic, 38 

and biological data to assign positional candidacy scores to the genes that map to T2D 39 

GWAS signals. Second, we introduce genes with high scores as seeds within a network 40 

optimization algorithm (the asymmetric prize-collecting Steiner Tree approach) which uses 41 

external, experimentally-confirmed protein-protein interaction (PPI) data to generate high 42 

confidence subnetworks. Third, we use GWAS data to test the T2D-association enrichment 43 

of the “non-seed” proteins introduced into the network, as a measure of the overall 44 

functional connectivity of the network. We find: (a) non-seed proteins in the T2D protein-45 

interaction network so generated (comprising 705 nodes) are enriched for association to 46 

T2D (p=0.0014) but not control traits; (b) stronger T2D-enrichment for islets than other 47 

tissues when we use RNA expression data to generate tissue-specific PPI networks ; and (c) 48 

enhanced enrichment (p=3.9x10
-5

) when we combine analysis of the islet-specific PPI 49 

network with a focus on the subset of T2D GWAS loci which act through defective insulin 50 

secretion. These analyses reveal a pattern of non-random functional connectivity between 51 

causal candidate genes at T2D GWAS loci, and highlight the products of genes including 52 

YWHAG, SMAD4 or CDK2 as contributors to T2D-relevant islet dysfunction. The approach we 53 
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describe can be applied to other complex genetic and genomic data sets, facilitating 54 

integration of diverse data types into disease-associated networks. 55 

 56 

Author summary 57 

 58 
We were interested in the following question: as we discover more and more genetic 59 

variants associated with a complex disease, such as type 2 diabetes, will the biological 60 

pathways implicated by those variants proliferate, or will the biology converge onto a more 61 

limited set of aetiological processes? To address this, we first took the 1895 genes that map 62 

to ~100 type 2 diabetes association signals, and pruned these to a set of 451 for which 63 

combined genetic, genomic and biological evidence assigned the strongest candidacy with 64 

respect to type 2 diabetes pathogenesis. We then sought to maximally connect these genes 65 

within a curated protein-protein interaction network. We found that proteins brought into 66 

the resulting diabetes interaction network were themselves enriched for diabetes 67 

association signals as compared to appropriate control proteins. Furthermore, when we 68 

used tissue-specific RNA abundance data to filter the generic protein-protein network, we 69 

found that the enrichment for type 2 diabetes association signals was enhanced within a 70 

network filtered for pancreatic islet expression, particularly when we selected the subset of 71 

diabetes association signals acting through reduced insulin secretion. Our data demonstrate 72 

convergence of the biological processes involved in type 2 diabetes pathogenesis and 73 

highlight novel contributors. 74 

 75 

 76 

 77 
 78 
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Introduction 79 

 80 

The rising prevalence of type 2 diabetes (T2D) represents a major challenge to global health 81 

[1]. Current strategies for both prevention and treatment of T2D are suboptimal, and 82 

greater insight into the mechanisms responsible for the development of this condition is a 83 

prerequisite for further advances in disease management [2].  84 

 85 

The identification of human DNA sequence variants which influence predisposition to T2D 86 

provides one of the most direct approaches for deriving mechanistic insight. However, 87 

current understanding of the genetic architecture of T2D indicates that the genetic 88 

component of T2D predisposition likely involves variation across many thousands of loci [3, 89 

4]. Close to 500 independent genetic signals for which there is robust evidence of a 90 

contribution to T2D predisposition have been identified, largely through genome-wide 91 

association studies, supplemented by analysis of exome- and genome-sequence data [4-6]. 92 

This profusion of genetic signals has raised questions concerning the extent to which the 93 

inherited susceptibility to complex traits such as T2D can be considered to occupy finite 94 

biological space [7]. In other words, as the number of loci influencing T2D risk increases, will 95 

the mechanisms through which these are found to mediate the development of this 96 

condition continue to proliferate, or will they start to converge around a limited set of 97 

pathways?  98 

 99 

There are two main challenges in addressing this key question. First, whilst a minority of the 100 

causal variants underlying these association signals are coding (and therefore provide direct 101 

inference regarding the genes and proteins through which they act), most lie in regulatory 102 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2018. ; https://doi.org/10.1101/350181doi: bioRxiv preprint 

https://doi.org/10.1101/350181
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5

sequence. This makes assignment of their effector transcripts a non-trivial exercise, and 103 

obscures the downstream mechanisms through which these variants impact T2D-risk [8-10]. 104 

This challenge can increasingly be addressed through the integration of diverse sources of 105 

relevant data including (a) experimental data (e.g. from studies of cis-expression or 106 

conformational capture) which link regulatory risk-variants to their likely effectors [11, 12]; 107 

and (b) evaluations of the biological evidence connecting each of the genes within a GWAS-108 

associated region to the disease of interest. In the present study, focussing on a set of 109 

approximately 100 T2D-risk loci with the largest effects on T2D predisposition, we use a 110 

range of information to derive “positional candidacy” scores for each of the coding genes 111 

mapping to T2D-associated GWAS intervals.  112 

 113 

The second challenge lies in the requirement to define functional relationships between sets 114 

of candidate effector transcripts in ways that are robust, and, in particular, orthogonal to 115 

the data used to assign candidacy in the first place [13, 14]. Solutions for the second 116 

challenge are less well-developed but generally involve some type of network analysis (e.g. 117 

weighted gene correlation network analysis [WGCNA]) and application of the “guilt-by-118 

association” framework to infer function [15-17]. However, recourse to co-expression 119 

information, or functional pathway enrichment methods to generate and evaluate such 120 

networks runs the risk of introducing circularity, given that information on expression and 121 

function typically contributes (whether explicitly or not) to assignments of effector 122 

transcript candidacy. The use of protein-protein interaction data provides one possible 123 

solution to this conundrum [18]. In the present study, we make use of external protein-124 

protein interaction data from the InWeb3 dataset [19, 20] to evaluate and characterise the 125 
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connectivity of the T2D candidate effector transcripts in terms of their ability to nucleate 126 

empirically-confirmed interactions between their encoded proteins. 127 

 128 

Materials and methods 129 

 130 

Positional candidacy score derivation  131 
 132 
We developed a framework to score the candidacy of genes mapping to GWAS association 133 

signals which aggregated data from multiple sources. The information collected fell into two 134 

categories. First, we used regression-based approaches to link disease-associated variants 135 

