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ABSTRACT 

Human visual recognition activates a dense network of overlapping feedforward and 
recurrent neuronal processes, making it hard to disentangle processing in the feedforward 
from the feedback direction. Here, we used ultra-rapid serial visual presentation to 
suppress sustained activity that blurs the boundaries of processing steps, enabling us to 
resolve two distinct stages of processing with MEG multivariate pattern classification. The 
first processing stage was the rapid activation cascade of the bottom-up sweep, which 
terminated early as visual stimuli were presented at progressively faster rates. The 
second stage was the emergence of categorical information with peak latency that shifted 
later in time with progressively faster stimulus presentations, indexing time-consuming 
recurrent processing. Using MEG-fMRI fusion with representational similarity, we 
localized recurrent signals in early visual cortex. Together, our findings segregated an 
initial bottom-up sweep from subsequent feedback processing, and revealed the neural 
signature of increased recurrent processing demands for challenging viewing conditions. 

INTRODUCTION 

The human visual system interprets the external world through a cascade of visual 
processes that overlap in space and time. Visual information is transformed not only 
feedforward, as it propagates through ascending connections, but also from higher to 
lower hierarchy areas through descending feedback connections and within the same 
areas through lateral connections (Ahissar et al., 2009; Bullier, 2001; Enns and Di Lollo, 
2000; Lamme and Roelfsema, 2000; Lamme et al., 1998). This concurrent activation of a 
dense network of anatomical connections poses a critical obstacle to the reliable 
measurement of recurrent signals and their segregation from feedforward activity. As a 
result, our knowledge on the role of recurrent processes and how they interact with 
feedforward processes to solve visual recognition is still incomplete. 

Here we used an ultra-rapid serial visual presentation (ultra-RSVP) of real-world images 
to segregate early bottom-up from recurrent signals in the ventral pathway. We postulated 
that, under such rapid stimulus presentations, visual processes will degrade substantially 
by suppressing sustained neural signals that typically last hundreds of milliseconds. As a 
result, neural signals would become transient, reducing the overlap of processes in space 
and time and enabling us to disentangle distinct processing steps. Recent behavioral 
evidence exemplified the remarkable robustness of the human visual system to capture 
conceptual information in stimuli presented at similar rates (Broers et al., 2017; Evans et 
al., 2011; Potter et al., 2014). Thus the underlying neural signals, while deprived, would 
still represent brain activity required to accomplish visual object recognition. 

We recorded human MEG data while participants viewed ultra-RSVP sequences with 
rates 17 ms or 34 ms per picture. Confirming our hypothesis, the rapid presentation of 
images segregated the activation cascade of the ventral visual pathway into two 
temporally dissociable processing stages, disentangling the initial bottom-up sweep from 
subsequent processing in high-level visual cortex. Capitalizing on this dissociation, we 
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used multivariate pattern classification of MEG data to characterize the activation 
dynamics of the ventral pathway and address the following three challenges: we 
investigated how the evolution of the bottom-up sweep predicts the formation of high-
level visual representations; we sought evidence for rapid recurrent activity that facilitates 
visual recognition; and we explored whether reducing visibility with higher stimulus 
presentation rates increases recurrent processing demands. Finally, to resolve the locus 
of feedforward and feedback visual signals, we tracked the spatiotemporal dynamics with 
a MEG-fMRI fusion approach based on representational similarity (Cichy et al., 2014, 
2016a; Kriegeskorte et al., 2008). 

RESULTS 

We collected MEG data while human participants (n = 17) viewed rapid sequences of 11 
real-world images presented at 17 ms or 34 ms per picture. The middle image (6th image, 
named target) was randomly sampled from a set of 12 face images or 12 object images, 
while the remaining images (1-5 and 7-11, named masks) comprised different categories 
of objects (Fig. 1a). Participants performed a two-alternative forced choice task reporting 
whether a face was present in the sequence or not.   

Even though the image presentation was extremely rapid, participants performed the face 
detection task consistently above chance in the 17 ms per picture RSVP condition 
(sensitivity index d’ ± SEM = 1.95 ± 0.11), and with high accuracy in the 34 ms per picture 
RSVP condition (d’ ± SEM = 3.58 ± 0.16) (Fig. 1b). Behavioral performance was 
significantly different between the two conditions (n=17; two-sided signed-rank test; 
P≪0.001). 

To track how neural representations resolved stimulus information in time, we used time-
resolved multivariate pattern classification on the MEG data (Cichy and Pantazis, 2017; 
Cichy et al., 2014; Isik et al., 2014; King and Dehaene, 2014). We extracted peri-stimulus 
MEG signals from -300 ms to 900 ms (1 ms resolution) with respect to the target image 
onset. For each time point separately, we used the MEG data to classify pairwise (50% 
chance level) all 24 target images. The results of the classification (% decoding accuracy) 
were used to populate a time-resolved 24 x 24 decoding matrix indexed by the target 
images (Fig. 2a). To demonstrate the advantage of RSVP in dissociating visual processes 
against other experimental paradigms, we further computed decoding matrices in a slow 
visual presentation at 500 ms per picture, where the same 24 target images were 
presented in isolation for 500 ms with an ISI of 1 s. The entire procedure yielded 3 time-
resolved decoding matrices, one for the 17, 34, and 500 ms per picture conditions 
respectively. 

Rapid serial visual presentation disrupted the early sweep of visual activity 

To determine the time series with which individual images were discriminated by neural 
representations, we averaged all elements of the decoding matrix, resulting in a grand 
total decoding time series (Fig. 2b). First, we found that neural responses were resolved 
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at the level of individual images in all 3 viewing conditions. Second, decoding accuracies 
decreased with faster stimulus presentation rates, reflecting the challenging nature of the 
RSVP task with stimuli presented for very short times. Third, peak latencies shifted earlier 
with faster stimulus presentation rates (Fig. 2e). That is, the 500 ms per picture condition 
reached a peak at 121 ms (95% confidence interval: 102-126 ms), preceded by the 34 
ms per picture RSVP condition at 100 ms (94-107 ms), and finally the 17 ms per picture 
RSVP condition at 96 ms (93-99 ms) (all statistically different; P<0.05; two-sided sign 
permutation tests). Fourth, onset latencies shifter later with faster stimulus presentation 
rates (Fig. 2h). That is, the 500 ms per picture condition had onset at 28 ms (9-53 ms), 
followed by the 34 ms per picture RSVP condition at 64 ms (58-69 ms), and finally the 17 
ms per picture RSVP condition at 70 ms (65-77 ms) (all statistically different; P<0.05; two-
sided sign permutation tests).  

