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our results, we also manually performed 30 random long-range familial searches in GEDmatch, which has 
approximately 1M individuals in their database. The results were consistent: the top match in over 90% of 
the searches shared >30cM, in 75% of the searches shared >100cM match, and 10% of the searches with 
>300cM match (Figure 1A). Since most individuals in these databases are US Caucasians, these results are 
likely to be relevant to this ethnic group. 
 
More broadly, we expect long range familial searches to return a match to virtually anyone with genetic 
databases that cover even a small fraction of the target population. This assertion relies on a population 
genetics model that takes into account the probability of sharing at least two IBD segments of >6cM and 
assuming population growth rates seen in the last 200 years in the Western world [a recent blog post by 
Doc & Coop conducted a similar analysis for GEDmatch database size21] (Supplementary Methods). 
This model has multiple simplifying assumptions such as no population structure, inbreeding, and random 
sampling of participants. However, we found that the model showed a good approximation of our 
empirical analysis by predicting that 44% of the searches will return at least a third cousin match compared 
to the observed rate of 46% for >80cM for north Europeans in our data. If considering a US Caucasian 
target, similar to the Golden State Killer, our model predicts that a database with ~5 million individuals 
(2% of this ethnic group) has a 3rd cousin match for virtually any person in this ethnic group. With 
databases of this size, over 90% of the searches will return more than one 3rd cousin, which can greatly 
improve triangulation and ~70% of searches will return a 2nd cousin or a closer relative. Notably, consumer 
genomics grows at exponential rates and covering 2% of the US Caucasians is within reach for some 3rd 
party websites in the near future. 

	
Figure 1: The performance of long range familial searches for various database size (A) The probability to find 
at least one relative for various IBD thresholds (top) using 600,000 searches of DTC tested individuals and 30 random 
GEDmatch searches (gray). Dashed line: probability of a surname inference from Y chromosome data (21). Bottom: 
95% confidence intervals (circles) and average IBD (squares) for 1st cousin once removed (1C1R) to 4th cousin once 
removed based on data in (19) (B) Population genetics theoretical model for the probability to find a match at least one 
3rd cousin or a close relative (dark red), two 3rd cousins (red), or a second cousin (blue) as a function of the database 
coverage of the population size. 	
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Figure 2: Tracing a person of interest from a long range familial match (A) The possible relatives of a match (green) 
in a database. Each square represents a potential degree of relatedness. The range corresponds to the 5%-95% percentile 
of shared IBD in cM based ref: 19. Red: relatives that could fit a bona-fida 3C match (slightly over 100cM). The fold increases 
in blue denotes the average number of relatives based on a fertility rate of 2.5 children per couple. Nie/Nep: Nice/Nephew; 
G2: Great-great; G3: Great-great-great; A/U: Aunt/Uncle (B) An example of the geographical dispersion of 3C and 2C1R 
around the matched relative. Every circle denotes 100km (C-D) The distribution of the expected age differences between 
a match and their potential relatives with a genetic distance of third cousins. Note that some relatives of a match are yet 
to be born whereas other are likely to be dead. Results in the main text report the worst case scenario in which the age 
estimator of the person of interest is in the highest bin of each histogram (red arrow) (C) The age distribution in 10yr 
resolution (D) The age distribution in one-year resolution (E) The entire flow of using demographic identifiers with a long 
range familial match to find a US person (blue: average number of people). 
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Next, we wondered on the ability to narrow down the suspect list after finding a match in a long-range 
familial search. We assumed a case where a long range familial search retuned a bona fide match to a 3rd 
cousin or genetically equivalent relative of >100cM. Furthermore, we considered a scenario where that the 
sex of the person of interest is known, their age can be estimated within a 10yr interval, and the location 
of residence can be estimated within a radius of 100miles (approximately the land area of the state of 
Maine). We used extensive genealogical records of population scale family trees22 to analyze whether basic 
demographic information has the power to quickly prune this search space (Supplementary Methods).  
 
