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Abstract

Optimal integration and segregation of neuronal connections are necessary
for efficient large-scale network communication between distributed cortical
regions while allowing for modular specialization. This dynamic in the
cortex is enabled at the network mesoscale—the organization of nodes into
communities. Previous in vivo efforts to map the mesoscale architecture in
humans had several limitations. Here we characterize a consensus multiscale
community organization of the functional cortical network. We derive this
consensus from the clustering of subject-level networks. We show that this
subject-derived consensus framework yields clusters that better map to the
individual, compared to the widely-used group-derived consensus approach.
We applied this analysis to magnetic resonance imaging data from 1003
healthy individuals part of the Human Connectome Project. The hierarchical
atlas and code will be made publicly available for future investigators.

Keywords: fMRI, Community Detection, Human Connectome Project,
Intrinsic Connectivity Networks, Topology, Resting State

1. Introduction

Using surrogates of brain activity such as the blood-oxygen-level depen-
dent (BOLD) signal obtained using functional magnetic resonance imaging
(fMRI), whole-brain functional networks (i.e., connectomes) can be estimated
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in vivo. The brain functional connectome is organized at multiple spatial
scales, one of which is the mesoscale. It has been recently shown that a
full repertoire of functional communities—groups of nodes that are densely
connected internally—can be consistently decoded, even at rest. In the
brain, these communities are known to represent subsystems and mediate
distinct neurophysiological functions (e.g., the brain’s visual subnetwork)
(Yeo et al., 2011; Power et al., 2011; Cole et al., 2014). Moreover, this
scale is highly sensitive to disease, where several psychiatric disorders have
shown selective disruption in particular brain communities (Alexander-Bloch
et al., 2012; Akiki et al., 2017, 2018; Menon, 2011; Cisler et al., 2016). This
apparent importance has prompted interest in this line of investigation;
while a vast wealth of knowledge has been gained from these efforts, several
methodological pitfalls remain.

To map the mesoscale architecture of the normal brain, previous stud-
ies have generally applied the community detection algorithm on a group-
representative network obtained by averaging networks from a group of
individuals. However, it is becoming increasingly clear that important fea-
tures may be lost by such averaging (including some that are present across
individuals (Gordon et al., 2017a)), leading to a representation that may not
resemble a true central tendency in the group (Dubois and Adolphs, 2016;
Hacker et al., 2013; Gordon et al., 2017b; Braga and Buckner, 2017; Finn
et al., 2015; Laumann et al., 2015).

Further, the analysis of networks derived from time series (i.e., correlation
networks) is challenging. First, unlike prototypical networks where edges are
either present or absent (Euler, 1736), edges in correlation networks represent
the magnitude of statistical association, and so are on a continuum. Second,
methods that are commonly used to index association—most commonly
Pearson correlation—also produces negative values. Third, these networks
contain numerous indirect dependencies by virtue of the transitivity inherent
in correlations (Zalesky et al., 2012; Barzel and Barabási, 2013; Giraud et al.,
1999). This is particularly salient in large networks, as these indirect effects
may be compounded with higher-order interactions.

Previous investigations have generally made use of thresholds prior to
analysis in order to treat functional networks like usual sparse graphs. The
rationale is that the strong connections that would be retained would likely
be the most relevant and least likely to be artifactual, also leading to the
elimination of negative edges. Recently, the relevance of weak network
edges has become increasingly recognized, as they appear to convey unique
information not encoded in strong edges (Santarnecchi et al., 2014; Lohse
et al., 2014; Bassett et al., 2012; Gallos et al., 2012; Goulas et al., 2014).
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Further, the choice of the threshold is also challenging and can give rise to
heterogeneity in the findings (Jalili, 2016; Garrison et al., 2015). Like weak
edges, negative edges (i.e., anticorrelations) have been also shown to have a
substantial physiological basis (Nielsen et al., 2018; Fox et al., 2005; Zhan
et al., 2017; Parente et al., 2017; Kelly et al., 2008).

While several methods exist for community detection in networks, most
are not compatible with weighted networks containing both positive and
negative links of the type observed in correlation networks (Fortunato,
2010; Sporns and Betzel, 2016). One of the most commonly used and
best-performing methods in community detection is the Louvain algorithm
(Blondel et al., 2008; Lancichinetti and Fortunato, 2009; Sporns and Betzel,
2016). The Louvain algorithm is versatile and can be used with different
null models, some of which have been extended to allow for positive and
negative interactions (Sporns and Betzel, 2016). Importantly, null models
that are typically used with the Louvain algorithm are based on permutations
(rewiring) of the original networks, preserving the total weight and degree
while randomizing connections (Girvan and Newman, 2002). This is known
as the Newman–Girvan (NG) null model, which has also been extended
to signed networks (Gómez et al., 2009; Rubinov and Sporns, 2011; Traag
and Bruggeman, 2009). However, such an approach is problematic in the
case of correlation matrices, as it assumes that the entries are independent,
thereby violating the correlation transitivity (Bazzi et al., 2016; MacMahon
and Garlaschelli, 2015). Therefore, the community detection may not be
accurate, particularly if there is heterogeneity in the size of the communities
(Bazzi et al., 2016)—which is known to be biologically plausible in the case
of the brain.

A number of recent developments in network science and neuroimaging
have paved the way for frameworks that can be used to address these chal-
lenges. Here we used the Louvain algorithm, with a null model based on
random matrix theory designed explicitly for correlation networks (we refer
to it throughout as the RMT null model) (MacMahon and Garlaschelli, 2015).
While it was initially introduced in finance (MacMahon and Garlaschelli,
2015), it has been recently successfully applied to neurophysiological record-
ings (Almog et al., 2017). This method, which does not violate transitivity,
is compatible with weighted and signed networks, forgoing the need to per-
form any thresholding. The introduction of more efficient algorithms, of
reclustering frameworks, and the increased availability of high-performance
computing, have made it practical to perform the clustering at the level of
the individual network. As a neuroimaging dataset, we used a recent release
from the Human Connectome Project (S1200 release; March 2017) (Essen
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et al., 2013). This relatively-large sample of healthy individuals consists of
state-of-the-art MRI data and addresses several of the limitations present in
older datasets (Uğurbil et al., 2013; Glasser et al., 2016b).