The decreased decoding accuracy combined with the increasingly early peak latency and 
increasingly late onset latency for the RSVP conditions indicate that visual activity was 
disrupted over the first 100 ms. Even though the highest levels of the visual processing 
hierarchy in humans are reached with the first 100 ms, there is little time for feedback 
connections from these areas to exert an effect (Lamme and Roelfsema, 2000). Thus, 
neural activity during the first 100 ms has been linked to the engagement of feedforward 
and local recurrent connections, rather than long-range feedback connections. In line with 
these arguments, the early peaks at 100 ms and 96 ms for the 34 ms and 17 ms per 
picture RSVP conditions, respectively, explicitly delineate the first sweep of visual activity, 
differentiating it from later neural activity that includes feedback influences from the top 
of the visual hierarchy. Further, if early decoding would only reflect feedforward activity, 
we would not expect to see onset latency differences, but we do. The fact that different 
stimulus durations have different onsets suggests that interactions with recurrent activity 
are already incorporated when the first decoding onsets emerge, arguing against the view 
that the early part of the decoding time course can be uniquely tied to feedforward alone 
(Fahrenfort et al., 2012; Lamme and Roelfsema, 2000; Ringach et al., 1997).  

Next, to investigate the generalization of our findings to any pair of images, even when 
they share categorical content, we evaluated whether our results hold to within-category 
image classification. For this, we subdivided the decoding matrix into two partitions, 
corresponding to within-face comparisons, and within-object comparisons. Averaging the 
elements of each partition separately determined the time series with which individual 
images were resolved within the subdivision of faces (Fig. 2b) and objects (Fig. 2c). We 
confirmed the generalization and reliability of our findings, as our results were similar to 
the grand total decoding time series: individual images were discriminated by neural 
responses; decoding accuracies were weaker for rapid stimulus presentations; and peak 
and onset latencies had the same ordinal relationship as in the grand total analysis (Fig. 
2fg). Peak and onset latencies for the grand total and within category comparisons are 
shown in Table 1. 
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In sum, decoding accuracies decreased with progressively shorter stimulus presentation 
times, indicating that neuronal signals encoded less stimulus information at rapid 
presentation rates. Onset latencies shifted late with shorter presentation times, indicating 
that recurrent activity exerts its influence even as the first decoding onsets emerged. 
Importantly, the progressively earlier peak with shorter presentation times indicated 
disruption of the first sweep of visual activity, thus indexing feedforward and local 
recurrent processing and segregating it in time from subsequent processing that includes 
feedback influences from high-level visual cortex. 

      

 
Figure 1 Rapid serial visual presentation (RSVP) task. (a) Experimental procedure. The stimulus 
set comprised 12 face targets, 12 object targets, and 45 masks of various objects. Participants 
viewed a RSVP sequence of 11 images, with the middle image (target) either a face or an object. 
The images were presented at a rate of 17 ms per picture or 34 ms per picture in separate trials. 
Following a delay of 0.7 - 1 s to prevent motor artifacts, subjects were prompted to respond by 
pressing a button whether they have seen a face or not. (Images shown are not examples of the 
original stimulus set due to copyright; the exact stimulus set is visualized at 
https://megrsvp.github.io . Images shown are in public domain and available at pexels.com under 
a Creative Commons Zero (CC0) license.) (b) Behavioral performance in the two RSVP 
conditions. Bars indicate d’ performance and error bars indicate SEM. Stars above each bar and 
between bars indicate significant performance and significant differences between the two 
conditions, respectively (n=17; two-sided signed-rank test; P≪0.001). 
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Figure 2 Decoding of target images from MEG signals. (a) Multivariate pattern analysis of MEG 
signals. A support vector machine (SVM) classifier learned to discriminate pairs of target images 
using MEG data at time point t. The decoding accuracies populated a 24×24 decoding matrix at 
each time point t. (Images shown are not examples of the original stimulus set due to copyright; 
see Figure 1 caption for details) (b) Time course of grand total target image decoding for the 500, 
34, and 17 ms per picture conditions. Pairwise decoding accuracies were averaged across all 
elements of the decoding matrix. Time is relative to target image onset. Color coded lines above 
plots indicate significant times. Color coded interval lines below plots indicate stimuli presentation 
times, with thick and thin lines indicating target and mask presentations. Arrows indicate peak 
latencies. (cd) Time course of within category target image decoding for faces and objects. The 
decoding matrix was divided into 2 segments for pairs of within-face and within-object 
comparisons, and the corresponding decoding accuracies were averaged. (efg) Peak latency 
times for the above target decoding time courses and corresponding 95% confidence intervals 
are depicted with bar plots and error bars, respectively. (hij) Onset latency times for the above 
decoding time courses and 95% confidence intervals. Stars above bars indicate significant 
differences between conditions. (n=16 for 500 ms per picture and n=17 for RSVP conditions; time 
courses were evaluated with one-sided sign permutation tests, cluster defining threshold P<0.05, 
and corrected significance level P<0.05; bar plots were evaluated with bootstrap tests for 95% 
confidence intervals and two-sided hypothesis tests; false discovery rate corrected at P<0.05). 

Rapid serial visual presentation delayed the emergence of categorical information 

How did the disruption of the early sweep of visual activity, reported in the previous 
section, affect the emergence of categorical information in the RSVP conditions? A 
prevalent theory posits that core object recognition is largely solved in a feedforward 
manner (DiCarlo et al., 2012; Liu et al., 2002; Serre et al., 2007; Thorpe et al., 1996). If 
this holds under rapid presentation conditions, then categorical signals would be expected 
to emerge with comparable dynamics regardless of stimulus presentation rates. However, 
opposing theories concur that feedback activity is critical for visual awareness and 
consciousness (Lamme and Roelfsema, 2000; Ahissar et al., 2009; Fahrenfort et al., 
2017, 2012). According to these theories, presenting stimuli at rapid presentation rates 
would i) afford less time for initial stimulus evidence accumulation (a process that in all 
likelihood already incorporates some local recurrent processing, as suggested by variable 
onset latencies reported in the previous section) and ii) lead to disruption of recurrent 
signals of the target stimulus due to the masking stimuli of the RSVP paradigm. These 
would be consistent with slowing down the speed and extent with which category 
information can be resolved using recurrence (Brincat and Connor, 2006; Tang and 
Kreiman, 2017).  

To differentiate between those competing theories, we computed categorical division time 
series. We divided the decoding matrix into partitions corresponding to within-category 
(face or object) and between-category stimulus comparisons separately for each of the 3 
viewing conditions (Fig. 3a). The difference of between-category minus within-category 
average decoding accuracies served as a measure of clustering by category 
membership.  
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We found that the categorical division time series resolved face versus object information 
in all 3 conditions (Fig. 3a). Consistent with the grand total decoding results, categorical 
neural representations were stronger in the 500 ms and 34 ms per picture conditions than 
the 17 ms per picture condition. Multidimensional scaling (MDS) plots (Kruskal and Wish, 
1978) at peak latencies for the 3 conditions, offering an intuitive visualization of the 
stimulus relationships, are shown in Fig. 3c. These plots revealed strong categorical 
division for the 500 ms and 34 ms per picture conditions, followed by weaker but still 
distinct categorical division in the 17 ms per picture condition. 