We found that the suspect list can be quickly pruned using simple demographic information. We predict 
that a match in the scenario has a search space of ~850 relatives on average (Figure 2A). Our simulations 
suggest that geographic data will exclude on average 57% of the list (Figure 2B and Supplementary table 
2). Next, age at 10yr interval is expected to exclude another 91% of the relatives (Figure 2C), leading to 
33 individuals on average. Finally, sex information will halve the list to around 16-17 individuals on 
averages, a search space that is small enough for manual inspection. In research projects, the HIPAA 
privacy law permits the release of the year of birth, which is even a more powerful identifier (Figure 2D). 
Our analysis shows that age at a single year resolution together with geography (<100miles) and sex is 
expected to return 1-2 individuals. Figure 2E summarizes the entire process. 
 
Taken together, our lines of analyses show that long-range familial searches have the potential to re-identify 
substantial numbers of US Caucasian individuals. The main barrier is not finding a match or pruning the 
search space to trace the person of interest. Rather, successfully tracing an individual simply depends on 
the accessibility of genealogical data, their accuracy, and the determination of the investigators. Indeed, 
policymakers and the general public might be in favor of such enhanced forensic capabilities for solving 
horrendous crimes. However, we caution that the open nature of these services means that the very same 
technique can be exploited to identify genomic data of research subjects or counter-espionage activities by 
foreign adversaries.  
 
We propose a technical measure that can mitigate some of the risks and restore control to data custodians 
(Supplementary figure 2). The collection and processing methods of traditional DTC providers are 
geared towards a large amount of saliva or buccal cells and not to the minute quantities of DNA and a 
variety of tissue of origin common to crime scene evidence.  Therefore, forensic long-term familial 
searches have so far used special labs to develop the raw genotype data and had to render the data to 
mimic the format of regular DTC providers in order to be uploaded to third-party services. In our 
proposal, DTC providers will add cryptographic signatures to the header of the text file containing raw 
data available to their customers. Each supplier will use a secret private key for signing the data and will 
make the public key available at a known Internet address. This way, third-party services will be able to 
authenticate that a raw genotyping file was created by a valid DTC supplier without any modification and 
distinguish between valid sources and questionable sources. In case of a failure to validate the file, the 3rd 
party service can either reject the file, allow the DNA profile to be found but not to initiate a search, or 
quarantine the file until some reassurance about its origin is provided. Of course, on a case-by-case basis, 
third-party services can cooperate with law enforcement and allow the search as opposed to the current 
situation in which such searches are conducted unilaterally. Similarly, this approach can also prevent 
exploiting long-range familial searches to re-identify research subjects.  
 
To facilitate the adoption of our proposal, we provide a source code (under the free MIT license) that can 
sign and verify the raw genotype files and relies on a well-known digital signature scheme23. Importantly, 
our software does not assert or recommend any list of suppliers. Any lab that produces raw genotype files 
is welcome to use this scheme and any third-party provider should decide independently which list of 
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suppliers they want to support. We believe that this technical approach, if adopted, can quickly mitigate 
some of the risks compared to legislation that usually takes a considerable amount of time24. 
 
The rise of long-range familial searches also has implications for human subject research. The U.S. 
Department of Health and Human has recently rejected proposals to include whole genome sequencing 
as identifiable information in the Revised Common Rule but implemented a mechanism to evaluate the 
scope of identifiable private information based on new technological developments25. The growing success 
of long-range familial searches shows that even simpler types of genotypic information, such as genome-
wide genotyping arrays, can be used to identify individuals with high success rates. These rates will grow 
in the near future due to the immense interest in consumer genomics. These developments will further 
challenge the status quo regarding the identifiability of DNA data of human subjects and may require the 
developments of new policy measures to further protect these datasets. 
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Supplementary Information for 

Re-identification of genomic data  
using long range familial searches 

Yaniv Erlich, Tal Shor, Shai Carmi, Itsik Pe’er 
 
Supplementary Methods 
1. Measure shared IBD with a subset of the MyHeritage database 
The MyHeritage database mainly consists of individuals that were tested with the MyHeritage DNA product. 

Briefly, individuals swab the inner side of their cheeks using a sterile absorbent tipped applicator (HydraFlock). 

After sampling DNA on the inner side of the cheeks, the participant places the tip of the applicator in a vial 

that is filled with a standard lysis buffer. The DNA is transferred to a CLIA certified lab, where is genotyped 

with an Illumina OmniExpress genome-wide genotyping array that contains 700,000 SNPs. Another route for 

participants to enter the database is by uploading their raw genotype files from other DTC companies. 