(most of which map into non-coding sequence and are therefore presumed to act through 136 

transcriptional regulation of nearby genes) to their likely effector transcripts, using a 137 

combination of variant-based annotations and expression QTL data.  Second, we scored 138 

each of the genes in these GWAS regions for disease-relevant biological function. We 139 

combined the two measures to generate a “positional candidacy score” (PCS) for each gene. 140 

We applied this framework to 1895 genes located within a 1Mb interval around the lead 141 

variants from 101 T2D GWAS regions. These represent the loci with the largest effect sizes 142 

for T2D, as identified in European subjects as of early 2017 [4, 6, 21]: Supplementary Table 143 

1). The 1Mb intervals contained 1895 genes. 144 

 145 

Mapping effector transcripts to GWAS signals 146 
 147 
At each of the 101 loci, we collected summary T2D case-control association data (-log10p 148 

values) for all 1000 Genomes variants in the 1Mb interval surrounding the lead variants [6]. 149 

We then annotated variants in each interval using gene-based annotations for all genes in 150 

the interval from several sources.  First, we collected relevant discrete annotations for all 151 
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protein coding genes in GENCODE (version 19) [22] within the interval including (a) coding 152 

exon location; (b) promoter location (defined as 1kb region upstream of the transcription 153 

start site [TSS]); (c) distal regulatory elements correlated with gene activity from DNAseI 154 

hypersensitivity (DHS) data (ENCODE version 3) [23].  We assigned each variant a binary 155 

value based on whether it overlapped one of the discrete annotations for a gene in the 156 

interval (exon, promoter, distal element).  Second, we collected summary statistic 157 

expression QTL (eQTL) data from liver, skeletal muscle, whole blood, subcutaneous adipose 158 

and visceral adipose (GTEx version 6) [24] and pancreatic islets [11].  We assigned each 159 

variant the -log10p value of eQTL association for each cell type for each gene in the interval.  160 

Third, we calculated the distance of each variant to the TSS of each gene in the interval, and 161 

assigned each variant the inverse TSS distance for each gene (i.e. variants closer to the TSS 162 

have higher values).  Variants without values in the eQTL datasets were removed from the 163 

analysis.      164 

 165 
We then performed feature selection for each T2D locus separately using elastic net 166 

regression (R package glmnet) with the T2D p-values as the outcome variable and binary 167 

genomic annotations (exon, promoter, distal element), distance to TSS, and cell type cis-168 

eQTL p-values for each gene in the interval as the predictor variables.  We also included 169 

minor allele frequency and imputation quality of each variant at the locus as predictor 170 

variables.  We obtained the effects of features selected from the resulting model.  We 171 

applied a 10-fold scaling factor to coding exon features, based on known enrichment of T2D 172 

variants in coding exons [25, 26].  Where multiple features were selected for the same gene 173 

(e.g. distal DHS site and tissue eQTL) we summed the effects for that gene.  We considered 174 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2018. ; https://doi.org/10.1101/350181doi: bioRxiv preprint 

https://doi.org/10.1101/350181
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8

the summed effects of features for each gene as the ‘variant link score’ in subsequent 175 

analyses.     176 

 177 
Semantic mapping of gene functional annotations 178 
 179 
We also derived a second score of the T2D-relevance for each gene within the 101 GWAS 180 

intervals based on the annotations for each within data from gene ontology (GOA, version 181 

157), the mouse genome database (MGD, version 6.08), and biological pathways (KEGG) 182 

(version 83.1), compiling these annotations into a single document per gene. We also 183 

created a query document of empirically-compiled terms we considered relevant to T2D 184 

pathophysiology (listed here: https://github.com/kjgaulton/gene-185 

pred/blob/master/res/T2D.query.manual.txt).  Both gene documents were converted into a 186 

word matrix. We calculated the total number of unique words across all documents N, after 187 

removing a list of commonly used “stop” words from PubMed 188 

(https://www.ncbi.nlm.nih.gov/pubmed/) and stemming the remaining words. We 189 

weighted each word w for each gene document g using “term frequency (TF)” minus 190 

“inverse document frequency” defined as: 191 

�� � ��,�  

��� � log
 �
��


 

 192 
where nw is the number of documents containing word w.  We defined the value (gw) of 193 

word w in gene document g as: 194 

�� � �� � ��� 

 195 
and applied latent semantic analysis (LSA) using singular value decomposition of the 196 

weighted matrix M  197 

� � ���� 

 198 
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where T is the left singular vector matrix of terms, D
 
is the right singular vector matrix of 199 

documents, S is the diagonal matrix of singular values, and the number of dimensions was 200 

determined by the function dimcalc_share from the lsa package [27]. We used the resulting 201 

matrices to identify genes with functional attributes that indicated relevance to T2D 202 

pathogenesis. For each gene document vector g, we calculated similarity scores Si,q using 203 

the dot product between the gene vector  and the T2D query vector q 204 

��,� � � · � 

 205 
From these data, we extracted similarity scores for the 1895 genes of interest, which we 206 

considered the ‘semantic score’ in subsequent analyses.      207 

 208 
Combining gene scores  209 
 210 
For each of the 1895 genes, we scaled scores from these two analyses to the sum of scores 211 

for each of the x genes at each locus resulting in a semantic score sg and variant link score vg. 212 

To calculate a positional candidacy score (PCS), we averaged the two scores and rescaled 213 

across all x genes at each locus. 214 

��� �
�� � ��

∑ �� � ��
�
���

 

 215 
 216 
Network modelling 217 
 218 
Selection of the “seed node set”. At each GWAS locus, we defined the sets of genes that, 219 

after ranking the genes for each locus by decreasing PCS, generated a cumulative PCS 220 

exceeding 70%. This reduced the set of 1895 genes of interest to 451 “seed” nodes for 221 

subsequent network analysis. We performed network analyses using an updated version of 222 

InWeb3, a previously-described comprehensive map of protein-protein interactions, 223 

containing 169,736 high-confidence interactions between 12,687 gene products compiled 224 
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from a variety of sources [19, 20]. We updated the version used in [20], by updating 225 

outdated gene symbols and restricting interactions to those deemed “high-confidence” 226 

(score >0.124). 227 

 228 

Prize-collecting Steiner Tree formulation. We formulated the task of examining the 229 

connectivity of GWAS positional candidates (the set of 451 “seed” genes) within protein-230 

protein interaction space as an asymmetric prize-collecting Steiner tree (APCST) problem. 231 

APCST-like approaches have been widely used to solve network-design problems [28-30]. 232 