The peak of the categorical division time series revealed the time points at which 
categorical information was most explicitly encoded in the neural representations (DiCarlo 
and Cox, 2007). The peak latency increased as presentation rates became progressively 
faster. That is, the time series for the 500 ms per picture condition peaked at 136 ms 
(130-139 ms), followed by the 34 ms per picture RSVP at 169 ms (165-177 ms), and the 
17 ms per picture RSVP at 197 ms (184-218 ms) (all statistically different; P<0.05; two-
sided sign permutation tests) (Fig. 3b). This relationship is reverse from the peak latency 
of the first sweep of visual activity reported in the previous section, further stressing the 
existence of variable dynamics in the ventral pathway. This suggests that categorical 
information did not arise directly in a purely feedforward mode of processing, as this would 
predict comparable temporal dynamics in all conditions. Instead, it is consistent with the 
idea that recurrent interactions within the ventral stream facilitate the emergence of 
categorical information by enhancing stimulus information in challenging visual tasks 
(Brincat and Connor, 2006; Hochstein and Ahissar, 2002; Rajaei et al., 2018; Tang and 
Kreiman, 2017; Tapia and Beck, 2014).  

Taken together, our results revealed variable temporal neural dynamics for viewing 
conditions differing in presentation time. Even though the peak latency of the first sweep 
of visual activity shifted earlier with higher presentation rates, as reported in the previous 
section, the peak latency of categorical information shifted later, stretching the time 
between the abrupt end of the initial visual sweep and the emergence of categorical 
information. This inverse relationship in peak latencies discounts a feedforward cascade 
as the sole explanation for categorical representations. 
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Figure 3 Categorical information encoded in MEG signals. (a) Time course of categorical division 
depending on presentation rate. For each condition, the MEG decoding matrix was divided into 3 
segments for pairs of within-face, within-object, and between-face/object comparisons, and a 
categorical effect was estimated by contrasting the averaged decoding accuracies of the within 
from the between segments. Time is relative to target image onset. Color coded lines above plots, 
interval bars below plots, and arrows same as in Figure 2.  (b) Peak latency times for the 
categorical information time courses and 95% confidence intervals are depicted with bar plots 
and error bars, respectively. Stars above bars indicate significant differences between conditions. 
(c) The first two dimensions of multidimensional scaling (MDS) of the MEG decoding matrices are 
shown for the times of peak categorical information for the 3 conditions. (n=16 for 500 ms per 
picture and n=17 for RSVP conditions; time courses were evaluated with one-sided sign 
permutation tests, cluster defining threshold P<0.05, and corrected significance level P<0.05; bar 
plots were evaluated with bootstrap tests for 95% confidence intervals and two-sided hypothesis 
tests; false discovery rate corrected at P<0.05). 

The following figure supplements are available for figure 3: 

Figure supplement 1. Linear decoding of faces vs. objects category. For each condition and at 
each time point a SVM classifier was trained to decode object versus face trials with a leave-one-
out procedure. The shape and peaks of the time series largely match the results in Figure 3a. 
This indicates that binary image classification followed by comparison of inter- vs intra-class 
averaging (as performed in Figure 3a) is consistent with a direct classification of faces vs. objects 
(shown in supplement). The color coded lines above the curves indicate significant time points 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2018. ; https://doi.org/10.1101/350421doi: bioRxiv preprint 

https://doi.org/10.1101/350421
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

(one-sided sign permutation tests, cluster defining threshold P<0.05, and corrected significance 
level P<0.05).  

 

Table 1. Peak and onset latency of the time series for single image decoding (Fig. 2) and 
categorical division decoding (Fig. 3), with 95% confidence intervals in brackets. 

 Presentation rate Peak latency (ms) Onset latency (ms) 
Grand total 500 ms per picture 121 (102-126) 28 (9-53) 

34 ms per picture 100 (96-107) 64 (58-69) 
17 ms per picture 96 (93-99) 70 (63-76) 

Within-faces 500 ms per picture 113 (104-119) 59 (30-73) 
34 ms per picture 104 (96-109) 74 (62-81) 
17 ms per picture 98 (96-104) 86 (78-117) 

Within-objects 500 ms per picture 102 (93-102) 48 (10-55) 
34 ms per picture 97 (90-97) 60 (27-67) 
17 ms per picture 94 (87-95) 70 (64-74) 

Between minus 
within 

500 ms per picture 136 (130-139) 46 (15-51) 
34 ms per picture 169 (165-177) 73 (67-78) 
17 ms per picture 197 (175-218) 139 (67-155) 

 

Neuronal representations became increasingly transient at rapid stimulus 
presentation rates 

As neuronal signals propagate along the ventral pathway, neural activity can either 
change rapidly at subsequent time points, or persist for extended times. Transient activity 
reflects processing of different stimulus properties over time in either a feedforward 
manner, as computations become more abstract, or a recurrent manner as neurons tune 
their responses. On the other hand, persistent activity could maintain results of a 
particular neural processing stage for later use.  

Our premise in introducing the ultra-RSVP task was to suppress the persistent neural 
activity, and in doing so better capture the transient neural dynamics that reflect distinct 
neural processing steps. To experimentally confirm that persistent neural activity was 
indeed suppressed with rapid presentation rates, we extended the SVM classification 
procedure with a temporal generalization approach (Cichy et al., 2014; Isik et al., 2014; 
King and Dehaene, 2014). In particular, we used a classifier trained on data at a time 
point t to evaluate discrimination at all other time points t’. Intuitively, if neural 
representations are sustained across time, the classifier should generalize well across 
other time points.  

Temporal generalization matrices were computed by averaging decoding across all 
pairwise image conditions and all subjects, thus extending over time the results presented 
in Fig. 2b. Our temporal generalization analysis confirmed that neural activity became 
increasingly transient at rapid presentation rates (Fig. 4). While the 500 ms per picture 
condition had maps with broad off-diagonal significant elements characteristic of 
sustained representations, the RSVP conditions had narrow diagonal maps indicating 
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transient neural patterns, with the 17 ms per picture RSVP narrower than the 34 ms per 
picture RSVP.  

The increasingly transient activity in the RSVP conditions shows that neural activity 
continuously transformed stimulus information in a feedforward and feedback manner, 
will less neural resources used to maintain information. Thus, the results confirmed our 
hypothesis that the ultra-RSVP task would suppress persistent neural activity.  

    

 

Figure 4 Temporal generalization of target image decoding for the 500, 34, and 17 ms per picture 
conditions. The SVM classifier was trained with MEG data from a given time point t (training time) 
and tested on all other time points (testing time). The temporal generalization decoding matrix 
was averaged over all image pairs and all subjects, thus corresponding to the temporal 
generalization of the grand total decoding time series in Fig. 2b. The black line marks the target 
image onset time. The gray lines mark the image offset in the 500 ms per picture condition and 
the RSVP sequence onset/offset times in the rapid presentation conditions. The white contour 
indicates significant decoding values (n=16 for 500 ms per picture and n=17 for RSVP conditions; 
one-sided sign permutation tests, cluster defining threshold P<0.05, and corrected significance 
level P<0.05).  

Unfolding the dynamics of feedforward and feedback processes in space and 
time 

The analyses presented thus far segregated the temporal dynamics of the initial bottom-
up sweep from subsequent signals incorporating recurrent activity in the ventral 
pathway. Furthermore, peak latencies for early and late visual signals varied inversely, 
consistent with feedback processing. Here we mapped visual signals on the cortex to 
identify where in the brain feedforward and feedback signal interact. 