We hypothesized that determining the mesoscale architecture of the
average human cortex can be better achieved by first mapping the mesoscale
in each subject and then arriving at a meaningful central tendency, rather
than by mapping the mesoscale of an averaged brain network. To this aim,
we perform the clustering at the subject level followed by a reclustering
procedure to reach a population consensus mesoscale architecture (we refer
to this as subject-derived consensus) (Jeub et al., 2018; Lancichinetti and
Fortunato, 2012). We compare this subject clustering-reclustering framework
to the traditional group-representative method (we refer to it as group-
derived consensus) to assess which results in solutions that map best to the
individuals’ data.

2. Materials and Methods

2.1. Neuroimaging dataset

The data that we use in this work is from the Washington University-
Minnesota Consortium Human Connectome Project (HCP) (Essen et al.,
2013). The latest release at the time of writing was adopted (S1200; March
2017). Details regarding this dataset have been previously published (Essen
et al., 2013; Glasser et al., 2016b). Briefly, it included state-of-the-art whole-
brain MRI acquisition with structural, functional, and diffusion-weighted
imaging; the scanner was a customized Siemens Skyra 3T scanner with slice-
accelerated sequences for fMRI (Moeller et al., 2010; Feinberg et al., 2010;
Setsompop et al., 2011; Smith et al., 2013). Whole-brain functional data
were acquired in two sessions. Each session consisted of two phase-encoding
directions (left-right and right-left) each a 15 min multiband gradient echo-
planar resting-state run (Voxel size = 2.0 × 2.0 × 2.0 mm; TR = 720 ms; TE
= 33.1 ms; Flip angle = 52°; 72 slices; Bandwidth = 2,290 Hz/pixel; FOV
= 208 × 180 mm). Informed consents were obtained from all subjects. The
study procedures were approved by the institutional review boards. This
release includes 1097 subjects with resting-state fMRI scans. Our analysis
was restricted to subjects who completed all four resting-state scan runs;
namely, two sessions, each with two encoding runs. This resulted in n =
1003 individuals; 534 females and 469 males. The age range was 22 to 37,
with a mean of 28.7.
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2.2. First-level processing

The HCP minimal processing pipeline was used (Glasser et al., 2013;
Smith et al., 2013). Briefly, this included projection to the surface space, 2
mm FWHM smoothing, ICA+FIX denoising with minimal high-pass filtering,
and surface registration using MSMall (Jenkinson et al., 2002, 2012; Fischl,
2012; Robinson et al., 2014, 2018; Griffanti et al., 2014; Salimi-Khorshidi
et al., 2014). To define our ROIs, we used a newly-developed multimodal
parcellation (MMP) (Glasser et al., 2016a). We chose this parcellation
because it is neuroanatomically informed, with data from cortical architecture,
connectivity, and topography. This group parcellation consisted of 360 ROIs
(180 per hemisphere) that cover the entirety of the cerebral cortex (but does
not include the subcortex or cerebellum), which we mapped to the individuals.
In the standard surface space, we calculated the mean time series from all
voxels in each ROI. Resting-state fMRI time courses from the left-right and
right-left phase-encoding runs and the two sessions were concatenated (total
duration 60 minutes; 4800 time point). Functional connections between
nodes i and j were defined as the Pearson product-moment correlation of
their respective time series.

2.3. Community detection

This consisted of using the Louvain community detection algorithm
(Blondel et al., 2008); specifically, an iterated version as implemented in the
GenLouvain package (Jeub et al., 2017). This versatile method is based on
finding communities with a high degree of intra- and low degree of inter-
connectedness. This is achieved heuristically by optimizing the modularity
metric Q , which captures the degree of connectedness within communities
compared to connectedness expected under a null model (Blondel et al., 2008;
Girvan and Newman, 2002):

Q =
1

2m

∑
ij

[Aij − Pij ] δ (ci, cj) (1)

where A and P are the observed and null adjacency matrices, respectively;
and m = 1

2

∑
ij Aij is the total strength of the network. The Kronecker

δ (ci, cj) function is equal to 1 when i and j are in the same community and
0 otherwise. As mentioned in the introduction, classical formulation of P is
that of a permutation null model (Girvan and Newman, 2002): Pij =

sisj
2m

where si =
∑

j Aij is the strength of node i. Although this definition was
extended to weighted signed networks (Gómez et al., 2009; Rubinov and
Sporns, 2011; Traag and Bruggeman, 2009), it remains inappropriate for use
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with networks generated from correlation of time series. Namely because
entries in the correlation matrices are not independent, which leads to a
bias in community detection (Bazzi et al., 2016; MacMahon and Garlaschelli,
2015; Almog et al., 2017; Zalesky et al., 2012; Barzel and Barabási, 2013).
We avoided this by adopting a null model that was specifically designed for
correlation-based networks (MacMahon and Garlaschelli, 2015) (detailed
below). The networks were not thresholded, retaining all weights (both
positive and negative).

Methods related to modularity maximization are known to suffer from
the resolution limit—the inability to detect communities smaller than a
certain size (Fortunato and Barthelemy, 2006). Several methods have been
used to address this (Traag et al., 2011; Reichardt and Bornholdt, 2006;
Fortunato, 2010; Nicolini et al., 2017). Here we adopt a recursive hierarchical
approach to recover the community structure at multiple scales (Jeub et al.,
2018; Sales-Pardo et al., 2007). After detecting the first-level (i.e., coarsest)
communities in the initial run of the algorithm, we define each detected
community as a separate subgraph and run the algorithm recursively on each.
This is repeated until no more statistically significant subcommunities can
be detected. This iterative procedure allows the resolution of a hierarchically
nested structure. Indeed, this is consistent with notions of hierarchical
organization in the cortex from microscopic tracer studies in other mammals
(Felleman and Essen, 1991; Scannell et al., 1999). We use this hierarchical
framework at the subject-level, and a slightly different one at the reclustering
stages (see below).