The APCST seeks to connect “seed” nodes (in formal nomenclature, “terminals”) to collect 233 

“prizes”, using confirmed protein-protein interactions as edges. Prizes are weights added to 234 

seed nodes: in our analysis, these correspond to the PCS values for each “seed” gene, 235 

derived from the -omic integration approach.  “Linking” (formally, “Steiner”) nodes (that is, 236 

proteins/genes not included in the seed set) can be introduced into the network, where 237 

necessary. Network expansion is controlled by the balance between the benefits of adding a 238 

particular node (increased connectivity between seed genes, driven by the collection of 239 

prizes) vs. the costs of adding additional edges (based on a function which penalises 240 

expansion of the network). In mathematical terms, we defined the APCST as follows: given a 241 

directed graph � � 
�, �
, arc costs c: � �  � � 0, node prizes p: � �  � � 0 and a set 242 

of fixed terminals �� the goal is to find an arborescence � � 
�� , ��
 � � that spans �� such 243 

that the following function is maximized: 244 

�
�
 �  �  !	

	
��

"  #	,�


	,��
��

 

In this formulation, we reward the inclusion of nodes $ % ��  with higher prizes (that is, 245 

higher PCS values) (first term of equation) while paying costs for including edges (second 246 
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term of equation). The parameter, β, scales the importance of node prizes versus edge costs 247 

in the optimization and can be used to titrate the size of the generated network. We tested 248 

different values of β (between 4 and 30) and selected β =8 that produced a manageable 249 

network size (~130 genes) and included >25% of the seed node set (S1 Fig). 250 

 251 

Although this problem is NP-hard (nondeterministic polynomial time-hard) [31], the APCST 252 

algorithm is found to be efficient in calculating exact and proximal solutions (DIMACs 11
th

 253 

challenge, http://dimacs11.zib.de/). The branch-and-bound algorithm, implemented in 254 

dapstp algorithm (https://github.com/mluipersbeck/dapcstp) and using default parameters, 255 

was used to find the optimal (or near optimal) APCST solution. 256 

 257 

Generation of networks using dapcst algorithm 258 
 259 
We used a particular variation of the ACPST (“root-ACPSTP”) where the search for the 260 

optimal solution starts in a specific node. This allowed us to force each seed node in turn to 261 

be included in the network, in contrast to the default APCST method which initialises 262 

network construction from the nodes with higher weights. For the main T2D analysis, 263 

therefore, the algorithm was run 451 times, once for each “seed” node. Runs generating a 264 

network of >10 nodes (353 networks, median 155 nodes) were combined to form an 265 

ensemble network from the union of all n networks. This was reprojected onto the InWeb3 266 

interactome to recover missing connections across nodes. As this final network represents a 267 

superposition of many different networks, linking nodes may sometimes appear at the 268 

periphery.  269 

 270 
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We assessed the specificity of each node in the final network by running the algorithm 100 271 

times with the same parameter settings, but with random input data. We define specificity 272 

in this context as the complement of the percentage with which a given seed or linking node 273 

from the final network appears in runs generated from random input data. For each random 274 

run, we selected, from the InWeb3 interactome, random seed nodes matching the binding 275 

degree distribution of the observed set of seeds, and assigned them the same prize value as 276 

the original. Using the final parameter settings, we found that the included linking nodes 277 

were highly specific to our particular data, with 80% of them having a specificity higher than 278 

75% (S2 Fig).  279 

 280 

Testing network for Enrichment in GWAS signal.  281 
 282 
To evaluate the extent to which the PPI network provided functional connectivity between 283 

positional candidates across loci, we measured the enrichment of the linking nodes for T2D 284 

association signals. This avoided the circularity of using co-expression or functional data to 285 

evaluate connectivity (as both contributed to the PCS determination). We generated gene-286 

wise p values using the PASCAL method [32] from large-scale GWAS studies across a set of 287 

33 traits (using data extracted from public repositories) including a recent meta-analysis of 288 

T2D GWAS data from ~150,000 Europeans [6]. We mapped these gene-wise association p-289 

values to linking nodes, and converted them to Z-scores using the standard normal 290 

cumulative distribution, �� �  ����1 � ��	. We then quantified GWAS enrichment by 291 

aggregating the Z-scores using Stouffer’s method: 292 

�~ 
∑ ��

�
���

√
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where �� is the Z-score for the gene-wise p value for linking node i and k is the number of 293 

linking nodes in the network. Then, by permuting the InWeb3 network using a node 294 

permutation scheme, we compared the observed enrichment in GWAS signals to a random 295 

expectation, allowing us to calculate a nominal p value as: 296 

�������� � �����	 �� �  #�� 
 ���

#�
�
�� ����
������
                        

where �� is the permuted p value generated in the permutation scheme. In this last step, 297 

the binding degree of all genes in the network is taken into full consideration (i.e. they all 298 

have the same binding degree as provided by the APCST network). To minimise bias arising 299 

from the co-localisation of genes with related functions (which is a feature of some parts of 300 

the genome), in each of these permutations we only considered proteins whose genes 301 

mapped outside a 1Mb window around the lead SNP for any significant GWAS association 302 

for that trait.  303 

 304 

APCST model clustering  305 
 306 
To aid interpretation of the PPI networks, we used a community clustering algorithm that 307 

maximizes network modularity and which breaks the full APCST model into smaller sub-308 

networks [33]. 309 

 310 

GTEx and Islet RNAseq datasets 311 
 312 
The InWeb3 PPI network we used is generated from empirically-confirmed interactions, but 313 

nevertheless includes many interactions that, owing to restricted tissue-specific expression, 314 

are unlikely to be biologically relevant. We used tissue-specific RNA expression data to filter 315 

the overall InWeb3 network and thereby generate in silico “tissue-specific” PPI networks, 316 

using TPM counts from GTEx (version 7: https://www.gtexportal.org/home/, last accessed 317 
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21 Oct 2017), complemented by human pancreatic islet data from [11]. Proteins with mRNA 318 