To map the spatiotemporal dynamics of the visual processes we used a MEG-fMRI fusion 
method based on representational similarity (Cichy et al., 2014, 2016a). For this, we first 
localized the MEG signals on the cortex and derived the time series from all source 
elements within two regions-of-interest (ROIs): early visual cortex (EVC) and inferior 
temporal cortex (IT). We selected EVC as the first region of the cortical feedforward 
sweep, and IT as the end point where neural patterns have been found to indicate object 
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category (Cichy et al., 2014). We then performed time-resolved multivariate pattern 
classification on the MEG data following the same procedure described earlier, only now 
we created pattern vectors by concatenating activation values from sources within a given 
ROI, instead of concatenating the whole-head sensor measurements. This procedure 
resulted in one MEG RDM for each ROI and time point. 

We compared the representational similarity between the time-resolved MEG RDMs for 
the two cortical regions (EVC and IT) and the fMRI RDMs for the same regions (Fig. 5ab). 
This yielded two time series of MEG-fMRI representational similarity, one for EVC and 
one for IT. In all conditions, consistent with the view of visual processing as a 
spatiotemporal cascade (Cichy et al., 2014), the time series peaked earlier for EVC than 
IT (Fig. 5c-h). The peak-to-peak latency between EVC and IT increased as viewing 
conditions became increasingly challenging with faster presentation rates: Δ=27 ms for 
the 500 ms per picture condition; Δ=79 ms for the 34 ms per picture RSVP; and Δ=115 
ms for the 17 ms per picture RSVP (all statistically different; two-sided bootstrap 
hypothesis tests; P<0.05). This latency difference was the compounded effect of two 
factors. First, the EVC peak had progressively shorter latencies (104 ms vs. 87 ms vs. 80 
ms for the 3 conditions), and second the IT peak had progressively longer latencies (131 
ms vs. 166 ms vs. 195 ms for the three conditions). This inverse relationship between the 
EVC and IT peaks corroborated the findings of the previous sections, namely that a 
disrupted first sweep of visual activity was associated with a delayed emergence of 
categorical division information. It further bound the processing stages in time to the V1 
and IT locations in space. 

Importantly, while EVC had a single peak at 104 ms and persistent representations over 
hundreds of milliseconds for the 500 ms per picture condition, its dynamics were transient 
and bimodal for the RSVP conditions. For the 34 ms per picture RSVP condition, an early 
peak at 87 ms was immediately followed by weak MEG-fMRI representational similarities, 
and then a second peak at 169 ms. For the 17 ms per picture RSVP condition, we 
observed similar dynamics with an early peak at 80 ms and a second peak at 202 ms, 
though in this case the second peak was not strictly defined because the time course did 
not reach significance, possibly due to compromised neural representations at such fast 
stimulus presentation rates. The second peak in EVC occurred at similar times as the 
peak in IT (Δ=3 ms for the 34 ms per picture RSVP condition, p=0.06; and Δ=7 ms for the 
17 ms per picture RSVP condition, p≪0.001; two-sided bootstrap hypothesis tests). This 
is consistent with feedback activity in EVC at the same time as IT solves visual object 
recognition. Table 2 summarizes latencies and 95% confidence intervals for all 
conditions. We note here that resolving feedback activity in EVC was possible with MEG-
fMRI fusion because MEG activation patterns disentangled slow fMRI hemodynamic 
responses in EVC that correspond to the combined contributions of feedforward and 
feedback visual activity. 

In sum, the combination of the RSVP paradigm with MEG-fMRI representational similarity 
resolved bimodal dynamics for EVC. The first EVC peak offered evidence that disruption 
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of early visual activity resulted in delayed categorical division information in IT. The 
second EVC peak occurred at approximately the same time as the peak in IT and is 
consistent with feedback activity from IT to EVC. 

   

 

Figure 5 Representational similarity of MEG to fMRI signals at EVC and IT. (a) For every time 
point t, the EVC-specific MEG RDM was compared (Spearman’s rho) with the EVC-specific fMRI 
RDM, yielding a time series of MEG-fMRI representational similarity at EVC. (b) Same as in (a) 
but for IT. (cde) Time series of MEG-fMRI representational similarity at EVC and IT for the 3 
conditions. Time is shown relative to target image onset. Color coded lines below plots indicate 
significant times. Peak latencies are indicated with arrows. While the 202ms peak of the EVC time 
series in (e) is not significant, it is marked to indicate comparable temporal dynamics with the 34 
ms per picture condition. (fgh) Peak latency times for the representational similarity time courses 
and 95% confidence intervals are depicted with bar plots and error bars, respectively. Stars above 
bars indicate significant differences between conditions. (n=16 for 500 ms per picture and n=17 
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for RSVP conditions; time courses were evaluated with one-sided sign permutation tests, cluster 
defining threshold P<0.05, and corrected significance level P<0.05; bar plots were evaluated with 
bootstrap tests for 95% confidence intervals and two-sided hypothesis tests; false discovery rate 
corrected at P<0.05). 

 

Table 2. Peak and onset latency of the time series for MEG-fMRI fusion at EVC and IT, with 
95% confidence intervals in brackets. 

  Peak latency (ms) Onset latency (ms) 
500 ms per picture IT 131 (127-135) 63 (50-75) 

EVC 104 (93-120) 53 (50-57) 
34 ms per picture IT 166 (162-173) 70 (50-88) 

EVC 87 (83-97) and 169 (164-176)* 71 (61-81) 
17 ms per picture IT 195 (170-203) 162 (55-183) 

EVC 80 (75-100) and 202 (190-219)* 71 (50-76) 
*Time series had two early peaks 

DISCUSSION 

Using an ultra-RSVP task, we dissected the ventral pathway activation cascade into two 
temporally distinct processing stages: the initial bottom-up sweep and the subsequent 
emergence of categorical information. For the first stage, we found a progressively earlier 
peak with decreasing viewing times, indicating an early disruption of visual activity (Fig. 
2). For the second stage, we found a progressively later peak with decreasing viewing 
times, indicating a delayed emergence of categorical information at high-level visual 
cortex (Fig. 3). This reverse relation of the peak latencies between the two processing 
stages has two critical implications: first, the extent of disruption of the initial sweep is 
related to longer processing times at subsequent stages to solve visual recognition; and 
second, such variable temporal dynamics index the existence of recurrent activity in the 
ventral pathway that takes up additional processing time to solve visual recognition when 
initial signals are limited in time. Finally, using MEG-fMRI fusion we pinpointed the locus 
where recurrent activity becomes effective to EVC (Fig. 5), with temporal onset 
overlapping with the dynamics of the emergence of categorical information in high-level 
cortex. 