Currently, the website supports uploads from 23andMe (v1-v4 kits), Ancestry (all versions), and FTDNA (all 

versions). All participants have agreed to the MyHeritage’s Terms and Conditions that permits genetic analysis 

of their data. 

 

To measure the probability of finding a relative above a certain shared IBD, we took the results from the 

standard DNA processing pipeline of MyHeritage, which lists all IBD segments above 6cM for pairs of 

individuals. For this study, we used 600,000 samples, which is a subset of the MyHeritage database. The IBD 

segments of this subset of samples are stored in a special research database in a de-identified format that is 

capable of fast computing and represent the DNA data the company had in the summer of 2017.  

 

Next, we queried the database with various levels of minimal shared cM between the relatives. In our 

experience, customers tend to purchase more than one kit and hand the other kit to a close family member. To 

mitigate ascertainment bias, we deliberately excluded all pairs of individuals above 700cM that are likely to be 

first cousins or closer relatives. As the service also offers individuals to document their family trees, it is often 

possible to find known genealogical relationships between IBD matches. To further reduce potential 

ascertainment biases, we excluded pairs of relatives with known genealogical paths of up to first cousins or 

relationships with similar genetic distance such as grandparents. Finally, we queried the database with thresholds 

growing from 30cM to 600cM and counted the number of individuals with at least one match. 
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To calculate the genetic ethnicity of each user, we used the standard results of the MyHeritage ethnicity pipeline. 

This pipeline reports 42 possible ethnicities based on a reference dataset of over 5000 samples collected from 

MH participants that consented for this process and presented homogenous ethnicity as reported by the place 

of births of their ancestors. For the purpose of this study, we assigned each ethnicity to eight coarse sub-

continental regions (Supplementary table 2). 

 

2. Measure shared IBD with the GEDmatch database. 

GEDmatch employs a unique model where each user is allowed to search any kit number in their database 

using the “One-to-many DNA comparison” tool. Importantly, the raw DNA data of the kit is not available to 

the user. However, the website does allow users to view a list of matches of any other kit that opted-in to the 

“One-to-many DNA comparison” tool. The website sorts the list of matches by the total shared IBD and 

includes key details about the match including the contact information of the user that uploaded the matched 

kit and in some cases also pedigree information.  

 

We manually viewed the match lists of 30 kit numbers using the “One-to-many DNA comparison” tool. We 

selected the default parameters that requires IBD matches to be at least 7cM long. The kit numbers were 

selected by a random number generator to avoid potential biases. For each match list, we examined the total 

IBD of the top match. If the match was over 700cM, we excluded it from the list, similar to the exclusion 

process with the MyHeritage data described above. Finally, we examined the top 30 results and filtered the list 

according to various cM thresholds, which gave the results reported in the main text. 

 

3. Population genetic theoretic calculation of long range familial searches 

	

The problem 

Consider a database of genotyped individuals from a defined population and the DNA of a person of interest, 

called the target. We would like to identify the target by finding his/her relatives in the database. We wonder 

about the probability to find a relative given the population size, the database size, and the matching parameters. 

The model 

• We assume a monogamous Wright-Fisher model, similar to that of Shchur and Nielsen 26. In the current 

generation, the population has 𝑁 males and 𝑁 females, organized in 𝑁 mating pairs (couples). Each 

individual in the current generation chooses its parents (i.e., a mating pair) randomly out of all mating pairs 

in the previous generation. 
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• The number of children per mating pair is 𝑟 > 2. Thus, the population size at generation 𝑔 before the 

present is 𝑁 𝑔 = 𝑁 𝑟/2 (). 

• Individuals are diploid and we consider only the autosomal genome. 

• The database has 𝑅 individuals. 

• The target individual is compared to all individuals in the database. We only consider relationships up to 

𝑔+,--cousins. For example, 1-cousins are siblings, 2-cousins are first cousins, etc. All cousins/siblings are 

full. 