Due to the nearly degenerate outputs of the Louvain algorithm (Good
et al., 2010), for each subject-level run, we performed 100 iterations and
adopted the partition that is most similar to the ensemble, borrowing the
approach from (Traud et al., 2011; Doron et al., 2012; Bassett et al., 2013).
The rationale is that similarity to the ensemble can be used as a surrogate
for stability, and the most stable partition solution is likely the closest to the
ground truth (Sporns and Betzel, 2016; Bassett et al., 2013). To evaluate
partition similarity, we used the z-score of the Rand coefficient (described
below) and calculated the pairwise similarity between all 100 partition
solutions, selecting for each subject the partition with the highest mean
similarity to the ensemble. Since the community detection procedure was
applied recursively in a hierarchical manner, 100 iterations and subsequent
selection of the representative partition based on similarity was also applied
to each subcommunity. This was done in order to avoid adopting an arbitrary
solution from each subject.
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2.4. A random matrix null model for correlation networks

To generate null models that are appropriate for use with correlation
networks, we adopted a method based on random matrix theory (RMT). It
is described in full detail in the original publication (MacMahon and Gar-
laschelli, 2015). Briefly, this method builds null networks using a modified
Wishart distribution with the same common trend and noise as the observed
network, but without the community structure (sum of the random compo-
nent and the dominant positive component (MacMahon and Garlaschelli,
2015)). This method does not require thresholding and is compatible with
negative values. The end result being that positive interactions are maximally
concentrated within modules and negative interactions expelled outside.

For the hierarchical recursive application, after identification of a com-
munity c in the initial network, we regenerate a null model from time series
of nodes belonging to this community, and the community detection is then
applied to this subgraph. One criticism of such recursive procedures relates
to the fact that there are no clear stopping rules (Fortunato, 2010). Here,
it is important to mention that by virtue of the null model that we employ,
only communities that are present in the RMT-filtered networks are detected
(MacMahon and Garlaschelli, 2015); therefore, the procedure stops automat-
ically whenever no further “statistically significant” subcommunities can be
detected.

2.5. Partition similarity

In order to measure the similarity between two partitions, we adopted the
z-score of the Rand coefficient (Traud et al., 2011; Doron et al., 2012). In the
original definition, the Rand coefficient of two partitions is calculated as the
ratio of the number of node pairs classified in agreement in both partitions,
to the total number of pairs (Rand, 1971). Similar to Doron et al. (2012);
Akiki et al. (2018); Betzel et al. (2015); Bassett et al. (2013), here we use the
z-score variant introduced in Traud et al. (2011), which can be interpreted
as a measure of how similar two partitions are, beyond what might arise at
random (Traud et al., 2011; Sporns and Betzel, 2016; Fortunato and Hric,
2016). An analytical formula for the z-score of the Rand coefficient between
partition a and b can be written as:

Rab =
1

σwab

(
wab −

MaMb

M

)
Where M is the total number of node pairs, Ma and Mb the numbers of node
pairs in the same community in a and b respectively, wab the number of pairs
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that figure in the same community in both a and b, and σwab
the standard

deviation of wab (as in Traud et al. (2011)). For more information, see SI.

2.6. Hierarchical consensus reclustering

Our multiresolution co-classification matrices embed information from
the different hierarchical levels of community structures detected from the
clustering results at the level of the subjects’ networks. The recently devel-
oped method that we adopted extends the classical formulation of consensus
reclustering (Lancichinetti and Fortunato, 2012) by allowing a hierarchical
multiresolution output and has built-in tests for statistical significance (Jeub
et al., 2018). Here, the quality function was modularity-like as in Eq. 1,
with a “local” variant of the permutation null model. Briefly, in addition
to the constraint of the traditional permutation model of a fixed size and
number of communities, this local model also assumes that node i is fixed
and node j is random when calculating P localij (α). This means that the null
network only receives contributions from nodes that are less frequently co-
classified together compared to the local permutation model, at a statistical
significance level α. More detail can be found in Jeub et al. (2018).

The same recursive principle and Louvain implementation described
above were used here. To ensure a stable output, 100 iterations are used at
each level (cases of output instability are dealt by meta-reclustering as in
Lancichinetti and Fortunato (2012); Jeub et al. (2018)); the threshold for
statistical significance is set at α = 0.05.

2.7. Partition task homogeneity

Task fMRI data from the Human Connectome Project span several
domains (social cognition, motor, gambling, working memory, language
processing, emotional processing, and relational processing) (Barch et al.,
2013; Glasser et al., 2016b). Here we used the effect size activation maps over
86 task contrasts (group average over 997 subjects from the S1200 release).

We adopted the framework of module functional homogeneity (Schaefer
et al., 2017; Kong et al., 2018; Gordon et al., 2017b) to gauge the quality of
partition solutions across the hierarchical levels as another metric indepen-
dent of partition similarity. Nodes within well-defined modules should, in
principle, respond in agreement across tasks. That is, modules should show
a high degree of homogeneity (e.g., uniformly activated or deactivated when
completing a certain task). Similar to Schaefer et al. (2017); Kong et al.
(2018), for each task, we quantify homogeneity by calculating the negative
of the standard deviation of nodal activation (Cohen’s d) values for each
module (the sign was flipped so that lower, more negative values indicate
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lower functional homogeneity, while greater, less negative values closer to
zero indicate higher homogeneity). Of the 86 task contrasts we excluded
redundant ones (e.g., the standard deviation from Faces− Shapes contrast
is identical to the Shapes− Faces contrast), retaining 48 contrasts in total.