While a large body of literature has investigated recurrent processing in the visual cortex, 
our work goes beyond and complements prior studies in several dimensions. First, 
consistent with behavioral and transcranial magnetic stimulation experiments that 
postulated the locus of recurrent activity signals in V1/V2 (Camprodon et al., 2010; 
Drewes et al., 2016; Koivisto et al., 2011; Wokke et al., 2013), we mapped the locus of 
rapid feedback activity in early visual cortex. Second, our study elucidates the functional 
nature of recurrent connections in vision. Recurrent connections have often been thought 
to subserve slower top-down attentional modulations from frontoparietal sites once 
recognition has been solved (Bar et al., 2006; Hopf et al., 2006; Sehatpour et al., 2008). 
In contrast, our study corroborates growing experimental evidence suggesting that 
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recurrent signals also originate from within the ventral pathway as recognition unfolds, 
and can exert their influence before attentional modulations (Boehler et al., 2008; Wyatte 
et al., 2014). Third, while extensive evidence suggests the existence of rapid feedback 
signals using highly controlled artificial stimuli, such as Kanizsa-type illusory figures, 
motion of random dots, and oriented bars (Halgren et al., 2003; Hupe et al., 1998; Lamme 
et al., 2002; Murray et al., 2002; Ringach et al., 1997; Wokke et al., 2012, 2013; Yoshino 
et al., 2006), it is not clear whether these results generalize to real-world situations. Since 
our target stimuli were natural images of objects and faces, we demonstrated the 
existence of feedback activity in early visual cortex under more ecologically valid 
conditions. Fourth, even though temporal delays in processing stimulus information have 
been observed when visibility conditions were impoverished (Tang and Kreiman, 2017), 
here we explicitly related bottom-up and feedback dynamics to each other and offered 
well-defined temporal signatures for both mechanisms. Last, rather than using unimodal 
data to study recurrent activity that reveals either spatial or temporal aspects of brain 
activity, we applied a novel way to investigate ventral neural dynamics by coupling MEG 
and fMRI data to holistically capture the spatiotemporal dynamics of brain activation 
(Cichy et al., 2014, 2016a). 

Our results thus allow the identification of three fundamental processing principles of 
object recognition: i) the brain compensates for early disruptions of the initial sweep 
through longer processing times at subsequent stages; ii) delays in solving object 
recognition are an index of increased recurrent processing; and iii) such recurrent 
processing takes place in early visual cortex and coincides in time with the emergence of 
categorical information in inferior-temporal cortex. 

Sequencing the processing cascade in the ventral visual pathway 

Here we discuss the nature of visual processing and the role of recurrent dynamics for 
each of the two temporally distinct stages of visual processing revealed by the ultra-RSVP 
task. 

First stage - feedforward activity: The first wave of visual responses we observed peaked 
at approximately 100 ms for the RSVP conditions (Fig. 2b). This latency falls within the 
time range during which the feedforward sweep is expected to reach the top of the visual 
hierarchy, but leaves little time for substantial contributions from high-level feedback 
connections (Lamme and Roelfsema, 2000; Tapia and Beck, 2014; Wyatte et al., 2014). 
Therefore, responses up to 100 ms tracked a feedforward process with contributions from 
local recurrent circuits, but separate from later feedback signals emerging from high-level 
visual cortex.  

First stage - early recurrent activity: The first sweep of visual activity was characterized 
by a ramping process with a peak latency approximately 100 ms for the RSVP conditions 
(Fig. 2b). Such extended latencies, though too short to include substantial feedback 
signals from the top of the visual hierarchy, permit incorporation of information from local 
recurrent connections. In typical viewing conditions, such as the 500 ms per picture 
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condition used here, neurons are known to remain active even after their initial 
contribution in the feedforward sweep, with their responses modulated with contextual 
information both within and outside their receptive fields (Lamme and Roelfsema, 2000). 
Examples include the dynamic orientation tuning of V1 cell responses, which is shaped 
by horizontal intracortical connections (Ringach et al., 1997), and the segregation of 
texture, which is shaped by feedback signals from extrastriate areas (Hupe et al., 1998; 
Lamme et al., 1998). Experiments using transcranial magnetic stimulation (Camprodon 
et al., 2010; Koivisto et al., 2011), backward masking (Boehler et al., 2008; Fahrenfort et 
al., 2007; Kovacs et al., 1995; Lamme et al., 2002), and reversible cooling (Hupe et al., 
1998) offer evidence that rapid feedback circuits in the ventral pathway are engaged 
within the first 80-150 ms of vision, with local feedback signals from extrastriate areas to 
V1 emerging within 80-110 ms (Wyatte et al., 2014). 

Was the first wave in the ultra-RSVP conditions shaped by local recurrent connections? 
While our results cannot discount such influences, it is reasonable to construe the first 
wave in the RSVP conditions as disproportionately characterized by feedforward 
propagating signals rather than local recurrent activity. This is because EVC time series 
had strong MEG-fMRI representational similarities over hundreds of milliseconds for the 
500 ms per picture condition, whereas weak dynamics with early peak latencies (80 ms 
and 87 ms) for the RSVP conditions (Fig. 5cde). This suggests any possible recurrent 
processes in EVC for the 500 ms per picture condition were suppressed in the RSVP 
conditions immediately after 80 or 87 ms.  

Reduced early recurrent activity in the RSVP conditions could be due to two reasons. 
First, shorter stimulus presentation times resulted in limited stimulus evidence 
accumulation. This may be reflected in the progressively later onset latencies with 
decreasing viewing times in Fig. 2hij, which suggest that local recurrent interactions have 
a rapid influence in the ventral stream dynamics. And second, the mask stimuli disrupted 
recurrent processing of the target in the RSVP conditions. This may be reflected in the 
more transient dynamics for the RSVP conditions in Fig. 4.  

Second stage - delayed emergence of categorical information: The first sweep of visual 
activity was temporally dissociated from a second processing stage at which categorical 
information emerged. The peak latency and strength of the early visual sweep were 
inversely related with the timing of categorical representations. Thus, compromised visual 
signals early in the ventral stream resulted in delays in the emergence of categorical 
information. This is consistent with recurrent visual processes requiring additional time to 
interpret the face target images within the RSVP sequences. Such delays in neural 
responses have been used as an indicator of recurrent computations in previous studies, 
including object selective responses in human fusiform gyri for partially visible images 
(Tang and Kreiman, 2017) and the integration of object parts into a coherent 
representation in macaque posterior IT (Brincat and Connor, 2006). 

An alternative explanation of the variable peak latencies due to delayed propagation of 
feedforward signals is unlikely. Instead of observing a graded increase in latencies, the 
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peaks in the feedforward sweep were inversely related to the peaks in categorical 
information, stretching the time difference between the two processing stage and 
discounting a purely feedforward explanation. 

Second stage - recurrent activity in EVC: Categorical signals for the two RSVP conditions 
(Fig. 3a) were associated with the onset of IT responses and the synchronous 
reengagement of EVC (Fig. 5cde). This reengagement of EVC at the same time 
categorical information emerged in high-level visual cortex suggests recurrent processes 
as its basis.  

Reengagement of EVC is consistent with theories positing that  feedback signals serve 
to add details in an initially established scene (Hochstein and Ahissar, 2002; Peyrin et al., 
2010; Tapia and Beck, 2014). According to these theories, when stimuli are degraded, 
partial, or otherwise ambiguous, recurrent processes fill-in stimulus information by 
propagating partial responses back to EVC and activating neurons that would normally 
respond to the complete stimulus (Muckli et al., 2015; O’Reilly et al., 2013; Tang and 
Kreiman, 2017; Wyatte et al., 2014). Thus, here recurrent activity may have filled-in 
missing visual information necessary to recognize the face target images. Such 
information is probably behaviorally relevant, as even relatively modest shifts in the 
latency of categorical information encoded rapidly in the ventral stream have been linked 
to corresponding shifts in behavioral response delays (Cauchoix et al., 2016). Future work 
could benefit from our neuroimaging methodology to investigate the precise role of 
recurrent activity in EVC.   