• If the target is a degree 𝑔 ≤ 𝑔+,- relative of an individual in the database, their (diploid) genomes are 

compared, and identical-by-descent (IBD) segments are identified. We assume that detectable segments 

must be of length ≥ 𝑚 (in Morgans) and that to confidently detect the relationship (a "match"), we must 

observe at least 𝑠 such segments. 

• The number of matches between the target and the individuals in database is counted. If we have more than 

𝑡 matches, we declare that the target individual has been "identified". Typically, we simply assume t=1, as 

in the Golden State Killer case. 

Derivation 

The probability of a shared mating pair between the target and a single reference sample 

Consider two individuals: the target and a single individual in the database. 𝑔 generations before the present, 

each one of them has 2)(3 ancestral mating pairs (containing 2) ancestral individuals). For example, each 

individual has one pair of parents (𝑔 = 1) and two pairs of grandparents (𝑔 = 2). For large 𝑁(𝑔) (2) ≪

𝑁 𝑔 ), the probability that the two individuals share an ancestral mating pair is approximated by: 

(1) 𝑃 shared mating pair at	𝑔 ≈ ;<=>;<=>

? )
= ;<=@

? )
 

Each ancestral mating pair of the target has a probability of 1 − 2)(3/𝑁 𝑔  not to share any ancestor with 

the database individual. The probability of all ancestral mating pairs of the target are not shared with the 

reference is 1 − 2)(3/𝑁 𝑔
;<=>

, and the probability that at least one is shared is 1 − 1 −

2)(3/𝑁 𝑔
;<=>

. Eq. (1) is the limit when 2)(3 ≪ 𝑁 𝑔 . We ignore the possibility of sharing more than one 

ancestral mating pair, assuming, similarly, that 2;) ≪ 𝑁 𝑔 . 

The probability to share an ancestral mating-pair for the first time at generation 𝑔 is approximately 

(2) 𝑃 first sharing mating pair at 𝑔 ≈ ;@<=@

? )
1 − ;@<B=@

? )B
)(3
)BC3  
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The probability of a match given a shared mating pair 

Next, we determine the probability that the target and his/her relative via ancestral mating pair g generation 

above are identified as a match using genetic data. To this end, we calculate the probability that they share at 

least 𝑠 IBD segments longer than 𝑚. 

We use a simple approximation that the genome can be broken into effectively independent blocks, each of 

which is inherited independently. If the ancestors have lived 𝑔 generations ago, the two individuals are separated 

by 2𝑔 meioses. Given that the total genome length is roughly 𝐿 = 35Morgan, there are on average 2𝑔𝐿 ≈

70𝑔 recombination events between the two individuals. Since blocks can also be bounded by chromosome 

ends, a rough approximation for the number of blocks is 2𝐿𝑔 + 22, as in ref. 27. 

In each block, a pair of individuals share one ancestral mating pair out of 2)(3. The probability that the relevant 

lineage in each individual descends from the shared mating pair is 1/2)(; (for 𝑔 > 1), leading to a probability 

of 1/2;)(J that both lineages descend from the shared mating pair. Note that this is taking into account the 

fact that we can detect IBD sharing between any of the two chromosomes in one individual and any of the two 

chromosomes in the other. Thus, we can go "up the tree" in the right direction towards the shared ancestors 

with a probability of 1. 

The individuals in the shared mating pair have four chromosomes in total. For any one of them chosen by the 

target, it will be chosen by the reference with probability 1/4. Thus, the probability of sharing the same 

chromosome is 1/4 ⋅ 1/2;)(J = 1/2;)(;. For 𝑔 = 1, the probability comes out as 1, which is a reasonable 

approximation given that full siblings share one chromosome in about half of their genomes, and two 

chromosomes in a quarter of it. 