TPM counts <1 in over 50% of samples for that tissue were removed from the InWeb 319 

network, allowing us to generate in silico PPI networks for 46 tissues.  320 

 321 

Functional Enrichment Analysis   322 
 323 
Gene Set Enrichment (GSE) of networks and sub-networks were assessed with ClueGO [34] 324 

using GO terms and REACTOME gene sets [35]. The enrichment results were grouped using 325 

a Cohen’s Kappa score of 0.4 and terms were considered significant when Bonferroni 326 

adjusted p-value <0.05 and at least 3% of the genes contained in the tested gene set were 327 

included in the network. Cohen’s Kappa statistic measures the gene-set similarity of GO 328 

terms and REACTOME pathways and allowed us to group enriched terms into functional 329 

groups that improve visualization of enriched pathways. 330 

 331 

Results 332 

 333 
Prioritizing positional candidates at T2D risk loci 334 
 335 
We implemented a framework to derive positional candidacy scores (PCS) for genes within 336 

T2D GWAS loci through the aggregation of two main types of data (Fig. 1; Methods). First, 337 

we used regression-based approaches to link disease-associated variants (most of which 338 

map to non-coding sequence and are therefore presumed to act through transcriptional 339 

regulation of nearby genes) to their likely effector transcripts, using a combination of 340 

variant-based annotations and expression QTL data. Second, we scored each of the genes in 341 

these GWAS regions for disease-relevant biological function using semantic mapping of 342 

gene functional annotations from Gene Ontology, Mouse Genome Database, and KEGG. We 343 
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combined the evidence from both approaches, normalized across all genes at each GWAS 344 

locus, to generate the PCS for each gene.  345 

 346 

Figure 1 Overview of the Data Integration pipeline. We collected variants in the 1Mb 347 
interval surrounding index variants at each of the 101 T2D GWAS loci along with relevant 348 
annotations for all protein coding genes in GENCODE including coding exon location, 349 
promoter location, distal regulatory elements correlated with gene activity from DNAseI 350 
hypersensitivity (DHS) data and summary statistic expression QTL (eQTL) data from T2D-351 
relevant tissues. This, combined with information at gene level from a semantic similarity 352 
metric, allowed us to define positional candidacy scores for each gene in the GWAS 353 
intervals. These genes were projected into the InWeb3 data set using a Steiner tree 354 
algorithm to define a PPI network that maximises candidate gene connectivity. This network 355 
was further analysed to find processes, pathways, and genes implicated in T2D 356 
pathogenesis.      357 
 358 

We applied this method to score 1,895 genes mapping within a 1Mb interval around the 359 

lead variant at 101 T2D GWAS regions. This list of 101 T2D loci was assembled from a series 360 

of recent large-scale T2D GWAS studies [4, 6, 21] and represents the largest-effect T2D 361 

GWAS loci identified as of early 2017. The 1Mb interval was selected to capture the majority 362 

of cis-acting regulatory effects (95% of cis-eQTLs map within 445kb of the lead SNP [24]), 363 

and is therefore also likely to encompass most potential effector genes [36]. We observed 364 

only weak correlation between the semantic and risk variant link scores for the 1,895 365 

positional candidates (r
2
=0.05, p=0.01), indicating that these provide distinct information 366 

(S3 Fig).   367 

 368 

Most (71%) of the 1,895 genes had minimal evidence linking them to a causal role in T2D 369 

pathogenesis (PCS<0.05) (S3 Fig). However, 95% of T2D loci included at least one gene 370 

(median, 3) with PCS>0.10, and at 70% of loci, there was at least one gene with PCS>0.20 371 

(S3 Fig).  The top-scoring genes across the 101 loci (such as IRS1 [PCS=0.69], SLC30A8 372 
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[PCS=0.77], HNF1B [PCS=0.54]) include many of the genes with the strongest prior claims for 373 

involvement in T2D risk, prior claims which arise in part from data used to generate the 374 

PCSs. For example, these genes each contain rare coding variants directly implicated in 375 

development of T2D (or related conditions): these variants are independent of the common 376 

variant GWAS signals, but their relationship to diabetes is likely to have been captured 377 

through the semantic mapping. The PCS also highlighted several other highly-scoring 378 

candidates with known causal roles in relation to diabetes and obesity such as MC4R 379 

(PCS=0.43), WFS1 (0.41), ABCC8 (0.37), LEP (0.27), GCK (0.24), and HNF1A (0.23). At other 380 

loci, these analyses highlighted candidates that have received scant attention to date: for 381 

example, CENPW (PCS=0.83) scored highly both in terms of semantic links to T2D-relevant 382 

processes and an adipose cis-eQTL linking the T2D GWAS SNP to CENPW expression.    383 

 384 

To define the seed-genes for subsequent PPI analyses, we gathered the sets of genes that, 385 

after ranking the transcripts for each locus by decreasing PCS, cumulatively accounted for at 386 

least 70% of the candidacy score for each locus. For example, at the TP53INP1 locus, where 387 

the gene-specific PCSs range from 0.01 to 0.16 across a total of 17 mapped genes, the seed-388 

gene set includes the first six (S4 Fig). This filter identified a total of 451 positional 389 

candidates across the loci, reducing the median number of genes per locus from 19 to 6 (S4 390 

Fig). This filtering mostly removes genes with low PCS values: the proportion of genes with 391 

PCS<0.05 falls from 71% to 12%, while most genes with PCS>0.1 or >0.2 are retained (S3 392 

Fig). 393 

 394 

This prioritisation process ensures that genes with the strongest combined causal evidence 395 

are favoured for network modelling, resulting in sets of seed genes that are more extensive 396 
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than selection based on proximity alone (such as “nearest gene” approaches that seek to 397 

generate networks from only the genes mapping closest to the lead variants) but smaller 398 

than those which consider all regional genes of equal weight (“all gene” approaches). Note 399 

that our strategy does not require complete ascertainment of all true causal genes within 400 

this set of 451 genes: true effector genes excluded from the prioritised set of 451 genes (e.g. 401 

because they map more distal to the lead variant than 500kb) remain available for 402 

“discovery” through the network modelling described below. 403 

 404 

Building a T2D-relevant protein-protein interactome 405 
 406 
We set out to test whether this list of prioritised candidates could be used to characterise 407 

the functional relationships between genes (and proteins) implicated in T2D pathogenesis. 408 

