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Abstract

Malaria, dengue, Zika, and other mosquito-borne diseases continue to pose a major
global health burden through much of the world, despite the widespread distribution of
insecticide-based tools and antimalarial drugs. The advent of CRISPR/Cas9-based gene
editing and its demonstrated ability to streamline the development of gene drive
systems has reignited interest in the application of this technology to the control of
mosquitoes and the diseases they transmit. The versatility of this technology has also
enabled a wide range of gene drive architectures to be realized, creating a need for their
population-level and spatial dynamics to be explored. To this end, we present MGDrivE
(Mosquito Gene Drive Explorer): a simulation framework designed to investigate the
population dynamics of a variety of gene drive architectures and their spread through
spatially-explicit mosquito populations. A key strength of the MGDrivE framework is
its modularity: a) a genetic inheritance module accommodates the dynamics of gene
drive systems displaying user-defined inheritance patterns, b) a population dynamic
module accommodates the life history of a variety of mosquito disease vectors and insect
agricultural pest species, and c) a landscape module accommodates the distribution of
insect metapopulations connected by migration in space. Example MGDrivE
simulations are presented to demonstrate the application of the framework to
CRISPR/Cas9-based homing gene drive for: a) driving a disease-refractory gene into a
population (i.e. population replacement), and b) disrupting a gene required for female
fertility (i.e. population suppression), incorporating homing-resistant alleles in both
cases. We compare MGDrivE with other genetic simulation packages, and conclude
with a discussion of future directions in gene drive modeling.

Introduction

The advent of CRISPR/Cas9-based gene editing technology and its application to the
engineering of gene drive systems has led to renewed excitement in the use of
genetics-based strategies to control mosquito vectors of human diseases and insect
agricultural pests [1–3]. Applications to control mosquito-borne diseases have gained
the most attention due to the major global health burden they pose through much of
the world and the difficulty of controlling them using currently-available tools. For
malaria, recent declines in transmission have been seen following the wide-scale
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distribution of bed nets and antimalarial drugs [4]; however, model-based projections
suggest that additional tools will be required to eliminate the disease from
highly-endemic areas [5]. For dengue, the need for novel vector control strategies is even
greater, as the disease is rising in global prevalence and there is currently no cure or
vaccine available that is effective against all four serotypes [6]. The recent
demonstration of a CRISPR-based gene drive system in Drosophila [7], followed months
later by a Zika outbreak in Brazil [8], has prompted development of gene drive
technology for Aedes aegypti, the primary mosquito vector of Zika, dengue, and
Chikungunya, as well as broad development targeting other mosquito species, such as
the Anophelines which transmit malaria.

The ease of gene editing afforded by the discovery of CRISPR has also led to
significant versatility in terms of the gene drive systems that are now realizable [3, 9].
Prior to the advent of CRISPR, homing endonuclease genes (HEGs) were envisioned to
cleave a specific target site lacking the HEG and to be copied to this site by serving as a
template for homology-directed repair (HDR), effectively converting a heterozygote into
a homozygote and biasing inheritance in favor of the HEG [10]. These dynamics have
been demonstrated for a HEG targeting a synthetic target site in the main African
malaria vector, Anopheles gambiae [11], and steps have also been taken towards
engineering an alternative approach in which the HEG is located on the Y chromosome
and cleaves the X chromosome in multiple locations, biasing inheritance in its favor as it
induces an increasingly male sex bias in the population [12]. A vast range of additional
approaches for biasing inheritance are now being proposed, including several
threshold-dependent systems that may permit confineable and reversible
releases [13–15], and remediation systems that could be used to remove effector genes
and possibly entire drive systems from the environment in the event of unwanted
consequences [16]. For instance, an ERACR system (Element for the Reversal of the
Autocatalytic Chain Reaction) has been proposed that consists of a homing system with
a target site corresponding to the original drive system, essentially removing the original
drive as it homes into it, and utilizing the Cas9 of the first drive thus also removing this
through the homing process [17,18].

Understanding how these systems are expected to behave in real ecosystems requires
a flexible modeling framework that can accommodate a range of inheritance patterns,
specific details of the species into which the constructs are to be introduced, and details
of the landscape through which spatial spread would occur. To this end, we present
MGDrivE (Mosquito Gene Drive Explorer): a flexible simulation framework designed to
investigate the population dynamics of a variety of gene drive systems and their spread
through spatially-explicit populations of mosquito species and other insect species. A
key strength of the MGDrivE framework is its modularity. A genetic inheritance
module allows the inheritance dynamics of a wide variety of drive systems to be
accommodated. An independent population dynamic module allows the life history of a
variety of mosquito disease vectors and insect agricultural pests to be accommodated.
Thirdly, a landscape module accommodates the distribution of insect metapopulations
in space, with movement through the resulting network determined by dispersal kernels.
The model can be run in either a deterministic or stochastic form, allowing the chance
events that occur at low population or genotype frequencies to be simulated.

