Running head: HOW DO TEACHERS CHOOSE CONTENT FOR TEACHING?

- 1 2 Teachers' choice of content and consideration of controversial and sensitive 3 issues in teaching of secondary school genetics 4 5 6 Tuomas Aivelo^{1,*}, Anna Uitto² 7 8 1: Faculty of Biological and Environmental Sciences, University of Helsinki 2: Faculty of Educational Sciences, University of Helsinki 9 * Corresponding author: tuomas.aivelo@helsinki.fi 10 11 12 **Disclosure statement** 13 Tuomas Aivelo has participated in writing biology textbooks for upper-secondary school 14 biology for eOppi Oy. None of the teachers involved in this study used biology textbooks 15 from eOppi Oy. 16
- 17

HOW DO TEACHERS CHOOSE CONTENT FOR TEACHING?

18 Abstract

19	Science education strives to increase interest in science and facilitate active citizenship. Thus,
20	the aspects of personal and societal relevance are increasingly emphasised in science
21	curricula. Still, little is known about how teachers choose content for their teaching, although
22	their choices translate curricula to teaching practice. We explored how teachers choose
23	genetics content and contexts for biology courses on cells, heredity, and biotechnology by
24	interviewing ten Finnish upper-secondary school teachers. We specifically studied how the
25	teachers described teaching on genetically modified organisms, hereditary disorders, and
26	human traits as teachers have different amounts of freedom in choosing contents and contexts
27	in these themes. We analysed interviews with theory-guiding content analysis and found
28	consistent patterns in teachers' perceptions of the main themes in genetics teaching, teacher
29	inclinations towards teaching genetics in human context and perceptions of students' interest
30	in different topics. These patterns, which we call emphasis of content in genetics teaching
31	could be classified to Developmental, Structural and Hereditary. Teachers with
32	Developmental emphasis embraced teaching genetics in human context while teachers with
33	Structural emphasis avoided them. Contrary to previous research, the less experienced
34	teachers were most open to discussing human genetics. In general, teachers' justified their
35	choices by national, local school, and teacher's personal-level factors. While teachers
36	mentioned that societal and personal contexts are important, at the same time teachers never
37	framed main themes in genetics with these contexts. We conclude that more emphasis should
38	be put on how teachers handle issues with societal or personal relevance.
39	Keywords: genetics content, curriculum, biology education, socio-scientific issues

40

HOW DO TEACHERS CHOOSE CONTENT FOR TEACHING?

4	
-	-

Introduction

42	Curriculum articulates learning goals in school and thus guides teaching. In Finland, the
43	national curricular goals are managed by legislation, the municipal authorities have an
44	autonomy to provide and organize education at local level and teachers are valued as experts
45	who are able to develop and implement the school-specific curriculum (Niemi, Toom, &
46	Kallioniemi, 2012). Thus, the curriculum leaves a remarkable responsibility and freedom to
47	the teachers to implement education, for instance, in emphasizing the contents of upper
48	secondary school courses (Finnish National Board of Education, FNBE, 2003; Niemi et al.,
49	2012). While the curricular development and its effectiveness are studied extensively (e.g.,
50	Hargreaves, Lieberman, Fullan, & Hopkins, 2010; Niemi et al., 2012), there is less research
51	done on how teachers choose contents for their teaching.
52	Teacher beliefs guide to a substantial extent how teachers value different aspects of
53	knowledge and how much they emphasise different content (Cheung & Wong, 2010;
54	Cronin-Jones, 1991; Haney, Czerniak, & Lumpe, 1996). Teachers' 'personal knowledge' is
55	not static, but is formed through everyday experiences and formal schooling, including
56	teacher education, and continues to be molded in continuing professional education
57	(Gess-Newsome & Lederman, 1995; Henze, Van Driel, & Verloop, 2007; Van Driel,
58	Beijaard, & Verloop, 2001), and this personal knowledge shapes teaching to a large extent
59	(Hashweh, 1987, 2005; van Driel, Bulte, & Verloop, 2008). Nevertheless, personal
60	knowledge often manifests through rules-of-thumb, rather than formal design (Wieringa,
61	Janssen, & van Driel, 2011). Consequently, curricular change can cause very little change in
62	teaching approaches if underlying beliefs about content and the best suited methods to teach
63	content do not change among the teachers (Cohen & Yarden, 2009; Tidemand & Nielsen,
64	2017).