Because the PCS scores used to prioritise the genes already incorporated (explicitly or 409 

otherwise) diverse types of functional and expression data, biasing any assessment of 410 

connectivity in these domains, we focused the network analysis around protein-protein 411 

interaction (PPI) data. To do so, we projected these 451 genes onto externally-derived, 412 

empirically-driven PPI resources (InWeb3) [19, 20] using an established network modelling 413 

strategy (the Asymmetric Prize-Collecting Steiner Tree (APCST)) (Fig1; Methods). In this 414 

analysis, the 451 positional candidates represent “seed” nodes which are used by the APCST 415 

algorithm to generate PPI networks which seek (with appropriate penalties to prevent 416 

frivolous propagation) to connect as many seed nodes as possible to each other, either 417 

directly, or using other (non-seed) proteins as links (“linking” nodes). The network topology 418 

is dependent only on the PCS values of the “seed” genes which are carried forward as 419 

weights into the APCST analysis, the confidence scores for each of the empirical PPI 420 
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interactions in InWeb3, and the beta value used to tune the overall size of the PPI network 421 

generated (see Methods). 422 

 423 

We operationalised the PPI network as follows (see Methods). Using each “seed” gene in 424 

turn, we used InWeb3 data to generate a PPI network that maximised the connectivity to 425 

other seed genes within the constraints of the APCST model. Of the 451 seed genes, 98 426 

failed to produce a network exceeding 10 nodes. The remaining 353 networks had a median 427 

of 110 seed and 45 linking nodes and were combined into an ensemble network, which was 428 

again projected into the InWeb3 interactome to recover missing connections between 429 

nodes. The final network contained 705 nodes (431 seed nodes, 274 linking nodes) and 430 

2678 interactions (Fig 2). Based on random networks generated with the same algorithm 431 

(see Methods), 80% of the linking nodes have a specificity for membership of the final 432 

network exceeding 75%, indicating that these linking nodes do not simply reflect generic 433 

hubs in PPI space (S2 Fig).  434 

 435 

Figure 2 APCST final network. The final PPI network generated from the T2D GWAS interval 436 
genes includes 431 seed nodes and 274 linking nodes connected by 2,678 interactions. We 437 
divided this network into 20 sub-networks (communities) using a community clustering 438 
algorithm that maximizes network modularity (33), and highlighted enrichment of specific 439 
biological processes contained within these based on Gene Ontology terms and REACTOME 440 
pathways. Coloured nodes represent seed nodes, whereas grey nodes represent linking 441 
nodes.  442 
 443 
 444 
The T2D PPI network is enriched for T2D associations 445 

 446 
If the final network truly provides novel insights into the functional relationships between 447 

genes thought to be mediating T2D predisposition, we reasoned that the “linking” genes 448 

(those brought into the network purely on the basis of external data indicating their 449 
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protein-level interaction with seed genes) should be enriched for other seed gene 450 

characteristics. To avoid circularity arising from validation using data types that had 451 

contributed to the generation of the original PCS weights, including measures of gene 452 

function (eg GO, KEGG) or RNA expression data, we turned to T2D GWAS data, looking for 453 

evidence that the genes encoding the linking proteins were themselves enriched for T2D-454 

association signals. For this, we used T2D-association data from a set of ~150,000 European 455 

T2D case-control subjects imputed to 1000 Genomes [6]. Briefly, the linking nodes were 456 

mapped to gene-wise association p-values generated from the GWAS results using PASCAL 457 

[32]. The significance of the collective enrichment of these gene-wise p-values was obtained 458 

by permuting the observed set of linking nodes with equivalent sets of “random” nodes 459 

from the InWeb3 database, matched for binding degrees (see Methods). To minimise the 460 

prospects of picking up false signals arising from the combination of local LD and the non-461 

random genomic location of functionally-related genes, we excluded all genes from the 462 

1Mb-window around the 101 lead variants from these analyses.  463 

 464 

Compared to the distribution of scores in the permuted background, the gene-wise p-values 465 

for linking genes in the empirical reconstructed network demonstrated significant 466 

enrichment of T2D association (p=0.0014). To confirm that this enrichment was specific to 467 

T2D, we repeated the analysis, retaining the same PPI final network, but instead using 468 

GWAS data (and PASCAL-derived gene-wise p-values) from 33 different traits across a wide 469 

range of disease areas. The only other traits displaying evidence of GWAS enrichment within 470 

the linking nodes of the T2D PPI network were those for anthropometric traits with known 471 

relevance to T2D pathophysiology (S5 Fig). 472 

 473 
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To gain insights into how the linking nodes of our final network contribute to T2D biology, 474 

we used the DisGeNET database [37], which collates gene-disease information from public 475 

data as well as from literature via natural language processing tools. We focused on the 274 476 

linking nodes included in our model to avoid circularity arising from using the seeds, and 477 

identified 92 (~33%) with known links to T2D (S2 Table). Examples include: (a) NEUROD1 478 

which encodes a transcription factor that is involved in the development of the endocrine 479 

cell lineage and has been implicated in monogenic diabetes [38]; (b) PRKCB involved in 480 

insulin resistance [39], and (c) GNAS, implicated in beta-cell proliferation [40]. For this last 481 

gene, mice knockouts have been shown to produce phenotypes concordant with diabetes 482 

[41]. These examples demonstrate the potential of these analyses to draw in “linking” nodes 483 

as related to T2D even when they are not located within genome-wide association signals. 484 

 485 

The T2D PPI network captures biological processes relevant to disease pathogenesis  486 
 487 
To increase biological interpretability, we next sought to split the large final PPI network of 488 

705 nodes into smaller sub-networks of closely-interacting proteins (“communities”). Using 489 

the algorithm proposed by [33], we identified 18 such communities (each containing 490 

between 2 and 186 nodes) (Fig 2). We performed enrichment analyses on each community 491 

using GO and REACTOME datasets, this time including both seed and linking nodes. We 492 

observed that the individual sub-networks were enriched for processes including “glucose 493 

homeostasis” and “insulin receptor signalling cascade” (sub-network 1), “Wnt” and “NIK/NF-494 

kappaB signalling pathways” and “cellular response to stress” (subnetwork 2), “COPII vesicle 495 

coating” and “Wnt ligand biogenesis and trafficking” (sub-network 3), “regulation of insulin 496 

secretion” (sub-network 8), and “glucagon signalling in metabolic regulation” (sub-network 497 

12) (Fig 2, S3 Table). This pattern of functional enrichment is broadly consistent with 498 
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existing knowledge regarding aspects of T2D pathogenesis [42-44]. We saw no evidence in 499 

support of certain processes that have been proposed as contributors to T2D pathogenesis 500 

such as mitochondrial function, or oxidative phosphorylation [45, 46], in line with the 501 

paucity of evidence linking these processes to T2D risk in standard gene-set enrichment 502 

analyses [4, 21]. 503 

 504 

Information on tissue-specificity enhances the model 505 
 506 
The APCST model described above was constructed from a generic, tissue-agnostic PPI 507 

network. As a result, it features edges that, whilst they may be supported by the empirical 508 

data used to generate the InWeb3 database, are unlikely to be pathophysiologically 509 

relevant, due to mutually-exclusive tissue-specific expression patterns. We hypothesised 510 

that the use of tissue-specific interactomes, focused on T2D-relevant tissues, would allow us 511 

to refine the reconstructed PPI network, and might enhance the GWAS enrichment signal. In 512 

the absence of empirical PPI data for all relevant tissues, we generated these tissue-specific 513 