However, because we were to compare partitions of different size and
numbers, this simple definition would not be sufficient (Gordon et al., 2016;
Betzel et al., 2017, 2013). For example, modules with a smaller number of
nodes may be more homogeneous. To account for this bias, we standardized
it against the null distribution obtained by randomly permuting module
assignments 10,000 times (keeping the number and size of the communities
constant), and expressed the homogeneity as a z-score. For each hierarchy,
the z-scores were averaged over all modules and then over all task contrasts.
This resulted in a summary measure how functionally homogeneous each
partition solution is, beyond what is expected by the size and number of
modules.

While in certain studies have also used the concept of “connectional
homogeneity” to assess partitions (Schaefer et al., 2017; Kong et al., 2018),
we believe that not to be adequate for the present study due to the transitivity
bias of functional networks that we were set to avoid (Zalesky et al., 2012;
Barzel and Barabási, 2013).

2.8. Analysis of nodal consistency

To quantify how consistently each nodes is assigned to its community,
we calculated the nodal consistency for each partition, here defined as the
number of times a node is assigned to the same partition across subjects in
a particular hierarchy divided by the total number of times that the node
has been classified (i.e., to same or to a different community).

To better understand the variability in consistency across nodes, we
calculated the following: 1) the nodal strength as a measure of network
hubness calculated as si =

∑
j Aij as the strength (hubness) of node i, 2)

the signal-to-noise ratio defined as SNRi =
µBOLDi
σBOLDi

of the nodal BOLD

time course, and 3) a measure of nodal activity variation across the task
fMRI contrasts, here defined as the coefficient of variation CVi =

σTasksi
µTasksi

.

For simplicity, these were calculated from group-averaged data (average
connectivity matrix for hubness, group-representative time series for the
S1200 sample (Smith et al., 2014) for SNR, and group-average task fMRI
contrast maps for the task fMRI coefficient of variation). We then used these
terms in a multiple linear regression model as predictors of nodal consistency.
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2.9. Robustness analyses

In-scanner head motion has been reported to confound the estimation
of functional connectivity (Power et al., 2012). For the main analysis, we
adopted the strategy proposed by the HCP group (Glasser et al., 2013;
Smith et al., 2013) which includes ICA+FIX (Griffanti et al., 2014; Salimi-
Khorshidi et al., 2014). We chose not to regress out the “global signal” [mean
grey-matter time course regression (MGTR)] as there is concern that the
process may distort the correlation structure by shifting the connections to
an approximately zero-centered distribution, causing an artifactual increase
in computed anticorrelations, and induce a shift in areal boundaries and
a distance dependence in functional connections (Murphy et al., 2009; Fox
et al., 2009; Glasser et al., 2016a; Power et al., 2014a). The first point is
particularly salient in our case as we do not threshold negative connections
prior to the community detection analyses. MGTR may therefore spuriously
shift (weakly) “positive” corrections into anticorrelations, which would di-
rectly impact how they are treated by the RMT-based method, which is
based on expelling negative connections outside of modules (MacMahon and
Garlaschelli, 2015). However, it has been argued that the standard HCP
denoising methods do not fully remove motion artifacts and that regression of
the “global signal” remains an effective strategy in reducing the dependence
of correlations on motion (Power et al., 2017a,b; Burgess et al., 2016; Nielsen
et al., 2018). To assess the robustness of our community detection results,
we have repeated the main analysis after incorporating MGTR into the
preprocessing pipeline. To avoid the influence of “artifactually” induced
anticorrelations on the community detection, we removed negative values
from the correlation matrices prior to the RMT decomposition [note: an
example of the non-thresholded MGTR approach can be found in the accom-
panying Supporting Information (SI) document]. To compare the consistency
between the partitions obtained with and without MGTR, we correlated the
co-classification matrices obtained from the subject-level clustering of the
two methods, and, for interpretability, the percentage of nodes that differ in
the subject-derived consensus partitions(i.e., the Hamming distance).

In our analysis, we used a multi-modal cortical parcellation (Glasser
et al., 2016a) to define the network nodes. To ensure that this did not lead
to idiosyncratic results, we have repeated the main analyses with a cortical
parcellation by Schaefer et al. (2017) which is based solely on function, and
may be more functionally coherent (see SI).
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2.10. Statistical analysis

Statistical tests for community detection are described above. To compare
the similarity measures from the subject-derived vs. group-derived consensus,
we used two-tailed permutation hypothesis tests (10,000,000 permutations),
and Cohen’s d for the effect size. Fisher’s combined probability test was used
to calculate a summary measure of the combined results from the individual
permutation tests (at each hierarchical level) bearing on the same hypothesis.

2.11. Software and code

The analyses were conducted using MATLAB 2017b (MathWorks Inc.,
MA, USA). The hierarchical consensus framework was adapted from Jeub
et al. (2018) (https://github.com/LJeub/HierarchicalConsensus). We
adopted the Louvain implementation from Jeub et al. (2017) (https://
github.com/GenLouvain/GenLouvain). The Random Matrix Theory method
was adopted from MacMahon and Garlaschelli (2015) (https://mathworks.
com/matlabcentral/fileexchange/49011). Miscellaneous network tools
were used from the Network Community Toolbox (http://commdetect.
weebly.com) and the Brain Connectivity Toolbox (Rubinov and Sporns,
2010) (https://sites.google.com/site/bctnet/Home). The brain plots
were vizualized with the Connectome Workbench software (Marcus et al.,
2011) (https://github.com/Washington-University/workbench). The
code and hierarchical brain maps will be made publicly available once through
peer review.