What separates MGDrivE from other gene drive modeling frameworks is its ability
to simulate a wide array of user-specified inheritance-modifying systems at the
population level within a single, computationally efficient framework that also
incorporates mosquito life history and landscape ecology. Other frameworks exist that
have been designed for more general purposes and applied to specific questions related
to gene drive (Table 1) – for instance, Eckhoff et al. [19] used the EMOD malaria model
to simulate the spread of homing-based gene drive systems through spatial populations
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of An. gambiae. EMOD is open source and a powerful modeling framework; but
significant effort is required from users to redefine genetic control strategies, mosquito
life history parameters and landscape details. Magori et al. [20] created Skeeter Buster
by extending the CIMSiM (container-inhabiting mosquitoes simulation model)
model [21] to incorporate genetic inheritance and spatial structure. The Skeeter Buster
framework captures the most pertinent mosquito ecology considerations, but is not open
source and can only simulate a handful of genetic control strategies [22]. The SLiM
genetic simulation framework [23] is capable of modeling the spread of a large variety of
user-defined gene drive systems through metapopulations; however, it is not currently
capable of accommodating life history ecology and overlapping generations.

Table 1. Comparison of spatially-explicit gene drive models.

Inheritance Patterns Life History Ecology
Spatial and landscape
details

Software

MGDrivE
Very flexible, can be
user-specified

Egg-larva-pupa-adult,
density-dependence at
larval stage, not
responsive to
environmental
variables at present

Metapopulations
distributed in space,
connected by
migration

R package, open source

EMOD [19]
Homing-based gene
drive, could be
extended with effort

Egg-larva-pupa-adult,
density-dependence at
larval stage, responsive
to environmental
variables

Populations arranged
on a grid, each
representing 1 km2,
connected by
migration

Java Script Open
Notation (JSON) feeds
into executable file,
open source

Skeeter Buster [22]

Homing-based gene
drive, release of insects
carrying a conditional
lethal, etc., cannot be
user-specified

Egg-larva-pupa-adult,
density-dependence at
larval stage, responsive
to environmental
variables

Households and
containers modeled
explicitly, connected
by migration

Executable file, not
open source

SLiM [23]
Very flexible, can be
user-specified

Discrete generations,
no life history at
present

Can model either
connected
metapopulations or
cells on a grid

Scripting environment
with graphical user
interface, open source

In this paper, we describe the key components of the MGDrivE framework – namely,
the genetic inheritance, mosquito life history and landscape/metapopulation modules.
We then provide a demonstration of the application of the framework to CRISPR-based
homing gene drive systems for: a) driving a disease-refractory gene into a population
(i.e. population replacement), and b) disrupting a gene required for female fertility (i.e.
population suppression), incorporating homing-resistant alleles. We conclude with a
discussion of future applications of genetic simulation packages in the field of gene drive
modeling.

Design and Implementation

The MGDrivE framework is a genetic and spatial extension of the lumped age-class
model of mosquito ecology [24] modified and applied by Deredec et al. [25] to the spread
of homing gene drive systems, and by Marshall et al. [26] to population-suppressing
homing systems in the presence of resistant alleles. The framework incorporates the egg,
larval, pupal and adult life stages, with egg genotypes determined by maternal and
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paternal genotypes and the allelic inheritance pattern. In MGDrivE, by treating the
lumped age-class model equations in a variable-dimension tensor algebraic form, the
population dynamic equations can be left unchanged while modifying the dimensionality
of the tensor describing inheritance patterns, as required by the number of genotypes
associated with the drive system. Spatial dynamics are then accommodated through a
metapopulation structure in which lumped age-class models run in parallel and
migrants are exchanged between metapopulations at defined rates. These operations are
accommodated by the tensor modeling framework, and full details of this framework are
provided in the S1 User Manual.