PPI networks by filtering on RNA transcript abundance. Starting from the generic final APCST 514 

network, we removed, for each tissue, all nodes (and their corresponding edges) with little 515 

or no transcriptional activity (see Methods). In all, we generated tissue-specific PPI 516 

networks, using RNA-Seq data sourced from 46 different tissues, 45 (including fat, liver and 517 

skeletal muscle) from GTEx (v7) [24][www.gtexportal.org] (median number of individuals = 518 

235) together with a set of  human islet RNA-seq data (n=118) [11], which had been 519 

reprocessed through a GTEx-aligned pipeline.  520 

 521 

We then repeated the T2D GWAS signal enrichment analysis (“linking” nodes only; 100,000 522 

permutations) across each of these 46 tissue-specific PPI networks. We detected broad 523 
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enrichment for T2D association in linking nodes across many of these tissue-specific 524 

networks: this likely reflects the fact that these tissue-specific networks remain highly 525 

overlapping (S6 Fig). Nonetheless, with the exception of whole blood, the strongest 526 

enrichment signal for T2D GWAS data was observed in the islet-specific PPI network (Fig 3). 527 

This enrichment was less significant (p=0.019) than that observed in the full network 528 

(p=0.0014), but this, at least in part, reflects the reduction in the number of linking nodes in 529 

the islet-specific network (from 274 to 229). Other tissues implicated in T2D pathogenesis 530 

such as adipose, skeletal muscle or liver generated more limited evidence of enrichment (Fig 531 

3). This pattern of enrichment (favoring islets, and to a lesser degree, adipose) mirrors 532 

equivalent observations for other tissue-specific annotations (including cis-eQTL signals and 533 

active enhancers) with respect to T2D association data [10, 11]. 534 

 535 

Figure 3. GWAS signal enrichment in tissue-specific interactomes. RNA-Seq data was used 536 
to filter the overall InWeb3 network and generate in silico tissue-specific networks that 537 
maximise connectivity between GWAS interval genes. Linking nodes within these networks 538 
were then tested for enrichment for GWAS signals using a permutation scheme. Each dot in 539 
the figure depicts the –log10 p-value for enrichment for signals in a given GWAS dataset, for 540 
each of the 46 tissues. Dot colors reflect the GWAS phenotypes with T2D in the larger red 541 
color. The dotted red line represents the nominal value of significance (p=0.05). Islet 542 
showed the second strongest enrichment signal for T2D.  543 
 544 

Further enhancement of model using GWAS locus subsets 545 
 546 
To further refine the analysis, we took account of the multi-organ nature of T2D and, 547 

specifically, of evidence that it is possible, using patterns of association across T2D-related 548 

quantitative traits such as BMI, lipids and insulin levels, to define subsets of T2D GWAS loci 549 

which impact primarily on insulin secretion and those that perturb insulin action [47-49]. 550 

We reasoned that the former would be expected to show preferential enrichment within 551 

the islet-filtered PPI network. Accordingly, we built APCST networks (both generic and 552 
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filtered for expression in islets exactly as above) formed from the sets of high-PCS seed 553 

genes mapping to each of seven T2D GWAS locus subsets defined in two recent publications 554 

[48], [49]. 555 

 556 

In both the islet-specific (Fig 4) and the generic network (S7 Fig), the strongest signals for 557 

GWAS enrichment were seen for loci in the three subsets (beta-cell [BC] in [48]; acute 558 

insulin response [AIR] and peak insulin response in [49]) comprised of T2D GWAS loci which 559 

influence T2D risk primarily through a detrimental effect on insulin secretion (Fig 4; S6 Fig). 560 

In particular, there was striking enrichment in the islet-specific PPI network for linking nodes 561 

in analyses of the BC (p=3.9x10
-5

) and AIR (p=1.9x10
-4

) T2D GWAS locus subsets.  562 

 563 

Figure 4. GWAS signal enrichment in islet-specific network derived from T2D GWAs 564 
subsets. We built APCST networks filtered for islet RNA-expression for each of the subsets 565 
of T2D GWAS loci defined by shared mechanistic mediation (refs[48], [49]. Enrichment in 566 
GWAS signals for linking nodes only was tested using a permutation scheme. Each dot in the 567 
figure depicts the -log10 p-value of enrichment for association signals in a particular GWAS 568 
analysis. The results for T2D GWAS enrichment for the APCST networks built around the 569 
different T2D GWAS subsets are also represented (large red dots). The dotted red line 570 
represents nominal significance (p=0.05). The strongest enrichment for T2D GWAS data in 571 
islet-filtered PPI data is observed for subsets of loci acting through reduced insulin 572 
secretion. In the cluster hairballs for the seven T2D GWAS locus subset categories, nodes 573 
are coloured according to their PCS with grey nodes representing linking nodes. 574 
 575 

As before, we were interested to see whether this marked convergence of PPI signal (as 576 

assessed by the enrichment of T2D association signals in linking nodes) was T2D-specific. 577 

We therefore repeated the enrichment analysis using GWAS data from 33 additional traits. 578 

For each trait, we took the APCST networks generated using the seven T2D locus subsets 579 

and assessed the “linking” nodes in those networks with respect to enrichment for 580 

respective gene-wise association p-values. We found broad levels of enrichment for 581 
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association signals for T2D-related phenotypes including (quantitative) glycemic traits, lipid 582 

levels, anthropometric and cardiovascular traits, which are consistent with known GWAS 583 

signal overlap. However, we saw very limited enrichment for other (non-diabetes related) 584 

traits. Furthermore, the patterns of enrichment were consistent with underlying 585 

physiological expectation: GWAS enrichment for anthropometric and lipid phenotypes was 586 

most marked in the APCST networks generated from the insulin-resistant subset of T2D loci 587 

(category “insulin response” in [48]), whilst T2D remained the most enriched phenotype for 588 

the subsets related to insulin secretion (Fig 4).  589 

 590 

These analyses demonstrated that parallel efforts to refine the phenotypic impact of T2D 591 