Next, we determine that probability of the IBD segment to be sufficiently long given that the pair share an 

ancestral chromosome. The length of the segment is exponential with rate 2𝑔 (with length measured in 

Morgans), namely, if 𝑥 is the segment length, 𝑃 𝑥 = 2𝑔𝑒(;)O . The probability of the segment length to 

exceed 𝑚 is 2𝑔𝑒(;)O𝑑𝑥Q
R = 𝑒(;R). Thus, in each block, the probability of sharing a detectable IBD 

segment is 

(3) 𝑃 IBD = S=@T<

;@<=@
 

 

Assuming that blocks are independent, the probability to share 𝑘 blocks is binomial with 𝑛 = 2𝐿𝑔 + 22 (the 

number of blocks) and 𝑝 = 𝑃(IBD) above. To declare a match, we need at least 𝑠 segments. Thus, given a 

shared mating pair 𝑔 generations ago, the probability to observe a match is 
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(4) 𝑃 match 𝑔 = 1 − Bin 𝑘; 2𝐿𝑔 + 22, S
=@T<

;@<=@
Z(3
[C\  

The number of matches to the database 

We approximate the probability of a match by assuming that the set of ancestors for all individuals in the 

database are non-overlapping. This assumption was recently demonstrated by Shchur and Nielsen26 for a 

constant population when 𝑁 → ∞ and 𝑅/𝑁 is constant.  Thus, the probability of a match with one specific 

individual in the database can be obtained simply by summing Eqs. (2) and (4) over all 𝑔, 

(5) 𝑃 match = 1 − ;@<B=@

? )B
)(3
)BC3

;@<=@

? )
𝑃 match 𝑔)max

)C3  

Finally, to identify an individual, we need to find at least 𝑡 matches in the database. If matching is approximately 

independent across the individuals in the database, then the probability of identification is binomial, with 𝑛 =

𝑅 and 𝑝 = 𝑃(match) from Eq. (5). Thus, 

(6) 𝑃 identify = 1 − Bin 𝑘; 𝑅, 𝑃 match_(3
[C\  

Eq. (6) is our final expression. 

R code 
genome_size = 35 
num_chrs = 22 
 
p_match = function(g,m,min_num_seg) 
{ 
  m = m/100 
  f = exp(-2*g*m)/2^(2*g-2) 
  pr = 1 - pbinom(min_num_seg-1,num_chrs+genome_size*2*g,f) 
  return(pr) 
} 
 
# Ks: A vector of database sizes 
# maxg: Maximum relatedness to consider (1: sibs, 2: 1st cousins, 3: 
2nd cousins...) 
# N: Population size 
# r: Mean number of children per mating pair (=per family), so 2 for a 
constant size population, >2 for exapanding population, <1 for 
contracting population 
# m: Maximum length in cM of a detectable segment 
# min_num_seg: Minimum number of segments to declare a match 
# min_num_rel: Minimum number of detected matches (=relatives)  
# to declare success of identification 
coverage = function(Ks,maxg,N,r,m,min_num_seg,min_num_rel) 
{ 
  pr_succ = length(Ks) 
  for (i in 1:length(Ks)) 
  { 
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    K = Ks[i] 
    
    p_no_coal = numeric(maxg) 
    p_coal = numeric(maxg) 
    Ng = N 
    tot_p = 0 
    for (g in 1:maxg) 
    { 
      Ng = Ng/(r/2) 
      f = 2^(2*g-2)/Ng 
      if (g>1) { 
        p_coal[g] = p_no_coal[g-1] * f 
        p_no_coal[g] = p_no_coal[g-1] * (1-f) 
      } else { 
        p_coal[g] = f 
        p_no_coal[g] = 1-f 
      } 
    
      tot_p = tot_p + p_coal[g] * p_match(g,m,min_num_seg) 
    } 
    pr_succ[i] = 1 - pbinom(min_num_rel-1,K,tot_p) 
  } 
  return(pr_succ)   
} 
 

	
	
	
	
To produce Figure 1B, we the following parameters with the R code above: 
 

N = 250000000 #population size 
num_K = 10000 #number of data points between 0 to 1 
m = 6 #minimal cM 
min_num_seg = 2 #number of segments 
r = 2.5 #number of kids per couple 
Ks = round(seq(from=N/num_K,to=N,length.out=num_K)) 
c3 = coverage(Ks, maxg=4,N,r ,m, min_num_seg, min_num_rel=1) # dark red line 
c3_2ma = coverage(Ks,maxg=4,N,r,m,min_num_seg,min_num_rel=2) # red line 
c2 = coverage(Ks,maxg=3,N,r,m,min_num_seg=,min_num_rel=1) #blue line 
 

 