3. Results

Mesoscale organization revealed by subject-derived consensus

We first performed the community detection at the level of the individual
subjects’ scans. Using the multi-modal parcellation (MMP) atlas (180
cortical areas per hemisphere, excluding subcortical structures) (Glasser
et al., 2016a), regional fMRI time series were used to generate functional
networks and corresponding random matrix null models after appropriate
preprocessing (see Materials and Methods). These were then used with
the Louvain community detection algorithm. To index the full range of
spatial resolutions, we applied the algorithm recursively: each daughter
community was treated as a new network and the process was repeated until
no statistically significant communities were found under the null model.
Near-degeneracy of the Louvain algorithm was addressed by considering 100
runs of the algorithm and picking the most stable output before proceeding
to the next hierarchical level (see Materials and Methods).
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This resulted in a median of 5 hierarchical levels for each subject (range 1–
8). The number of communities across all hierarchical levels ranged between
2 and 134. To identify a representative partitioning for the group based on
the information from the subject-level partitioning, we adopted a consensus
clustering approach (Jeub et al., 2018; Lancichinetti and Fortunato, 2012;
Bassett et al., 2013; Sporns and Betzel, 2016). This method consists of
summarizing the outputs of the subject clustering results by quantifying
the number of times nodes i and j were assigned to the same partition
across subjects and hierarchies and populating a co-classification matrix
Cij with these values. This co-classification matrix was then subjected
to a recursive clustering algorithm recently introduced for multiresolution
consensus reclustering (Jeub et al., 2018). This resulted in a subject-derived
consensus hierarchical tree with 103 levels, ranging from 3 communities at
the first hierarchical split to 112 communities at the finest-grained level (Fig.
1a). Thus, the finest branches of the tree contain about 3 nodes (areas).

By means of the methods that we used, all partition solutions in the
hierarchy were statistically significant under the respective null models (see
Materials and Methods). To identify partition solutions in the consensus
hierarchy that are most expressed at the level of individual subjects, we
calculated the average similarity between each consensus partition solution
and the subject-level partition solutions (first averaged within each subject
across hierarchies, then across subjects). This allowed us to gauge the
“representativeness” of the different levels, with those corresponding to local
maxima considered to be of particular importance (Fig. 1b).

As an additional independent partition quality metric, we used a measure
of functional homogeneity derived from task fMRI. Interestingly, homogeneity
peaks appeared to coincide with the similarity peaks, suggesting a convergence
between a partition’s “representativeness” and its functional homogeneity
across tasks (see SI).

To facilitate the interpretability of the modular organization, here we
focus on the first local maximum yielding 6 communities (Fig. 1c). At this
level, the organization consisted of an occipital community corresponding to
the cortical visual system (visual); a community centered around the central
fissure and extending to the transverse temporal gyrus, corresponding to
the somatosensory, auditory, motor and supplementary cortices (somatomo-
tor); a community with anterior and posterior midline components (medial
prefrontal and posterior cingulate cortices) as well as a middle temporal
component, collectively known as the default mode ; a community with nodes
predominantly in the frontoparietal cortex that is more expressed in the right
hemisphere (central executive); a cingulo-opercular community spanning the
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Figure 1: Subject-derived consensus hierarchical partitioning. (a) Co-classification matrix
summarizing the results of the subject-level clustering, sorted by community affiliation.
The dendrogram represents the hierarchical organization of the nested communities. The
length of the arms of the dendrogram are proportional to the average value of the local
null model. The background colors represent the candidate division (see below). (b)
Similarity plot showing the mean similarity between the partitioning in each hierarchical
level in the dendrogram and the clustering at the subject-level quantified by the z-score
of the Rand coefficient (blue), and the average z-scored functional homogeneity (purple;
values of z > 1.645 represent values that are significantly more homogeneous than the
null model at a one-sided α < 0.05). The local maximum in similarity corresponds to the
partitioning of the cortex into 6 communities (dashed red line). (c) Brain surface plots of
the 6 communities corresponding to the local maximum: visual (purple); somatomotor
(blue); default mode (green); central executive (red); ventral salience (orange); and dorsal
salience (yellow).
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ventral part of the salience system (ventral salience); and a more dorsal
community spanning dorsal parts of the salience system (dorsal salience).

Interestingly, other prominent local maxima appear to have occurred
at neurobiologically relevant divisions (Fig. 2). The level yielding 11 com-
munities corresponds to the split of the default mode community into a
midline core community and middle temporal lobe community (Fig. 2a).
The level resulting in 13 communities represents the split of the auditory
community from the somatomotor community (Fig. 2b). The level yielding
19 communities represents the delineation of the language community, more
expressed on the left (Fig. 2c). The level yielding 30 communities represents
a hemispheric split of the central executive community (Fig. 2d).

a

a b c d

b c d

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

50

55

60

65

Number of communities

Ra
nd

 (z
-s

co
re

)

Figure 2: Top: similarity plot showing the mean similarity between the partitioning in each
hierarchical level and the clustering at the subject-level quantified by the z-score of the Rand
coefficient. The local maxima in similarity are denoted by the dashed red lines. Bottom:
emerging communities at local maxima, (a) The level of 11 communities is characterized by
splitting of the default mode community into a mainly midline core community (dark green)
and mainly middle temporal lobe community (light green), compared to the preceding
level. (b) The level of 13 communities is characterized by the splitting of the auditory
community (light blue) from the somatomotor community (dark blue). (c) The level of
19 communities is characterized by the emergence of the language community (turquoise)
from lateral default mode (light green). (d) The level of 30 communities is characterized
by the hemispheric split of the left and right central executive community (red and pink).