While the recurrent signals reported here could also reflect attentional modulations (Hopf 
et al., 2006; Tsotsos et al., 1995), this explanation is less likely. Rapid recurrent signals 
originating within the ventral pathway are involuntary (Roland et al., 2006) and temporally 
dissociable from top-down attentional signals that are typically reported at later times 
(Boehler et al., 2008; Wyatte et al., 2014).  

Our study used a fixed button mapping for the yes/no responses on faces in the RSVP 
task, which in principle may introduce motor plan-related signals in the MEG responses. 
However we believe it is unlikely our results are confounded by motor-related signals for 
the following reasons: First, our experimental design used a delayed response design for 
the RSVP conditions (response was prompted 0.7-1 s after the offset of the stimulus), 
and no response for the 500 ms per picture condition. Thus any motor artifacts, including 
motor preparation signals, should have been delayed considerably for the RSVP 
conditions, and are completely absent in the 500 ms per picture condition. Second, we 
believe that our analysis to localize these processes with fMRI-MEG fusion supports the 
source of categorical information in IT. Third, previous studies have shown that motor-
preparation signals occurs considerably later (300ms-400ms after stimulus onset) 
(Thorpe et al., 1996). Thus it is unlikely the effects before 200ms from stimulus onset 
reported in our data are related to motor preparation. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2018. ; https://doi.org/10.1101/350421doi: bioRxiv preprint 

https://doi.org/10.1101/350421
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

Taken together, the ultra-RSVP task enabled us to demarcate two different processing 
stages in the ventral stream, segregate the initial bottom-up sweep from late categorical 
signals, characterize the delay of the emergence of categorical information as an index 
of increased recurrent processing demands, and localize feedback activity in EVC. Our 
findings can motivate future experiments investigating the functional role of visual 
processes in the ventral pathway, capitalizing from the segregation of early and late 
processes achieved from the ultra-RSVP paradigm. 

Statiotemporal bounds for computational models of vision 

Most popular computer vision models, such as deep neural networks (LeCun et al., 2015) 
and HMAX (Riesenhuber and Poggio, 1999), have adopted a feedforward architecture to 
sequentially transform visual signals into complex representations, akin to the human 
ventral stream. Recent work has shown that these models not only achieve accuracy in 
par with human performance in many tasks (He et al., 2015), but also share a hierarchical 
correspondence with neural object representations (Cichy et al., 2016b, 2016c; Yamins 
et al., 2014). 

Even though models with purely feedforward architecture can easily recognize whole 
objects (Serre et al., 2007), they often mislabel objects in challenging conditions, such as 
incongruent object-background pairings, or ambiguous and partially occluded inputs 
(Johnson and Olshausen, 2005; O’Reilly et al., 2013). Instead, models that incorporate 
recurrent connections are robust to partially occluded objects (O’Reilly et al., 2013; Rajaei 
et al., 2018), suggesting the importance of recurrent processing for object recognition.  

Unlike other studies that use stimuli that are occluded or camouflaged (Spoerer et al., 
2017; Tang and Kreiman, 2017), our RSVP task offers no obvious computation that can 
be embued to feedback processes when presentation times are shortened. That is, our 
study does not inform on the precise nature of computations needed for stimulus evidence 
accumulation when presentation times are extremely short. Despite this fact, our findings 
on the duration and sequencing of ventral stream processes can still offer insights for 
developing computational models with recursive architecture. First, such models should 
solve object categorization within the first couple hundred milliseconds, even when the 
feedforward and feedback pathways are compromised as in the ultra-RSVP task. Second, 
the timing of recurrent processes should not be predetermined and fixed, but vary 
depending on viewing conditions, as in the case of onset and peak latency shifts in the 
RSVP decoding time series. Here viewing conditions related to the speed of the RSVP 
task, but it is reasonable to expect other challenging conditions, such as ambiguous or 
partial stimuli, to exert time delays, though possibly longer (Tang and Kreiman, 2017). 
Third, the timing and strength of the early visual signals should inversely determine the 
timing of categorical representations. And fourth, feedback processes in deep models 
should activate early layers of the model at the same time object representations are 
emerging at the last layers. Despite these insights, future research is needed to 
understand what recurrent computations are exactly carried out by the brain to solve 
visual recognition under RSVP-like presentation conditions. 
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Ultra-fast rapid serial visual presentation as an experimental model to study 
recurrent neural processing 

Since its conception (Potter and Levy, 1969), the RSVP paradigm has been implemented 
with stimulus rates about 100 ms per item or slower. Inherent to the design, RSVP 
experiments have revealed the temporal limitations of human perception (Spence, 2002), 
attention (Nieuwenstein and Potter, 2006), and memory (Potter, 1993). Recently 
however, behavioral investigations have been exploring even faster presentation rates in 
ultra-RSVP tasks (Broers et al., 2017; Evans et al., 2011; Potter et al., 2014). These 
experiments found that observers can detect target images at rates 13 to 20 ms per 
picture.  

Due to its effectiveness in masking stimuli by combining forward and backward masking, 
the ultra-RSVP paradigm could be used to address the question whether recurrent 
processing is necessary for recognition of objects. One view posits that a purely 
feedforward mode of processing is sufficient to extract meaning from complex natural 
scenes (DiCarlo et al., 2012). High behavioral performance in the ultra-RSVP task has 
been used as an argument to support this view. Specifically, such rapid presentations of 
stimuli have been presumed to block recurrent activity, since low level visual 
representations are immediately overwritten by subsequent images and time is too short 
to allow multiple synaptic transmissions (Tovée, 1994).  

However, this interpretation has been challenged both here, with the reengagement of 
EVC late in the processing stream, and by the finding that the ability to detect and 
categorize images at such speeds depends on the efficacy of the images to mask one 
another (Maguire and Howe, 2016). Thus, it still remains an open question whether 
recurrent activity is necessary to extract conceptual meaning (Howe, 2017).  

Though our study did not address whether such recurrent activity can arise in more 
effective masking conditions that suppress visibility (Maguire and Howe, 2016), it paves 
the way for future studies to explore the link between stimulus visibility and recurrent 
neuronal processes. Such studies could vary the effectiveness of forward and backward 
masking to segregate the early from late visual signals, as accomplished here, and 
investigate under what conditions (e.g. ambiguous or occluded input) stimulus visibility 
(King et al., 2016; Salti et al., 2015) is associated with feedback activity. As ultra-RSVP 
reduces visibility, future studies could also investigate whether recurrent activity is an 
integral component of the neural correlates of consciousness, defined as the minimum 
neuronal mechanisms jointly sufficient for a conscious percept (Koch et al., 2016). 

MATERIALS AND METHODS 

Participants 
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Seventeen healthy subjects (12 female; 16 right-handed and 1 left-handed; age mean ± 
s.d. 27.2 ± 5.7 years) with normal or corrected to normal vision participated in the RSVP 
experiment. They all signed an informed consent form and were compensated for their 
participation. The study was approved by the Institutional Review Board of the 
Massachusetts Institute of Technology and followed the principles of the Declaration of 
Helsinki. 