4. Pruning the search space with genealogical identifiers 

To find the power of demographic information to prune the search space, we turned to our previous study 

with population scale family trees 22. This dataset represents a collection of large scale family trees and has been 

subject to extensive types of validation, including accuracy assessment using genetic data and concordance 

analysis with government-based demographic data.   
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We focused on the following types of relatives: 1C2R, 2C1R, 3C, 2C, and 2C2R types as these genealogical 

relationships are typical for genetic distances of ~100cM. We did not take into account rarer types of pairs with 

similar genetic distance such as half-second cousins as these are less likely to be encountered. To estimate the 

number of individuals in each class, we assumed that each couple gives birth to 2.5 kids on average and that all 

kids reaches a fertility age similar to ref. 6. In total, we estimated that 855 relatives exist with a genetic distance 

of slightly over ~100cM. 

 

Geography 

We used our genealogical records to analyze the geographic distance between relatives. We analyzed 145,658 

pairs of relatives encompassing 1C2R, 2C1R, 3C, 2C, and 2C2R (Table S2). We considered only pairs where 

at least one individual was born in the US between 1940 to 2010.  We then calculated the geographical distance 

based on the longitudes and latitudes of their birth locations.  

 

We consider a conservative scenario in which the potential residence of the person of interest centers around 

the matched relative. When the search radius is restricted to 100miles from the match, less than 30% of all 

matching 1st cousins once removed are expected to within the search space centered around the match, whereas 

51% of all matching 2nd cousins are expected to be around this search space. 

 

After considering the number of relatives for each class and their geographical distribution, our model estimates 

that on average only 369 relatives live within 100 miles from the match. 

 

Age 

To analyze the age dispersion of pairs of relatives, we conducted extensive simulations that were further 

validated with a large set of 3rd cousins.  

 

Simulations: Genealogically, the year of birth differences between various types of cousins is expressed as three 

processes: (i) the year of birth differences of two siblings, denoted by s (ii) the sum of the parent age at birth of 

i consecutive descendants of one sib, denoted by vi (iii) the sum of the parent age at birth of j consecutive 

descendants of the other sib, denoted by uj. For example, for 2nd cousin once removed (2C1R), the difference 

is s+v3-u2. In general, for a x-cousin y-removed pair, the difference in the year of birth is s+vx-u(x-y). 

 

To simulate s, v, and u, we examined the parent age at birth of 1.74 million parent-offspring pairs that reflect 

the highest quality of our data with exact date of births and birth places. Next, we created a histogram of the 

differences and excluded a handful of event with birth year difference of less than 10 years or more than 60 

years that is likely to stem from typos of genealogists. We created a similar histogram for 870,000 pairs of full 
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siblings. To simulate an instance of vx or ux, we randomly sampled x events according to the probability mass 

function of the parent-age histogram and summed them together. To simulate an instance of s, we sampled an 

event from the probability mass function of the sibling year of birth difference histogram.   

 

We simulated 100,000 cases of each type of relative of an interest. When simulating these pairs, we took into 

account interdependencies between the generations. For example, the age difference of 1C2R was the starting 

point for the age difference of 2C1R, which then was the starting point of the age difference of 3C. We then 

calculated the density of age distribution of each class and mix them according to the number of expected 

people in each class times the probability of a person living less than 100miles from the match. The entropy of 

the histogram at 10yr bins was 3.955bits and the entropy of the 1yr histogram was 7.26bits (entropy is a good 

measure for identifiability because it describes the expected information content of a piece of information). 

 

In the highly conservative scenario, the age of the person of interest would fall under the highest bin of the 

histogram. We measured this bin for the 10yr interval and 1yr interval and reported the results in the main text. 

 

Direct analysis of a large set of relatives:  Our data also allows to measure the year of birth differences in a large 

set of known distant relatives as the geography analysis above. However, age analysis is more complicated when 

measured with recently born relatives due to ascertainment bias issues. First, the simulations above showed that 

for some types of relatives such as third cousins, the potential relative can be 70 years younger than the 

examined person, meaning that the relative is yet to be born, creating a censoring effect on our data. Second, 

in our previous studies with this dataset, we find that most individuals in our data came from the late 19th 

century due to the tendency of genealogists to document ancestors of their families. We were concerned that 

relatives ascertained from recently born individuals would disproportionally reflect these old cases and skew 

the age analysis. 