Subject-derived consensus partitions are more accurate representation of
individuals’ mesoscale features

As a control to the subject-level method, here we perform the community
detection on a group-representative network. We concatenated the fMRI
regional time series from all participants and generated connectivity and
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corresponding random matrix null networks. For a meaningful comparison
with the subject-level method, we iterated the hierarchical algorithm an
equal number of times as the subject-level method (1003 times) and used
the multiresolution output from these runs to populate a co-classification
matrix. Since the first-level clustering here was performed on a single group-
representative network, a slight variability in the outputs of the 1003 runs
was deemed necessary to achieve a rich co-classification matrix. For this
reason, the procedure to control for the near-degeneracy was applied at the
hierarchical consensus clustering only (see Materials and Methods). Each
run resulted with a median of 5 hierarchical levels (range 4–5). We then
built a co-classification matrix Cij using the outputs and performed the
hierarchical consensus reclustering step. This resulted in a group-derived
consensus hierarchy of 101 levels, with a number of communities ranging
between 4 and 143 (Fig. 3a). See SI for more details.
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Figure 3: Group-derived consensus hierarchical partitioning. (a) Co-classification matrix
summarizing the results of the group-level clustering, sorted by community affiliation.
The dendrogram represents the hierarchical organization of the nested communities. The
length of the arms of the dendrogram are proportional to the average value of the local
null model. The background colors and key are superimposed from the subject-level
consensus clustering that yielded 6 modules in Fig. 1a–c. (b) Similarity plot showing the
mean similarity between the clustering at the subject-level, and the partitioning in each
hierarchical level (number of communities) in the group-derived consensus partitioning
(red) and the subject-derived consensus partitioning (blue); similarity is quantified using
the z-score of the Rand coefficient.

One of the goals of this study was to assess whether applying the clustering
algorithms at the subject level followed by meta-reclustering to reach a group
consensus (i.e., the method in the previous section) confers a meaningful
advantage over applying the clustering algorithm to a group-representative
network as is generally done in the literature. For this reason, we calculated
the average similarity between the group average-derived consensus parti-

15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2019. ; https://doi.org/10.1101/350462doi: bioRxiv preprint 

https://doi.org/10.1101/350462
http://creativecommons.org/licenses/by/4.0/


tions (Fig. 3a) and the partitions at the level of the individual subjects.
We compared these values with the similarity between the subject-derived
consensus partitions and the partitions at the level of the individual sub-
jects (Fig. 3b). Compared to the group-derived consensus partitions, the
subject-derived consensus partitions were more similar to the individuals’ par-
titioning throughout the 65 hierarchical levels that are in common (two-tailed
permutation tests; n = 1003; 10-7 < p < 2.073 × 10-4). The mean effect size
was d = 0.5381 ± 0.2477 SD (Fisher’s combined probability test, p < 10-16).
One exception is the partitioning that yielded 4 communities, where the
group-derived consensus showed higher similarity to individuals’ partitioning
two-tailed permutation test; n = 1003; p = 1.8 × 10-5; d = 0.1905). We
also conducted this analysis with the normalized mutual information (Danon
et al., 2005) instead of the z-score of the Rand coefficient, and obtained
similar results (see SI).

Nodal variability in co-classification consistency partially explained by its
topological role

Nodal consistency values ranged between 0.5200 and 0.8817 across hierar-
chies (mean = 0.7609 ± 0.0582 SD) (Fig. 4a). At the level of 6 communities
(Fig. 4b), the multiple regression model that included nodal hubness, nodal
signal to noise, and task covariation significantly predicted nodal consistency
scores (R2 = 0.07613, p = 1.0337×10−7, df = 356) (Fig. 4b). Nodal hubness
was the only term that significantly contributed to the model (standardized
estimate = 0.2731, p = 1.657 × 107) (Fig. 4c).

Partitions are robust to prepossessing methods

Subject-derived consensus partitioning after MGTR yielded 115 hierar-
chical levels, with an organization that is similar to the main analyses (Fig.
5a). The vectorized upper triangles of the co-classification matrix generated
from the data with MGTR and without MGTR were strongly correlated
(r = 0.9538, p < 10-307, df = 64618) (Fig. 5b). Similarly, the partition
similarities were high across all hierarchies as evidenced by the z-score of the
Rand coefficient (corresponding to p < 10-307), and the percent agreement
ranged between 75.56% and 96.11% (mean = 82.20%, SD = 3.49) for the
other hierarchical levels (Fig. 5c).

As in the main analyses, the similarity of the consensus hierarchies to
the subject-level partitioning as well as the homogeneity peaked at the level
of 6 communities (Fig. 5d). This partitioning revealed the same subsystems
identified in the main analyses (Fig. 5e), with 93.06% agreement (dashed
red line in Fig. 5c).
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Figure 4: Nodal consistency. (a) Nodal consistency scores across the hierarchies. Dashed
line represents the hierarchy that resulted in 6 communities shown in Fig. 1c, and plotted
in (b). (c) Multiple regression model that included nodal hubness, nodal SNR, and task
coefficient of variation as predictors of nodal consistency. (d) Breakdown of the predictors
and their standardized estimates.
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Figure 5: Subject-derived consensus hierarchical partitioning after MGTR. (a) Co-
classification matrix and dendrogram. Background colors represent the partitioning from
Fig. 1. (b) Scatterplot showing the vectorized entries of the co-classification matrices
with and without MGTR. (c) Percent consistency between the subject-derived consensus
partitions with and without MGTR. (d) Similarity between the consensus partitioning and
the clustering at the subject-level (blue), and the average z-scored functional homogeneity
(purple; values of z > 1.645 represent values that are significantly more homogeneous
than the null model at a one-sided α < 0.05). Similar to Fig. 1, there is local maximum
corresponding to the level of 6 communities. (e) Brain surface plots of the 6 communities
after MGTR.
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As an example partition, we also included the partitioning that yielded
22 communities (corresponding to the highest similarity peak) (Fig. 6).
At this relatively fine-grained modular organization, there are five visual
communities (medial, inferolateral, para, midlateral, superolateral), four
somatomotor communities (central, paracentral, inferior, auditory), three
ventral salience communities (superior, posterior, insular) two dorsal salience
communities (superior, inferior), four central executive communities (right,
left, limbic, dorsal anterior cingulate), and four default mode communities
(medial, temporal, limbic, language).