Experimental Design and Stimulus set 
RSVP experiment: The stimulus set comprised 24 target images (12 faces and 12 
objects) and 45 mask images of various object categories (Fig. 1a). Images shown are 
not examples of the original stimulus set due to copyright; the exact stimulus set is 
visualized at https://megrsvp.github.io . We chose this stimulus set because it enabled 
comparison with MEG and fMRI data of a previous study (Cichy et al., 2014). 

Participants viewed RSVP sequences of 11 images presented at a rate of 17 ms per 
picture or 34 ms per picture in separate trials. The middle image was randomly sampled 
from the set of 24 target images, and the surrounding images from the set of mask 
images. The stimuli were presented at the center of the screen against a gray background 
and subtended 2.9° of visual angle.  

Each trial included a 0.5 s baseline time preceding the 17 ms per picture or 34 ms per 
picture RSVP sequence. At the end of the sequence a blank screen was presented for 
0.7 – 1 s (uniformly distributed), which served to prevent motor artifacts, and then subjects 
were prompted to perform a two-alternative forced choice task reporting whether a face 
image was present in the sequence. That is, participants performed a yes/no task on 
faces without being informed on the alternative object (fruit/vegetable) target images. 
Responses were given with the right index finger using a MEG-compatible response box 
and a fixed button mapping for the face present and non-present response. 

Trials were presented in random order in 12 blocks of 120 trials each, comprising both 
the 17 ms per picture and 34 ms per picture speed conditions interleaved randomly. In 
total, we collected 30 trials for each of the 24 target images and each of the two RSVP 
rates. The whole experiment lasted around 70 minutes. To avoid eye movement artifacts, 
the subjects were asked to fixate on a black cross presented at the center of the screen 
and blink only when pressing a button and not during the RSVP sequences. 

Since the RSVP task was extremely challenging, before the experiment we trained 
participants for 5 minutes using a slower rate of 50 ms per picture. This assured the 
participants understood the task and could perform well during the higher presentation 
speeds. 

500 ms per picture experiment: In a separate MEG experiment, a different cohort of 16 
healthy participants view the same 24 target images in isolation. Images were presented 
in random order for 500 ms with an ISI of 1 s. Participants were instructed to press a 
button and blink their eyes in response to a paper clip that was shown randomly every 3 
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to 5 trials. Participants completed 10-15 runs, with each image presented twice per run. 
We thus collected a total of 20-30 trials per target image. Note that the MEG data acquired 
for the 500 ms per picture experiment were part of a larger 92-image data set that has 
been previously published (Cichy et al., 2014). 

fMRI experiment: The same 24 target images were also presented to a different cohort of 
15 healthy participants in an fMRI experiment. In particular, images were presented in 
random order for 500 ms with an ISI of 2.5 s. Participants completed 2 sessions of 10 to 
14 runs each, and each image was presented once per run. Thirty null trials with no 
stimulus presentation were randomly interspersed, during which the fixation cross turned 
darker for 100 ms and participants reported the change with a button press. This resulted 
in 20-28 trials per target image. The fMRI data set was also part of a larger 92-image data 
set that has been previously published (Cichy et al., 2014). 

MEG acquisition and preprocessing 

We collected MEG data using a 306-channel Elekta Triux system with a 1000 Hz sampling 
rate. The data was band-pass filtered with cut-off frequencies of 0.03 and 330 Hz. The 
MEG system contained 102 triple sensor elements (2 gradiometers and 1 magnetometer 
each) organized on a helmet shaped array. The location of the head was measured 
continuously during MEG recording by activating a set of 5 head position indicator coils 
placed over the head. 

The raw MEG data was preprocessed with the Maxfilter software (Elekta, Stockholm) to 
compensate for head movements and denoise the data using spatiotemporal filters (Taulu 
and Simola, 2006; Taulu et al., 2004). The Brainstorm software (Tadel et al., 2011) was 
then used to extract trials from -300 ms to 900 ms with respect to target onset. Every trial 
was baseline-corrected to remove the mean from each channel during the baseline 
period, defined as the time before the onset of the first mask stimulus for the RSVP task, 
or the target image for the 500 ms per picture condition. A 6000 fT peak-to-peak rejection 
threshold was set to discard bad trials, and the remaining trials were smoothed with a 20 
Hz low-pass filter. Eye blink artifacts were automatically detected from frontal sensor 
MEG data, and then principal component analysis was used to remove these artifacts. 

MEG multivariate pattern analysis 

Sensor space: To extract information about visual stimuli from the MEG data, we used 
multivariate pattern analysis. The procedure was based on linear support vector 
machines (SVM) using the libsvm software implementation (Chang and Lin, 2011) with a 
fixed regularization parameter C = 1. Before classification, the MEG trials for each target 
image were sub-averaged in groups of 3 with random assignment to reduce 
computational load, yielding M trials per target image (M was about 9-10 for the RVSP 
experiment when considering bad trials, and varied between 6 to 10 per subject for the 
500 ms per picture condition).  
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The SVM analysis was performed separately for each subject in a time-resolved manner. 
Specifically, for each time point t (from -300 ms to 900 ms in 1 ms steps) the MEG sensor 
data were arranged in 306-dimensional pattern vectors, yielding M pattern vectors per 
time point and target image. Then for each time point and pair of images separately, we 
measured the performance of the classifier to discriminate between images using leave-
one-out cross-validation: M-1 vectors were randomly assigned to the training set, and the 
left-out vector to the training set to evaluate the classifier decoding accuracy. By repeating 
the classification procedure 100 times, each with random trial sub-averaging, and 
averaging decoding accuracies over repetitions, we populated a time-resolved 24 x 24 
decoding matrix, indexed in rows and columns by the classified target images (Fig. 2a). 
This decoding matrix, termed representational dissimilarity matrix (RDM), is symmetric 
and has an undefined diagonal (no classification within image). The entire procedure 
created one MEG RDM for each time point and subject. 

Categorical division time series were constructed by dividing the MEG RDM matrix into 
partitions corresponding to within-category (face or object) and between-category 
stimulus comparisons. The difference of between-category minus within-category 
average decoding accuracies served as a measure of clustering by category 
membership. An alternate approach to computing categorical information time series is 
to directly train a classifier to discriminate face vs. object stimuli. While such 
methodological approach may be sensitive to different aspects of categorical stimulus 
information in general, it yielded consistent results in our data (Fig. 3-figure supplement 
1).  

Source space: To perform multivariate pattern analysis on the cortex and localize 
representational information on regions of interest (ROIs), we mapped MEG signals on 
source space. Source activation maps were computed on cortical surfaces derived from 
Freesurfer automatic segmentation (Fischl et al., 2004) of the Colin27 default anatomy 
(Holmes et al., 1998). The forward model was calculated using an overlapping spheres 
model (Huang et al., 1999). MEG signals were then mapped on a grid of ~15000 cortical 
sources using a dynamic statistical parametric mapping approach (dSPM) (Dale et al., 
2000) and time series were derived from sources within early visual cortex (EVC) and 
inferior temporal cortex (IT) (Desikan et al., 2006). 