The core simulation framework is being developed in R
(https://www.r-project.org/) with certain routines in Rcpp for computational
speed. By combining the tensor modeling framework with object-oriented programming,
the genetic, life history and spatial components of the model are able to be separated
into “modules” to facilitate ease of modification. Within this architecture, each module
may be conveniently altered independently of the others. For instance: a) a range of
gene drive systems may be explored for a given mosquito species in a given landscape,
b) one species may be substituted for another, provided its sequence of life history
events is comparable, and c) gene drive spread may be modeled through a range of
landscapes, while leaving the rest of the model untouched. We now describe the three
distinct modules of the MGDrivE framework – inheritance, life history and spatial
structure – in more detail.

Modules

1. Genetic Inheritance The fundamental module for modeling gene drive dynamics
is that describing genetic inheritance. In MGDrivE, this is embodied by a
three-dimensional tensor referred to as an “inheritance cube” (Figure 1). Each gene
drive system has a unique R file containing the three-dimensional inheritance cube. The
first and second dimensions of the inheritance cube refer to the maternal and paternal
genotypes, respectively, and the third dimension refers to the offspring genotype. The
cube entries for each combination of parental genotypes represent the proportion of
offspring that are expected to have each genotype, and should sum to one, as fitness
and viability are accommodated separately.

The R function that builds the inheritance cube may receive a number of
user-defined input parameters. For a homing-based drive system, for instance, the list of
input parameters should include the homing efficiency, the rate of in-frame resistant
allele generation and the rate of out-of-frame or otherwise costly resistant allele
generation [26–28]. Input parameters also include those associated with organisms
having each genotype – for instance: a) genotype-specific fertility rates, b) male mating
fitness, c) sex bias at emergence, d) adult survival rates, and e) male and female
pupatory success. These parameters feed into the mosquito life history module, that
will be described next, and modify the tensor equations in that module in order to
produce the desired biological effect. Finally, a “viability mask” is applied to the
offspring genotypes to remove unviable genotypes from the population.

The R function that builds the inheritance cube may receive a number of
user-defined input parameters. For a homing-based drive system, for instance, the list of
input parameters should include the homing efficiency, the rate of in-frame resistant
allele generation and the rate of out-of-frame or otherwise costly resistant allele
generation [26–28]. and these parameter values should be used to populate the entries of
the inheritance cube. Input parameters also include those associated with organisms
having each genotype – for instance, genotype-specific: a) fertility rates, b) male mating
fitness, c) sex bias at emergence, d) adult survival rates, and e) male and female
pupatory success. These parameter values should then be used to populate the entries
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Fig 1. Inheritance module. Genetic inheritance is embodied by a three-dimensional
tensor referred to as an inheritance cube (left), here depicted for a CRISPR/Cas9-based
homing construct. Maternal and paternal genotypes are depicted on the x and y-axes
and offspring genotypes on the z-axis, with slices of the cube pertaining to each
offspring genotype shown to the right. The inheritance pattern shown deviates from
standard Mendelian inheritance such that, in the germline of Hh parents, the majority
of wild-type (h) alleles are converted into homing (H) alleles, while a small proportion
are converted into in-frame resistant (R) and out-of-frame resistant alleles (B).
Offspring genotype frequencies for each parental cross are depicted according to the
shading scale (right).

of the inheritance cube. Input parameters also include those associated with organisms
having each genotype – for instance, genotype-specific: a) fertility rates, b) male mating
fitness, c) sex bias at emergence, d) adult survival rates, and e) male and female
pupatory success. These parameters feed into the mosquito life history module, that
will be described next, and modify the tensor equations in that module in order to
produce the desired biological effect. Finally, a “viability mask” is applied to the
offspring genotypes to remove unviable genotypes from the population.

At the time of publication, the MGDrivE package includes inheritance cubes for: a)
standard Mendelian inheritance, b) homing-based drive intended for population
replacement or suppression [26,27,29,30], c) Medea (a maternal toxin linked to a
zygotic antidote) [31], d) other toxin-antidote-based underdominant systems such as
UDMEL [13, 15, 32], e) reciprocal chromosomal translocations [14, 33], f) Wolbachia [34],
and g) the RIDL system [35] (release of insects carrying a dominant lethal gene).
Details of each of these systems are provided in the S1 User Manual.