4. Discussion

Using subject-level clustering of functional networks and a reclustering
framework, we mapped the mesoscale architecture of the cortex at multiple
scales. Confirming the study hypothesis, the subject-derived consensus
framework yielded results that were more similar to the individual subjects
compared to the group-derived consensus, despite the fact that both were
obtained from the same initial data. While it is inevitable that any type
of average will obscure individual features, obtaining a population-level
representation that is as faithful as possible to the mesoscale of individuals is
preferable. The subject-level consensus enables a representation that better
represents a central tendency, resembling individuals to a greater extent. In
previous studies, resting-state fMRI acquisitions typically consisted of few
minutes (e.g., 5–10 min; TR = 3000 ms), therefore, averaging may have
been a good strategy to increase the signal-to-noise ratio. However, in the
current study, the acquisitions consisted of 60 min (TR = 720 ms) potentially
mitigating this issue.

The implicit assumption that the individual subjects’ clustering results
are an appropriate reference is reinforced by a body of literature showing
that subject-per-subject extraction of community organization better agrees
with the individuals’ behavioral characteristics (Kong et al., 2018). Further,
the convergence of the two independent metrics that we used to assess
the partition solutions—similarity and task functional homogeneity—gives
credence to the notion that the similarity between the consensus partitions
and those at the level of the individual is a relevant quality metric (see SI).

Data science approaches are being increasingly implemented to study the
relationship between brain connectivity, behavior, and psychopathology. How-
ever, a major challenge in this field is the large number of features compared
to the number of observations per study. For example, a vertex-wise HCP
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Figure 6: Subject-derived consensus hierarchical partitioning at the level yielding 22
communities. This figure corresponds to the Rand global maximum in Fig. 5d. (a)
The dendrogram (from Fig. 5a) and background colors highlighting the fractionation of
the 6 main communities into the 22 subcommunities. (b) Brain surface plots of the 22
communities.
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“dense” connectome includes approximately 60000×59999
2 = 1, 799, 970, 000 fea-

tures per subject (unique edges in a symmetrical undirected connectivity
network). By using a parcellation atlas (e.g., the neuroanatomically informed
multimodal parcellation used in this study) the number of features can be
reduced to 360×359

2 = 89, 676. One important aspect of the multiresolution
modular atlas that we developed in this study is that it can be used to
further reduce the number of features while accounting for the connectome
architecture. For example, adopting the partitioning that yielded 22 modules
(Fig. 6) would reduce the number of unique features to 22×21

2 + 22 = 253,
while assessing both inter- and intra-modular connectivity (Akiki et al.,
2018).

Several important neuroanatomical observations can be made. The
representative partition solution that yielded 6 clusters (level 4; Fig. 1c)
corresponds to a well-described set of functional systems (Yeo et al., 2011;
Power et al., 2011; Meunier, 2009). The visual system can be seen represented
in a large occipital, ranging from early and higher-order visual cortices to
the dorsal and ventral streams. Even at the coarsest scale, the visual system
comprised a separate community than the somatosensory system. Likely, a
parallel of the heavy anatomical differentiation in that area and consistent
with electrophysiological studies in humans and primates (Felleman and
Essen, 1991). The somatomotor community included both early and higher
somatosensory and motor cortices, and the supplementary motor cortex.
Relatively early on in the hierarchy, there is a separation of the auditory
system (Fig. 2b). The rest of the somatomotor system remains relatively
cohesive. The cluster that spans several midline (medial prefrontal cortex and
posterior cingulate cortex) and middle temporal structures, is known in the
literature as the default mode, and is known to be involved in task-negative
processes (Andrews-Hanna et al., 2010; Anticevic et al., 2012). At the level
of 6 communities (Fig. 1c), the default mode constitutes a single entity,
but subsequently branches into a midline cluster (anterior medial prefrontal
and posterior cingulate cortices) and a middle temporal cluster (Fig. 2a).
This division is consistent both functionally and anatomically; evidence from
task-imaging showing that the midline structures are functionally specialized
for self-relevant decisions and the inference of other people’s mental states
(i.e., theory of mind), whereas the temporal components are implicated in
autobiographical memory (Andrews-Hanna et al., 2010). At the level of 4
communities (Fig. 1a), there is a large “salience” community that is spread
over several higher-order associative regions implicated in salience detection
and response, which subsequently branches into specialized ventral (also
known as the cingulo-opercular system) and dorsal salience systems (Fig.
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1c), an organization that has been well described previously (Uddin, 2014).
Interestingly, in Fig. 2c, there is branching of a community that is mostly
expressed in the left hemisphere and includes Broca’s area and the superior
temporal gyrus, and bears resemblance to areas of activation during language
processing tasks (Ji et al., 2019; Langs et al., 2015; Glasser et al., 2016a,b).
This community, which has traditionally evaded most (Yeo et al., 2011;
Power et al., 2011) (but not all (Ji et al., 2019; Langs et al., 2015)) mesoscale
investigations, may represent a language system (Ji et al., 2019; Langs et al.,
2015). It is notable that this putative language community is substantially
more in agreement with the one described in Langs et al. (2015) than Ji et al.
(2019), despite the fact that the former used a markedly different analytic
approach (voxel-based, clustering in embedding space, etc).

Another interesting observation is the absence of a parallel to the “limbic”
network described by Yeo et al. (2011) which was localized to the ventral
surface of the brain. A possible explanation is that the older data that was
used in their study had marked signal dropout at the base of the brain, where
this network was identified. The HCP data used in the current study had
significant improvements in terms of a reduction in signal dropout from the
ventral brain and other regions due to air sinuses; notably the orbitofrontal,
inferior temporal, and lateral mid-temporal cortices (Power et al., 2014b).
In our analyses, parcels in this region were assigned to the default mode
and the central executive communities. Another possible explanation for
this discrepancy could be the varying definition of what a “cluster” means
across studies. Here clusters refer to communities, whereas in Yeo et al.
(2011), clusters were identified based on connectivity profiles. A recent study
by Ji et al. (2019), that used data from the HCP and the MMP cortical
parcellation, identified an “oribito-affective” community that corresponds
to posterior orbitofrontal parts of the limbic network descibed in Yeo et al.
(2011), though the authors note that it had the lowest “confidence score” of
community assignment among the identified networks. Much of the nodes in
the described orbito-affective community (i.e., posterior orbitofrontal) are
included in our central executive community (Fig. 1c).