Source-based multivariate pattern analysis for the two cortical ROIs, EVC and IT, was 
performed exactly as in sensor space, however time-resolved pattern vectors were 
created by concatenating activation values from cortical sources within a given ROI, 
rather than concatenating the whole-head sensor measurements. This procedure 
resulted in one MEG RDM for each time point, ROI, and subject.  

Multidimensional Scaling 

To visualize the complex patterns of the 24 x 24 MEG RDMs, which capture the relations 
across the neural patterns elicited by the 24 target images, we used the first two 
dimensions of multidimensional scaling (MDS) (Kruskal and Wish, 1978; Shepard, 1980). 
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MDS is an unsupervised method to visualize the level of similarity between different 
images contained in a distance matrix. Intuitively, MDS plotted the data in two dimensions 
where similar images were grouped together and different images far apart.  

fMRI data acquisition and analysis 

The fMRI data was collected using a 3T Trio Siemens Scanner and 32-channel head coil. 
The structural images were acquired in the beginning of each session using T1-weighted 
sequences with TR = 1900 ms, TE = 2.52 ms, flip angle = 9°, FOV = 256 mm2, and 192 
sagittal slices. Functional data was acquired with high spatial resolution but partial 
coverage of the brain covering occipital and temporal lobe using gradient-echo EPI 
sequence with TR = 2000 ms, TE = 31 ms, flip angle = 80°, FOV read = 192 mm, FOV 
phase = 100%, ascending acquisition, gap = 10%, resolution = 2 mm isotropic, and slices 
= 25. 

The details of fMRI analysis can be found in (Cichy et al., 2014) and here we explain it 
briefly. SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) was used to analyze the fMRI data. The 
data was realigned, re-sliced, and co-registered with the structural images for each 
subject and session separately. Then a general linear model analysis was used to 
estimate t-value maps for each of the 24 target images. We further defined two volumetric 
ROIs for fMRI data analysis, V1 and IT. V1 was defined separately for each participant 
using an anatomical eccentricity template (Benson et al., 2012), and corresponded to a 
0-6° visual angle. IT was defined using a mask comprising bilateral fusiform and inferior 
temporal cortex (Maldjian et al., 2003), keeping the most strongly 361 activated voxels 
from a cross-validated dataset to match the size of IT to the average size of V1. 

fMRI multivariate pattern analysis 
To assess the relations between brain fMRI responses across the 24 target images, we 
constructed space-resolved fMRI RDMs using a correlation-based method. We 
conducted two types of analyses: 1) ROI-based and 2) spatially unbiased using a 
searchlight approach. 

For the ROI-based analysis, we extracted and concatenated the V1 or IT voxel t-values 
to form ROI-specific fMRI pattern vectors. For each pair of images, we then calculated 
the dissimilarity (1 minus Pearson’s rho) between the fMRI pattern vectors, resulting in a 
24x24 fMRI RDM indexed by the compared images. This procedure resulted in one fMRI 
RDM for each ROI and subject. 

For the searchlight-based analysis (Kriegeskorte et al., 2006), we constructed fMRI RDMs 
for each voxel in the brain. In particular, for each voxel v we extracted fMRI activation 
values in a sphere centered at v with a radius of 4 voxels (searchlight at v) and arranged 
them into fMRI pattern vectors. For each pair of images, we then calculated the pairwise 
dissimilarity (1 minus Pearson’s rho) between fMRI pattern vectors, resulting in a 24x24 
fMRI RDM indexed by the compared images. This procedure yielded one fMRI RDM for 
each voxel in the brain and subject. 
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fMRI-MEG fusion using representational similarity analysis 

To assess the spatiotemporal dynamics of EVC and IT, we applied a fMRI-MEG fusion 
approach based on representational similarity analysis (RSA) (Kriegeskorte et al., 2008; 
Cichy et al., 2014). The basic idea is that if two stimuli are similarly represented in MEG 
patterns, they should also be similarly represented in fMRI patterns, a correspondence 
that can be directly evaluated using the RDMs. Thus, we computed the similarity 
(Spearman’s rho) between time-resolved MEG RDMs and space-resolved fMRI RDMs. 

For ROI-based fMRI-MEG fusion, we used fMRI RDMs and MEG RDMs from the 
corresponding ROIs. In particular, for each time point we computed the similarity 
(Spearman’s rho) between the subject-averaged MEG RDM and the subject-specific fMRI 
RDM. This procedure yielded n=14 time courses of MEG-fMRI representational similarity 
for each ROI and subject.  

Temporal generalization of multivariate pattern analysis 
To investigate whether maintenance of stimulus information was compromised in the 
RSVP relative to the 500 ms per picture condition, we extended the SVM classification 
procedure using a temporal generalization approach (Cichy et al., 2014; Isik et al., 2014; 
King and Dehaene, 2014; Pantazis et al., 2017). This method involved training the SVM 
classifier at a given time point t, as before, but testing across all other time points. 
Intuitively, if representations are stable over time, the classifier should successfully 
discriminate signals not only at the trained time t, but also over extended periods of time 
that share the same neuronal representations. We repeated this temporal generalization 
analysis for every pair of stimuli, and the results were averaged across compared images 
and subjects, yielding 2-dimensional temporal generalization matrices with the x-axis 
denoting training time and the y-axis testing time. 

Peak latency analysis 

For statistical assessment of peak and onset latency of the time series, we performed 
bootstrap tests. The subject-specific time series were bootstrapped 1000 times and the 
empirical distribution of the peak latency of the subject-averaged time series was used to 
define 95% confidence intervals. A similar procedure was used to define 95% confidence 
intervals for onset latency. For peak-to-peak latency differences, we obtained 1000 
bootstrapped samples of the difference between the two peaks, which resulted in an 
empirical distribution of peak-to-peak latency differences. We then used the tail of this 
empirical distribution to evaluate the number of bootstrap samples that crossed 0, which 
allowed us to compute a p-value for the peak-to-peak latency difference. Finally, the p-
values were corrected for multiple comparisons using false discovery rate at a 0.05 level. 
A similar procedure was used for onset-to-onset differences. 

We had one cohort of subjects for the RSVP conditions, and another for the 500 ms per 
picture condition. For consistency, we performed between-subject comparisons in all 
comparisons across the 17 ms, 34 ms, and 500 ms per picture conditions. 
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Statistical inference 

Statistical inference relied on non-parametric statistical tests that do not make 
assumptions on the distributions of the data (Maris and Oostenveld, 2007; Pantazis et al., 
2005). Specifically, for the statistical assessment of classification time series, temporal 
generalization matrices, and MEG-fMRI representational similarities we performed 
permutation-based cluster-size inference. The null hypothesis was equal to 50% chance 
level for decoding results, and 0 for decoding differences or correlation values. In all cases 
we could permute the condition labels of the MEG data, which was equivalent to a sign 
permutation test that randomly multiplied subject responses by +1 or -1. We used 1000 
permutations, 0.05 cluster defining threshold and 0.05 cluster threshold for time series 
and temporal generalization maps. 
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