2. Mosquito Life History The mosquito life history module follows from the
lumped age-class model of Hancock and Godfray [24] adapted by Deredec et al. [25]. In
this model (depicted in Figure 2), the insect life cycle is divided into four stages – egg
(E), larva (L), pupa (P) and adult (M for male and F for female). In MGDrivE, each
life stage is associated with a genotype. Adult females mate once and produce batches
of eggs from the sperm of the same male, so they obtain a composite genotype upon
mating (their own and that of the male they mate with). Egg genotypes are then
determined by the parental genotypes and inheritance pattern as provided in the genetic
inheritance module. The adult equilibrium population size, N, in a given habitat patch
is used to determine the carrying capacity of that patch for larvae, K, which in turn
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determines the degree of additional density-dependent mortality at the larval stage in
that patch. Following Deredec et al. [25], this is described by an equation of the form:
f(L) = α/(α+ L)1/TL , where L is the number of larvae in the patch, TL is the
duration of the larval stage, and α is a parameter describing the strength of density
dependence. Further details on the mathematical formulation of the lumped-age class
model and its generalization to an arbitrary number of genotypes using tensor algebra
are provided in the S1 User Manual.

Fig 2. Mosquito life history module. Life history is modeled according to an egg
(E)-larva (L)-pupa (P)-adult (M for male, F for female) life cycle in which density
dependence occurs at the larval stage and autonomous mobility occurs at the adult
stage. Genotypes are tracked across all life stages, where g1, ..., gn represent the
number of individuals at each life stage having each of n genotypes. Females are
modeled as mating once upon emergence and hence obtain a composite genotype - their
own and that of the male they mate with. Egg genotypes are determined by the adult
female’s composite genotype and the inheritance pattern, which is specific to the gene
drive system under consideration.

The MGDrivE framework currently applies to any species having an
egg-larva-pupa-adult life history and for which density-dependent regulation occurs at
the larval stage. Switching between species can be achieved by altering the parameter
values that describe this module when initializing an MGDrivE simulation. The input
variables for this module currently include: a) the number of eggs produced per adult
female per day, b) the durations of the egg, larval and pupal juvenile life stages, c) the
daily mortality risk for the adult life stage, and d) the daily population growth rate (in
the absence of density-dependent mortality). The daily density-independent mortality
risks for the juvenile stages are assumed to be identical and are chosen for consistency
with the daily population growth rate. Default life history parameter values are shown
in Table 2 for three species of interest: a) An. gambiae, the main African malaria
vector, b) Ae. aegypti, the main vector of dengue and Zika virus, and c) Ceratitis
capitata, a worldwide agricultural crop pest. In some cases, life history parameters will
be modified in genotype-specific ways by the gene drive construct, and such
modifications are efficiently accommodated within this framework via tensor operations.
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Parameter Aedes aegypti Anopheles gambiae Ceratitis capitata
Egg production per female (day−1) 20 [36] 32 [37] 20 [38]

Duration of egg stage (days) 5 [39] 1 [37] 2 [38]
Duration of larval stage (days) 6 [39] 13 [37] 6 [38]
Duration of pupa stage (days) 4 [39] 1 [37] 10 [38]

Daily population growth rate (day−1) 1.175 [40] 1.096 [41] 1.031 [42]
Daily mortality risk of adult stage (day−1) 0.090 [43–45] 0.123 [41] 0.100 [46]

Table 2. Life history module parameter values for three species of interest
(at a temperature of 25 Celsius).

3. Landscape The landscape module describes the distribution of mosquito
metapopulations in space, with movement through the resulting network determined by
dispersal kernels. Metapopulations are randomly mixing populations for which the
equations of the lumped age-class model apply. The resolution of the metapopulations
(in terms of size) should be chosen according to the dispersal properties of the insect
species of interest and the research question being investigated. Ae. aegypti mosquitoes,
for instance, are thought to be relatively local dispersers, often remaining in the same
household for the duration of their lifespan [47]. For modeling the fine-scale spread of
gene drive systems in this species, metapopulations the size of households may be
appropriate. An. gambiae mosquitoes, on the other hand, are thought to display
moderate dispersal on the village scale and infrequent inter-village movement [48]. This
would suggest villages as an appropriate metapopulation unit; however other levels of
aggregation are also possible, in both cases, depending on the level of resolution
required from the simulations and the computational power available to the user.

Once the metapopulation size has been decided upon and the metapopulations have
been enumerated, MGDrivE accepts a list of coordinates and equilibrium adult
population sizes associated with each. In the resulting network structure, nodes
represent randomly-mixing metapopulations and edges represent movement of
mosquitoes from one metapopulation to any other in the network (Figure 3). Movement
between metapopulations is limited to the adult life stage. By default, movement rates
between metapopulations are derived from a zero-inflated exponential dispersal kernel,
the degree of zero-inflation and mean dispersal distance of which may be defined by the
user. That said; the movement kernel may be expanded arbitrarily to account for
barriers to movement such as roads [47] and other factors without altering the
overarching model structure. Movement rates between nodes are then used to calculate
a matrix of node transition probabilities, which is incorporated in the tensor algebraic
model formulation described in the S1 User Manual.