GWAS loci, and the tissue-specificity of the underlying PPI dataset used to generate the 592 

APCST network, resulted in progressive, biologically-appropriate, improvement of the 593 

enrichment signal observed at the “non-seed” proteins represented within the network.  594 

 595 

Biological insights  596 

 597 
To better understand the biological function of the highly-enriched PPI network generated 598 

by the intersection of islet-specific expression, and the subset of T2D GWAS loci acting 599 

through reduced islet function (henceforth, the “islet network”), we performed a Gene Set 600 

enrichment analysis using GO and REACTOME terms (S4 Table). Captured pathways 601 

included well-known biological processes of “glucose homeostasis” (p =1.5x10
-4

), 602 

“regulation of WNT signalling pathway” (p=8.9x10
-3

), “response to insulin” (p=6.2x10
-4

), and 603 

“pancreas development” (p=3.0x10
-5

).  604 

 605 
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This islet network included many “seed” genes with a high T2D PCS score (Fig 4) including 606 

SOX4 ([PCS=0.62] at the locus usually named for CDKAL1), and ATXN7 ([PCS=0.57] at the 607 

locus named for ADAMTS9). Some of the loci (e.g. TLE4, CAGE1 and GCK) are represented by 608 

a single “seed” because the PCS for the highest-ranking gene exceeded 0.70. At other loci, 609 

this islet network does not include the gene with the highest PCS score for the respective 610 

GWAS signal, but instead features an alternative gene from the same locus on the basis of 611 

its better connectivity within the network. Examples such as the gene TBS [PCS=0.21] at the 612 

ZBED3 locus, and THRB [PCS=0.43] at the UBE2E2 locus, demonstrate how the PPI data 613 

provides information additional to that used to derive the PCS.  614 

 615 

In addition, several of the linking nodes introduced into this islet network through their PPI 616 

connections represent interesting candidates for a role in T2D pathogenesis. Cyclin-617 

dependent kinase 2 (CDK2), for example, has been shown to influence beta-cell mass in a 618 

compensatory mechanism related to age and diet-induced stress, connecting beta-cell 619 

dysfunction and progressive beta-cell mass deterioration [50]; YHWAG is a member of the 620 

14-3-3 family, known to be signalling hubs for beta-cell survival [51]; and disruption of 621 

SMAD4 drives islet hypertrophy [52]. 622 

 623 

Discussion 624 

In this study, we set out to overcome two challenges that have impeded efforts to 625 

synthesise the biological information that is captured in the growing number of association 626 

signals emerging from GWAS studies. In the case of type 2 diabetes, for example, there are 627 

now well over a hundred independent common variant signals [6, 21], but most of these 628 
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map to regulatory sequence, and the molecular mechanisms whereby these, individually 629 

and/or collectively, contribute to differences in T2D predisposition remain largely 630 

unresolved. A key question, of direct relevance to the opportunities for translational use of 631 

this information, is the extent to which, as the number of loci expands, there will be 632 

“saturation” or “convergence” of the biological mechanisms through which they operate, or 633 

whether, on the contrary, the range of networks and pathways implicated will continue to 634 

proliferate.  635 

 636 

The first challenge concerns the identification of the effector transcripts through which the 637 

T2D predisposition effects at each of the GWAS signals (most obviously those that are 638 

regulatory) are mediated. We approached this challenge by integrating, for each of the 639 

genes within each of the GWAS signals, two types of data, one based around the fine-640 

mapping of the causal variant, and the use of cis-eQTL data (in the case of regulatory 641 

variants) or direct coding variant inference to highlight the most likely effectors, the other 642 

making use of diverse sources of biological information concerning the candidate effector 643 

genes and their protein products. Using this framework, we were able to assign candidacy 644 

scores to each regional gene, and then to deploy these scores as summaries of diverse 645 

sources of data that could be propagated into subsequent network analyses. We recognise 646 

that, given the sparse nature of the data used, not all such candidacy assignments will be 647 

accurate. However, these scores provide a principled and objective way of synthesising 648 

current knowledge, and the framework allows for iterative improvements in candidacy 649 

assignments as additional sources of relevant data become available. These are likely for 650 

example, to include further refinements in fine-mapping, additional links from associated 651 

variants to their effectors arising from chromatin conformation analyses, detection of rare 652 
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coding variant signals through exome sequencing, and genome-wide screens of transcript 653 

function.   654 

 655 

The second challenge relates to the objective evaluation of the extent to which the 656 

strongest positional candidates at these GWAS loci occupy overlapping biological space. 657 

Standard approaches to network analysis applied to GWAS data – such as gene-set 658 

enrichment [32], or co-expression analyses [53] – were not an option for this study since 659 

source data relevant to these had already been factored into the assessments of positional 660 

candidacy. Instead, we focused on the relationships between positional candidates as 661 

revealed by protein-protein interaction data, which we considered to be independent of the 662 

data in the earlier stages. We used the enrichment of T2D association signals in linking 663 

nodes (i.e. proteins included in the network which did not map to known GWAS loci) as our 664 

principal metric of network convergence.    665 

 666 

This strategy uncovered a highly-interconnected network associated with T2D, which was 667 

built around proteins involved in processes such as autophagy, lipid transport, cell growth, 668 

and insulin receptor signalling pathways. We were able to show that this signal of 669 

enrichment was enhanced when we constrained the generic PPI network to reflect only 670 

genes expressed in pancreatic islets, and, concomitantly, limited the set of GWAS loci to 671 

those at which the T2D predisposition was mediated by defective islet function. These 672 

analyses reinforce the importance of the pancreatic islet as a critical tissue for the 673 

development of T2D, and highlight multiple proteins (both those that map within GWAS 674 

loci, and those that fall outside) that are represented within this core islet network. These 675 

findings provide compelling hypotheses that can be explored further through direct 676 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2018. ; https://doi.org/10.1101/350181doi: bioRxiv preprint 

https://doi.org/10.1101/350181
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28

experimental study, and also highlight the need to generate tissue-specific protein-protein 677 

interaction data. They also provide evidence to support a convergence of the mechanisms 678 

mediating predisposition across diverse T2D association signals.   679 

 680 

Finally, these analyses demonstrate a valuable approach for the interrogation of large-scale 681 

GWAS data to capture biologically-plausible disease-specific processes, one which can 682 

readily be applied to other complex diseases.   683 
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Supporting information 834 