Disagreements between our community node assignments and those in
Ji et al. (2019) could be due to several methodological differences, such
as our use of a consensus procedure to avoid a network group average,
a multiscale community detection framework, and a null model based on
RMT for community detection that is more compatible with functional
networks (compared to the more prevalent permutation null models). Because
functional networks are estimated using correlation measures, they are subject
to indirect effects that manifest themselves as artifactual connections. These
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indirect effects are due to second-, third- and higher-order interactions that
are not present in the real (i.e., direct) network [for example, if nodes 1
and 2 and nodes 1 and 3 are strongly correlated, a correlation will also
be observed between node 2 and 3 even where none exists (or, if a true
relationship exists, here it would be overestimated)] (Zalesky et al., 2012;
Barzel and Barabási, 2013). This often leads to an inaccurate estimation of
the network modular structure, if not accounted for by the null model (Bazzi
et al., 2016; MacMahon and Garlaschelli, 2015). The RMT-based community
detection method that we employed mitigates these effects. In a recent study,
a permutation null model failed to recover the ground truth community from
neurophysiological recordings in the suprachiasmatic nucleus in mice, while
an RMT-based null model was successful (Almog et al., 2017). Another
potential contributor to the discrepancy is the choice of the spatial scale
of interest: while the current study characterized a wide range of spatial
scales, and opted for a data-driven method to focus on those that are most
expressed at the level of individuals in addition to functional homogeneity,
Ji et al. (2019) described the organization at the scale yielding 12 clusters,
based on a priori “hard criteria” (e.g., a requirement for a separate auditory
community), in addition to stability metrics. It is therefore conceivable
that exploring different spatial resolutions in their data could show more
consistent parallels.

Calculating the nodal consistency revealed that certain nodes were less
consistent than others in terms of community assignments (Fig. 4). To
ensure that this was not caused by signal dropout in these particular regions,
we calculated the SNR from the time course. This analysis did not reveal
an association between the nodal SNR and consistency scores. Another
potential reason that we wanted to rule out was that low consistency nodes
are those that are highly task-specific. To quantify that, we used the group-
wise task fMRI activation map contrasts and calculated a measure of how
much variability each node is exhibiting in terms of activation across different
tasks. That also did not turn out to contribute to the variance of the nodal
consistency scores. The other potential explanation was that these nodes
play a specific—hub-like—topological role, integrating information from
different modules, and because their connectivity profiles is not primarily
limited to a single module, they are less consistently classified. While there
are numerous metrics that index hubness (Rubinov and Sporns, 2010), we
opted for the simplest definition—nodal strength. This hubness metric was
found to partially account for the variability in consistency (contributing
approximately 7.6% of the variance). Although it only explained a small
part of the variance, it remains entirely possible that the nodal strength

23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2019. ; https://doi.org/10.1101/350462doi: bioRxiv preprint 

https://doi.org/10.1101/350462
http://creativecommons.org/licenses/by/4.0/


is insufficient to capture hubness. In fact, indexing hubness in correlation
networks is a known challenge and traditional metrics do not rigorously
identify important hubs (Power et al., 2013). In fact, one of the alternate
definitions proposed in Power et al. (2013), which is based on finding nodes
in which multiple modules are represented, is conceptually similar to our
consistency metric.

Processing the data with and without MGTR resulted in broadly similar
partitions (Fig. 5). We were able to say that the subject-derived consensus
partitions resemble individual-level partitions more than the group-derived
consensus because both were derived from the same data. However, the
same framework could not be used to compare consensus partitions derived
with and without MGTR as the comparator is not the same. Despite the
fact that MGTR removes some relevant physiological neural data present
in the global signal and may alter the properties of the networks especially
the negative edges [which we had to remove (see SI)], it is very effective
at removing motion-related artifact (Power et al., 2017a,b). Evidence that
supports “sacrificing” some neural data in favor of a less contaminated
signal includes a recent observation that MGTR strengthens the associations
between connectivity and behavioral measures (Li et al., 2019). Therefore,
we release all atlases without taking a stance regarding which method is
superior.

While we used a multimodal gradient-based parcellation because it is
believed to be the most neuroanatomically accurate to date (Glasser et al.,
2016a), other atlases based on unimodal analyses of functional connectivity
may be more functionally-coherent (Schaefer et al., 2017; Gordon et al., 2016;
Craddock et al., 2011). We repeated the main analysis using the Schaefer
et al. (2017) atlas and recovered a broadly similar set of modules (see SI).
However, a quantitative analysis (Alexander-Bloch et al., 2018) was not
within the scope of this article, but should be pursued in the future. In
this study, we constrained the analysis to the cerebral cortex, though we
recognize the importance of extending the mapping of these communities
to the subcortex and cerebellum (Fan et al., 2016; Diedrichsen et al., 2009).
The multimodal brain atlas that we adopted does not include any subcortical
or cerebellar nodes. Some groups have added community affiliations for the
subcortex or cerebellum on a post hoc basis (Buckner et al., 2011; Choi et al.,
2012; Ji et al., 2019). The challenge in our case is to keep the definition
of a community consistent. This will likely require the treatment of the
nodes of the whole brain at the same time. The decision to define nodes
as brain parcels instead of a voxel-wise analysis was motivated by factors
that include using neurobiologically-meaningful building blocks, mitigating
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MRI-related limitations, and computational intractability (Eickhoff et al.,
2018). However, voxel-wise investigations (e.g., Braga and Buckner (2017);
Gordon et al. (2017b)) are equally important in brain mapping endeavors as
they naturally provide a finer level of granularity. Finally, other mesoscale
organizations should also be explored, such methods include stochastic block
modeling (Betzel et al., 2018), overlapping communities (de Reus et al., 2014),
and approaches that allow for varying spatial configuration of functional
brain regions (Bijsterbosch et al., 2018).
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