Finally, with the inheritance, life history and landscape modules in place, any type
of release can be simulated by increasing the number of insects having the released sex
and genotype at a specific metapopulation and time. As demonstrated in the following
software use example, input variables are provided for: a) release size, b) number of
releases, c) time of first release, d) time between releases, e) metapopulation of release,
and f) sex and genotype of released insects.

Deterministic vs. Stochastic Simulations

Simulations in MGDrivE can be run either in deterministic or stochastic form.
Deterministic simulations are faster and less computationally intensive; however,
stochastic simulations capture the probabilistic nature of chance events that occur at
low population sizes and genotype frequencies. For instance, a stochastic model is
required to understand the chance of population elimination following releases of insects
carrying a population-suppressing homing system in the context of rarely generated
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Fig 3. Landscape module. Insects are distributed as metapopulations, here depicted
by nodes, each having their own coordinates and population size. Movement between
metapopulations is derived from a defined dispersal kernel and is depicted here by edges
between nodes. The example “tale of two cities” scenario allows both spread within and
between communities to be explored. Here, nodes are colored according to their
community (as detected by the DBSCAN clustering algorithm [49]), with sizes
proportional to their “betweenness centrality” - a measure of their connectedness to
other nodes in terms of number of shortest paths that flow through them [50].

resistant alleles [26]. In the stochastic implementation of MGDrivE, daily egg
production follows a Poisson distribution, offspring genotype follows a multinomial
distribution informed by parental genotypes and the inheritance pattern of the gene
drive system, mate choice follows a multinomial distribution determined by adult
genotype frequencies, and survival and death events follow binomial distributions at the
population level. When interpreting stochastic models, many simulations should be run
to understand the range of outputs possible for a given model realization.

Two Example MGDrivE Simulations

To demonstrate how the MGDrivE framework can be used to initialize and run a
simulation of a gene drive system through a network of connected metapopulations, we
describe the application of the package to two CRISPR/Cas9-based homing gene drive
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strategies: a) driving a disease-refractory gene into a population [7], and b) disrupting a
gene required for female fertility and hence suppressing a population [30]. In both cases,
we consider a population of Ae. aegypti mosquitoes having the bionomic parameters
provided in Table 2 and distributed through the network landscape depicted in Figure 3.
To demonstrate the functionality of the MGDrivE package, we model the population
replacement strategy (i.e. replacing the population with a disease-refractory one) using
the deterministic implementation, and model the population suppression strategy using
the stochastic implementation. The stochastic implementation is more relevant to
population suppression as it can capture rare resistant allele generation and the
possibility of population extinction. In both cases, we include the generation of in-frame
and out-of-frame or otherwise costly resistant alleles [28,51] and parameterize the gene
drive model based on recently engineered constructs [7, 30].

1. Population Replacement We begin by modeling a CRISPR/Cas9-based homing
construct similar to that engineered by Gantz et al. [7]. This was the first
CRISPR-based homing construct demonstrated in a mosquito disease vector – namely,
Anopheles stephensi, the main urban malaria vector in India. For this construct, homing
and resistant allele generation were shown to occur at different rates in males and
females, and there were large fitness reductions associated with having the homing
construct. We consider a homing efficiency of 90% in males and 50% in females – i.e.
90% of wild-type (h) alleles are converted to homing (H) alleles in the germline of Hh
males, and 50% of h alleles are converted to H alleles in the germline of Hh females. A
third of the remaining h alleles in Hh individuals are converted to in-frame resistant
alleles (R), and the remainder are converted to out-of-frame or otherwise costly resistant
alleles (B) due to error-prone copying during the homing process [51]. Female fecundity
and male mating fitness are reduced by 25% per H or R allele and by 50% per B allele.

Fig 4. Workflow of an MGDrivE simulation.

The code for this simulation (Code samples 1-3) can be entered directly in R, and
the details of the various functions used are described in the S1 User Manual. The
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general workflow for the simulation is shown in Figure 4. We begin by loading the
MGDrivE package in R and choosing the working and output directories. The output
directory should be a dedicated directory for MGDrivE simulation output, to avoid
interfering with other files. We then choose between the deterministic and stochastic
implementation of the model framework – in this case the deterministic version. Next,
we specify the bionomic parameters of the species we are modeling – in this case, Ae.
aegypti, whose default life history parameters are provided in Table 2. Following this, we
define the landscape through which we will model the spread of the drive system. We
begin by loading a CSV file containing the coordinates (longitude and latitude) of the
metapopulations in Figure 3. A function is then applied that computes daily movement
rates between each of the metapopulations based on a zero-inflated exponential
dispersal kernel, the parameters for which we provide. Equilibrium adult population
sizes can be provided for each of the metapopulations; however in this case, we assume
these are identical across all metapopulations and provide a single population size
(Code sample 1).