 

As an alternative, we focused on historical data rather than recent data. We ascertained 1.2 million pairs of 2nd 

cousins and 1.7 million pairs of 3rd cousins that were born between 1800 to 1910. All of these pairs had exact 

birth date data and known birth locations. We found that the differences in the year of the actual 2nd and 3rd 

cousins were relatively similar to their simulations: 

 Entropy of 

observed data 

[bits] 

Entropy of 

simulation [bits] 

2C – 1yr resolution 6.04 6.17 

2C – 10yr resolution 2.74 2.87 

3C – 1yr resolution 6.25 6.40 

3C – 10yr resolution 2.95 3.09 
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These small differences can stem from other types of ascertainment biases with the historical data or the 

resemblance between relatives that induces reproduction at similar ages. Nevertheless, the overall consistency 

indicates that the simulation captures the overall distribution of ages in this class of relatives. 
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Supplementary Figures 
 
 

 
Supplementary figure 1: The genetic ethnicity of a 36000 users in the matching database. Each 
vertical line corresponds to a person and the Y-axis reflects the ethnicity composition from 0 to 100%. 
Colors denote the main ethnic groups in this analysis. The individuals are sorted based on their inferred 
main ethnicity. 
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Supplementary figure 2: The flow of data for validating files. The chart shows how third party services 
can work together with trusted DTC suppliers in order to validate the authenticity of the data. Black: 
current flow of information. Red: added steps to authenticate the file. On the left a snippet of a raw 
genotype file after signing. 
  

Trusted DTC supplierParticipant Third party service

2. Send DNA

3. Download signed 

gentotype file

4. Upload signed gentotype file

1. Create private 
key & post public 
key

5. Get Public key

6. Public key

7. Verify signature

8. Allow participant to 

search for relatives

# This data file generated by dtcdna.com at: Nov  7 08:00:45 2019
#
# Below is a text version of your data. Fields are TAB-separated
# Each line corresponds to a single SNP.  For each SNP, we provide its identifier 
# (an rsid or an internal id), its location on the reference human genome, and the 
# genotype call oriented with respect to the plus strand on the human reference 
# sequence.     We are using reference human assembly build 37. 
# 
## signed_by=signtools 
## version=1.0 
##public_key=https:://dtcdna.com/publickey/v1/
##signature1=RZTcitAZ1bneCfURL5gsC5yRghb9fCGc1Cuz07gK+CZY=
##signature2=BWr3fUZqomECxuQEBbfJMd9qxddVkfNAUkG6G8bh==
# rsid  chromosome      position        genotype
rs3094315       1       742429  AG
rs12562034      1       758311  AG
rs3934834       1       995669  CC
rs9442372       1       1008567 GG
rs3737728       1       1011278 GG
rs11260588      1       1011521 GG
rs6687776       1       1020428 CT
rs9651273       1       1021403 GG
rs4970405       1       1038818 AG
rs12726255      1       1039813 AG
rs11807848      1       1051029 CT
rs9442373       1       1052501 AC
rs2298217       1       1054842 CT
rs4072537       1       1055159 CT
rs12145826      1       1055892 GG
rs4970357       1       1066927 AA
rs9442380       1       1077546 CC
rs7553429       1       1080420 AA
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Supplementary Tables 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplementary Table 1: The fraction of individuals in each major genetic ethnicity in the 600,000 
individuals in our dataset. 
 
  

Main DNA ethnicity Percentage 
North Europe 76.03% 
South Europe 9.55% 
West Africa 4.39% 
Ashkenazi Jewish 3.59% 
Native American 3.03% 
East Asia 1.71% 
South/West Asia 1.29% 
North Africa 0.20% 
Oceania 0.14% 
East Africa 0.05% 
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Geography 1C2E 2C1R 3C 2C2R 2C 
#cases 33974 32432 13522 58018 7712 
>100km 0.679049 0.627467 0.606567 0.664897 0.563797 
>100miles 0.5994 0.539097 0.543854 0.594746 0.489627 
>200km 0.566021 0.508263 0.522556 0.570616 0.451504 

Supplementary table 2: The probability that a relative is found outside of a 100km,100 miles, and 
200km range from a match. 
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