 835 
S1 Fig. Correlation between β values and PPI network size 836 

We tested different values of β to characterise the impact on network size and the 837 

percentage of seed genes represented in the network. The figure depicts the relationship 838 

between β values and both the number of nodes and the percentage of seed genes in the 839 

optimal solution generated with the Steiner tree approach. We selected as optimal a β value 840 

of 10 which produces a network of ~150 nodes which contains at least 25 % of the seed 841 

genes.  842 

 843 
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S2 Fig. Specificity of linking nodes in the final network. 844 

We assessed the specificity of each node in the final network solution by running the 845 

algorithm 100 times with the same parameter settings, but with random input data. We 846 

define specificity in this context as the complement of the percentage with which a given 847 

linking node from the final network appears in runs generated from random input data. 80% 848 

of linking nodes have a specificity exceeding 0.75, indicating that these linking nodes do not 849 

simply reflect generic hubs in PPI space. 850 

 851 

S3 Fig. Distribution of PCS and correlation of semantic and risk variant link scores. a) 852 

Distribution of PCS values for the 1,895 candidate genes (left histogram) and for the 451 853 

prioritised candidate genes (those that, for each locus contribute collectively to at least 70% 854 

of the total PCS) (right histogram); b) the number of genes per locus stratified in terms of 855 

PCS ranges for the 1,895 candidate genes (left boxplot), and the 451 prioritised candidate 856 

genes (right boxplot); c) the correlation between the semantic and risk variant link scores 857 

for the 1,895 positional candidates.  858 

 859 

S4 Fig. Summary of characteristics of PCS values.  860 

a) Distribution of gene number per locus for the 1,895 candidate genes (top histogram); and 861 

for the 451 prioritised candidate genes (bottom histogram); b) example of the distribution 862 

of PCS scores for the TP53INP1 locus under “nearest-gene” selection (top figure), “all gene” 863 

selection (median figure), and under our prioritisation method (bottom figure); c) Scatter 864 

plot displaying the correlation between maximum PCS values for each locus under “nearest 865 

gene” our prioritisation approach; d) distribution of the maximum PCS per locus with our 866 

prioritisation strategy. 867 
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 868 

S5 Fig. Enrichment of GWAS signals in the final PPI network. 869 

Using the generic PPI network generated from optimisation of seed node connectivity, we 870 

performed GWAS signal enrichment analyses (linking nodes only) for 33 GWAS datasets 871 

including T2D. Each point represents the -log10 p-value of the enrichment signal for the 872 

specified GWAS dataset. The strongest signal of enrichment was observed between the 873 

generic network and T2D (p=0.0014), with other significant associations for related 874 

phenotypes such as BMI. The dotted red line represents nominal significance (p=0.05). 875 

 876 

S6 Fig. Correlations between tissue-specific PPI networks. 877 

The composition of 46 tissue-specific networks generated by filtering the generic PPI 878 

network using tissue-specific RNA-Seq abundance data, was compared by applying a Jaccard 879 

similarity index to network nodes. Many tissue-specific networks showed high similarity 880 

with grouping by higher-level tissue of origin (e.g. brain, artery).    881 

 882 

S7 Fig. GWAS signal enrichment in the PPI-generic network derived from T2D GWAs 883 

subsets. 884 

We built APCST networks using the generic PPI network for each of the subsets of T2D 885 

GWAS loci defined by shared mechanistic mediation (refs[48], [49]). Enrichment in GWAS 886 

signals for linking nodes only was tested using a permutation scheme. Each point in the 887 

figure depicts the -log10 p-value of enrichment for association signals derived from a 888 

particular GWAS analysis. The results for T2D GWAS enrichment for APCST networks built 889 

around the different T2D GWAS subsets are also represented (large red dots). The dotted 890 

red line represents nominal significance (p=0.05). The strongest enrichment for T2D GWAS 891 
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data in the generic PPI network is observed for subsets of loci acting through reduced 892 

insulin secretion. In the cluster hairballs for the seven T2D GWAS locus subset categories, 893 

nodes are coloured according to their PCS with grey nodes representing linking nodes. 894 

Comparison with Figure 4 (the equivalent figure generated using the islet-filtered PPI 895 

network) demonstrates increased levels of enrichment for the subset of T2D loci influencing 896 

insulin secretion when filtering for nodes reflecting pancreatic islet expression. 897 

 898 

S1 Table. 101 loci and candidate genes by loci used to calculate the Positional Candidacy 899 

Score (PCS). Note: We developed a framework to score the candidacy of genes mapping to 900 

GWAS association signals which aggregated data from multiple sources. The information 901 

collected fell into two categories. First, we used regression-based approaches to link 902 

disease-associated variants to their likely effector transcripts, using a combination of 903 

variant-based annotations and expression QTL data (Link score).  Second, we scored each of 904 

the genes in these GWAS regions for disease-relevant biological function (Semantic score). 905 

We combined the two measures to generate a “positional candidacy score” (PCS) for each 906 

gene. Cumulative: cumulative frequency of PCS for each loci. References: Bibliographic 907 

references describing the loci as associated to type II diabetes.    908 

 909 

S2 Table. DisGeNet results. MeSH = Medical Subject Headings; DPI score = disease 910 

pleiotropic index; DSI score = disease specific index; GDA Score = Gene-Disease Association 911 

Score; EI = Evidence Score. 912 

 913 

S3 Table. Gene Set Enrichment Analysis by community. GOID: Gene Ontology ID;  GOTerm: 914 

Gene Ontology Term;  Note: Gene Set Enrichment (GSE) of networks and sub-networks was 915 
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performed with ClueGO using GO terms and REACTOME gene sets. The enrichment results 916 

were considered significant when bonferroni adjusted p-value < 0.05 and at least 3% of the 917 

genes contained in the tested gene set is included in the network. Gene sets were also 918 

grouped using kappa score into functional groups to improve visualization of enriched 919 

pathways. 920 

 921 

S4 Table. Gene Set Enrichment Analysis in Beta-cell Islet-specific network. GOID: Gene 922 

Ontology ID; GOTerm: Gene Ontology Term. Note: Gene Set Enrichment (GSE) of networks 923 

and sub-networkswas performed with ClueGO using GO terms and REACTOME gene sets. 924 

The enrichment results were considered significant when bonferroni adjusted p-value < 0.05 925 

and at least 3% of the genes contained in the tested gene set is included in the network. 926 

Gene sets were also grouped using kappa score into functional groups to improve 927 

visualization of enriched pathways. 928 
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