1 # LOAD AND SET UP PACKAGES #######################

2 library(MGDrivE)

3 ## MGDrivE can be set up to run in stochastic/deterministic mode

4 MGDrivE.Setup(stochasticityON=TRUE)

5 simulationTime= 5000

6 ## Set to one for the deterministic version

7 repetitions= 100

8 # SET UP MOSQUITO LIFE HISTORY ###################

9 bioParameters=list(

10 beta=20, popGrowth =1.175 , muAd =.09,

11 tEgg=5, tLarva=6, tPupa=4,

12 )

13 # SET UP LANDSCAPE ###############################

14 distancesMatrix=as.matrix(

15 read.csv(

16 "./GeoLandscapes/ATaleOfTwoCities_Distances.csv",

17 sep=",", header=FALSE

18 )

19 )

20 lifespanNonMigratoryProbability =.90

21 movementKernel=calc_HurdleExpKernel(

22 distancesMatrix ,

23 MGDrivE :: kernels$exp_rat ,
24 calculateZeroInflation(

25 lifespanNonMigratoryProbability ,

26 bioParameters$muAd
27 )

28 )

29 patchPops=rep(50, sitesNumber)

Code sample 1. Loading the package and setting up the life history and landscape
modules.

With our life history and landscape modules defined and parameterized, we now
specify the gene drive system and release strategy we intend to model (Code sample 2).
We use a pre-specified inheritance cube function, “Cube HomingDrive()”, that models
the inheritance pattern of a homing-based gene drive system. The input options for this
function can be seen by typing “?Cube HomingDrive()” at the command prompt. We
specify the sex-specific homing rates, resistant allele generation rates, and
genotype-specific fitness effects as described earlier based on the construct engineered
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by Gantz et al. [7]. We then specify the release scheme by generating a list containing:
a) the release size, b) number of releases, c) time of first release, and d) time between
releases. This is then incorporated into a vector also specifying the inheritance cube and
the sex and genotype of the released insects. Finally, the metapopulations in which the
release takes place are specified. With the simulation framework now fully specified, the
model is now ready to run (Code sample 3).

1 # SET UP INHERITANCE / GENE DRIVE ################

2 ### A. Replacement Drive

3 sH=sR=.25

4 sB=.50

5 eM=0.9

6 eF=0.5

7 driveCube=Cube_HomingDrive(

8 eM=eM ,eF=eF ,

9 rM=(1/3)*(1-eM), bM=(2/3)*(1-eM),

10 rF=(1/3)*(1-eF), bF=(1/3)*(1-eF),

11 s=c(

12 "WW"=1, "WH"=1-sH , "WR"=1-sR , "WB"=1-sB ,

13 "HH"=1-2*sH , "HR"=1-sH -sR , "HB"=1-sH -sB ,

14 "RR"=1-2*sR , "RB"=1-sR -sB ,

15 "BB"=1-2*sB

16 ),

17 eta=c(

18 "WW"=1, "WH"=1-sH , "WR"=1-sR , "WB"=1-sB ,

19 "HH"=1-2*sH , "HR"=1-sH -sR , "HB"=1-sH -sB ,

20 "RR"=1-2*sR , "RB"=1-sR -sB ,

21 "BB"=1-2*sB

22 )

23 )

24 ### B. Suppression Drive

25 sHet =.9

26 eM=eF =0.999

27 driveCube=Cube_HomingDrive(

28 eM=eM ,eF=eF,

29 rM=(1/3)*(1-eM), bM=(2/3)*(1-eM),

30 rF=(1/3)*(1-eF), bF=(1/3)*(1-eF),

31 s=c(

32 "WW"=1,"WH"=1-sHet ,"WR"=1,"WB"=1-sHet ,

33 "HH"=0,"HR"=1-sHet ,"HB"=0,

34 "RR"=1,"RB"=1-sHet ,

35 "BB"=0

36 )

37 )

38 # SET UP RELEASES ###############################

39 patchReleases=replicate(

40 n=sitesNumber ,

41 expr={list(maleReleases=NULL ,femaleReleases=NULL)},

42 simplify=FALSE

43 )

44 releasesParameters=list(

45 releasesStart =100, releasesNumber =5,

46 releasesInterval =2*(

47 bioParameters$tEgg+bioParameters$tLarva+bioParameters$tPupa
48 ),

49 releaseProportion =2*round(mean(patchPops))

50 )

June 17, 2018 11/18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2018. ; https://doi.org/10.1101/350488doi: bioRxiv preprint 

https://doi.org/10.1101/350488
http://creativecommons.org/licenses/by-nc-nd/4.0/


51 maleReleasesVector=generateReleaseVector(

52 driveCube=driveCube ,

53 releasesParameters=releasesParameters ,

54 sex="M"

55 )

56 for(i in 6:6){patchReleases [[i]]$maleReleases=maleReleasesVector}

Code sample 2. Setting up the inheritance/gene drive module and defining the
release scheme. Here, code is shown for both: A) homing-based replacement drive, and
B) suppression drive. Only one of these should be selected when running the simulation.

1 # PREPARE THE FOLDERS ###########################

2 folderNames=list()

3 for(i in 1: repetitions){

4 folderName=paste0(outputDirectory ,str_pad(i,4,"left","0"))

5 dir.create(folderName)

6 folderNames=c(folderNames ,folderName)

7 }

8 # RUN THE MODEL #################################

9 for(i in 1: repetitions){

10 outputFolder=folderNames [[i]]

11 netPar=Network.Parameters(

12 runID=i, simTime=simulationTime ,

13 nPatch=sitesNumber , beta=bioParameters$beta ,
14 muAd=bioParameters$muAd , popGrowth=bioParameters$popGrowth ,
15 tEgg=bioParameters$tEgg , tLarva=bioParameters$tLarva ,
16 tPupa=bioParameters$tPupa , AdPopEQ=patchPops

17 )

18 network=Network$new(
19 networkParameters=netPar , driveCube=driveCube ,

20 patchReleases=patchReleases , migrationMale=movementKernel ,

21 migrationFemale=movementKernel , directory=outputFolder

22 )

23 network$oneRun ()
24 network$reset()
25 }

Code sample 3. Preparing output folders and running the model. It is recommended
to store simulation files for each run in its own separate folder.

2. Population Suppression As a second example, we demonstrate the application
of the MGDrivE package to model a population suppression homing construct similar to
that engineered by Hammond et al. [30]. For this construct, the homing system targets
a gene required for female fertility, causing females lacking the gene (those having the
genotypes HH, HB and BB) to be infertile, and inducing a large fecundity reduction of
90% in females only having one functioning copy of the gene (those having the
genotypes Hh, HR, hB and RB). The homing efficiency is very high – 99.9% in both
males and females – with a third of the remaining h alleles in Hh individuals being
converted R alleles and the remainder being converted to B alleles. This is similar to
the first CRISPR-based homing construct demonstrated in An. gambiae, although with
a higher homing efficiency that could be achieved through guide RNA multiplexing [26].
Lines of code that differ for this system are shown in Code sample 2. We choose the
stochastic implementation of the model framework this time, and while the same
inheritance cube function applies, it’s parameters differ – namely, homing and resistant
allele generation rates, and genotype-specific fitness effects.
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Output Analysis

In the current version of MGDrivE, simulation results are output as CSV files, which
enables the user to analyze results in any platform of their choice – R, Python,
Mathematica, etc. What the user decides to plot will depend on the number of possible
genotypes, whether the male-to-female ratio is altered, whether the population is
suppressed, and the spatial structure of the landscape through which drive occurs. If
the number of genotypes is large, for instance, then allele abundance may provide a
more manageable output than that of genotypes.

In Figure 5, we display a potential visualization scheme produced in Mathematica
for the population replacement and suppression simulations described above
(additionally, videos for both simulations running in the spatial networks can be
accessed in the supplementary information: S1 Video and S2 Video). As there are four
alleles for both systems (the homing allele, H, the wild-type allele, h, and the two
resistant alleles, R and B), we depict their abundance in the Figures 5A and 5B and
their frequency in Figures 5C and 5D, with time on the horizontal axis and
metapopulation number on the vertical axis. For population replacement (Figures 5A
and 5C), we see the gene drive system (H) spread through the population, and the
in-frame resistant allele (R) accumulate to a small extent. This occurs because the R
allele has neither a fitness cost nor benefit relative to the H allele once it has saturated
the population, while the B allele is selected against due to its inherent selective
disadvantage. For population suppression (Figures 5B and 5D), we see the gene drive
system (H) spread through the population at the same time as it induces suppression
due to its impact on female fertility. Eventually, we see an in-frame resistant allele (R)
emerge and spread into the population due to its selective advantage over both the
wild-type and homing alleles. Also visible in Figure 5 is the slightly extended time it
takes for both homing systems to spread through the second population cluster visible
in the metapopulation landscape depicted in Figure 3.

Availability and Future Directions

As of the date of publication, we are releasing MGDrivE version 1.0 (“Rise and Shine”),
available at our permanent github repository at:
https://github.com/MarshallLab/MGDrivE. The source code is available under the
GPL3 License and free for other groups to modify and extend as needed. The S1 User
Manual, including documentation of all MGDrivE functions and mathematical details of
the model formulation are available at the project’s github repository. To run the
software, we recommend using R version 3.4.4 or higher.

We are continuing development of the MGDrivE software package, and welcome
suggestions and requests from the research community regarding future directions. The
field of gene drive has been moving extremely quickly, especially since the discovery of
CRISPR-based gene editing, and we intend the MGDrivE package to provide a flexible
tool capable of modeling novel inheritance-modifying constructs as they are proposed
and become available. Future functionality that we intend to incorporate into the
software includes: a) “shadow drive”, in which the Cas9 enzyme is passed on to the
offspring even if the gene expressing it is not [51], b) life history models encompassing a
more diverse range of insect disease vectors and agricultural pests, and c) populations
that vary in size periodically or in response to environmental input variables. We are
also developing a corresponding individual-based model that is capable of modeling
multi-locus systems for which the number of possible genotypes exceeds the number of
individuals in the population. This will enable us to efficiently model confineable
systems such as daisy-drive involving several loci [27], and multiplexing schemes in
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Fig 5. Example MGDrivE simulations for CRISPR-based homing
constructs. In both cases, an Aedes aegypti population is simulated having the
bionomic parameters in Table 2 and distributed through the landscape depicted in
Figure 3. A. A population replacement homing construct that drives a disease-refractory
gene into the population is simulated having a homing efficiency of 90% in males and
50% in females. Wild-type (h) alleles that are not converted to homing (H) alleles in the
germline of Hh heterozygotes are cleaved and converted to either in-frame (R) or
out-of-frame (B) resistant alleles. Female fecundity and male mating fitness are reduced
by 25% per H or R allele and by 50% per B allele. A single release of 100 HH females at
node 6 is modeled. As the homing allele (light purple) is driven into the population, the
wild-type allele (dark purple) is eliminated, and the in-frame resistant allele (light blue)
accumulates to a population frequency of 17%. B. A population suppression homing
construct that interferes with a gene required for female fertility is simulated having a
homing efficiency of 99.9% in both females and males. Wild-type alleles that are not
converted to homing alleles in the germline of Hh heterozygotes are cleaved and
converted to either in-frame or out-of-frame resistant alleles. Females without a copy of
the h or R allele are infertile, while females having only one copy of the h or R allele
have a 90% fecundity reduction. Five releases of y HH females at node 6 are modeled.
As the homing allele (light purple) is driven into the population, it suppresses the
population due to its impact on female fertility. Eventually, an in-frame resistant allele
(light blue) emerges and leads the population to rebound due to its selective advantage
over both wild-type and homing alleles. C-D. Here, population frequencies of the
wild-type, homing and in-frame resistant alleles are shown in each metapopulation over
time for the population replacement construct (panel C) and population suppression
construct (panel D). Out-of-frame resistant alleles are omitted due to their low
frequencies in both simulations. Dashed vertical lines represent the beginning and end of
the releases and solid horizontal lines represent the division between population clusters.

which a single gene is targeted at multiple locations with separate guide RNAs to
reduce the rate of resistant allele formation [52].

Supporting information

S1 Video. Population replacement use example. A visualization of the
homing-based population replacement simulation.

S2 Video. Population suppression use example. A visualization of the
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homing-based population suppression simulation.

S1 User Manual. MGDrivE’s version 1.0 documentation. This
documentation covers the functionality, equations, and limitations of the package up to
the release of the version 1.0 of the software. For the most current version, visit our
website: https://marshalllab.github.io/MGDrivE/

Acknowledgments

The authors would like to thanks Drs. Omar Akbari, Ethan Bier and Anthony James
for discussions on gene drive architectures and molecular biological considerations, and
Drs. Gregory Lanzaro, Yoosook Lee and Gordana Rašić and Ms. Partow Imani for
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