65	The main tools for content selection are the available teaching materials, especially textbooks
66	(Remillard & Bryans, 2004; Shawer, 2017; Spiegel & Wright, 1984). Among teachers, there
67	is a conflict between following the textbook's content and using them critically, as teachers
68	seem to understand critical reading of texts as distancing themselves from the text
69	(Loewenberg Ball, Feiman-Nemser, Ball, & Feiman-Nemser, 1988).
70	Controversial and sensitive issues in teaching
71	Real world applications of science commonly involve controversial issues, while, in general,
72	teachers are poorly prepared for teaching controversial issues (Oulton, Dillon, & Grace, 2004;
73	Oulton, Day, Dillon, & Grace, 2004) and especially less experienced teachers do not seem to
74	select topics that could be upsetting to students (Hess, 2008; Phillips, 1997).
75	Along the definition of Oulton, Dillon, & Grace (2004), we define controversial issues as
76	issues on which groups within society hold differing views based on different sets of
77	information or different interpretations from the available information due to their worldview,
78	such as different value systems. Sometimes controversial issues may be resolved by additional
79	information, but not always. For sensitive issues, we follow the ideas of Rowling (1996), who
80	suggests that the distinction between sensitive and controversial issues seem to be that
81	sensitive issues are connected to emotionality and the involvement of the individual.
82	Sensitivity can raise from political, religious, cultural, personal or gender reasons, but in
83	comparison to controversial issues, which by definition usually work on societal-level,
84	sensitive issues are more personal.
85	Arguably teacher beliefs are important factors in whether teachers embark on discussions of
86	controversial issues (Cotton, 2006). Most of the research on teaching controversial issues
87	have largely been in history and social science classes (i.e., Hess, 2008; Oulton et al., 2004a;
88	Oulton et al., 2004b) while sensitive issues are discussed in health and physical education

HOW DO TEACHERS CHOOSE CONTENT FOR TEACHING?

89	(Lynagh, Gilligan, & Handley, 2010; Rowling, 1996). Science subjects are less studied, even
90	though they do not lack controversial or sensitive topics (Leonard, 2010; Levin & Lindbeck,
91	1979; Owens, Sadler, & Zeidler, 2017). In discussing controversial issues, teachers have
92	mentioned problems in beginning and maintaining discussions, dealing with students' "lack
93	of knowledge", insufficient teaching time, and scarcity of resources (Dawson & Venville,
94	2008; Dawson & Taylor, 2000; Hand & Levinson, 2012; Kuş, 2015; Reiss, 1999). One of the
95	solutions should be increasing teachers' confidence to implement teaching societally-relevant
96	issues, even though they could be controversial (Hofstein, Eilks, & Bybee, 2011).
97	Socio-scientific issues (SSI) have been suggested to empower students to reflect on the effects
98	and importance of genetics in the world around them (Lederman, Antink, & Bartos, 2014;
99	Lewis & Leach, 2006; Zeidler, Walker, Ackett, & Simmons, 2002). Nevertheless, teachers
100	have been resistant to adopt SSI in their teaching (Lazarowitz & Bloch, 2005; Lee,
101	Abd-El-Khalick, & Choi, 2006). Several reasons have been proposed to explain this
102	phenomenon, including limitations of the curriculum or assessment techniques, teachers'
103	pedagogical competence and that teachers lack of support for the merits of SSI discussions as
104	pertinent to specific learning subjects (Bryce & Gray, 2004; Gray & Bryce, 2006; Lewis &
105	Leach, 2006; Newton, Driver, & Osborne, 1999).
106	Content selection also seems to relate to the identity of the teacher. Albe and Simonneaux
107	(2002) used a theory of planned behavior (Ajzen, 1991) to approach this problem and they
108	revealed stark differences among teachers in different subjects and how teachers' attitudes
109	towards societal issues are shaped. The question of identity of the teachers, as experts in
110	biology versus experts in discussing human genetics seems to be one of the central problems
111	(Pedretti, Bencze, Hewitt, Romkey, & Jivraj, 2008; Tidemand & Nielsen, 2017). This seems

to also be reflected in the students: for example, in a Swedish study, upper-secondary school 112

HOW DO TEACHERS CHOOSE CONTENT FOR TEACHING?

- 113 students majoring in science used few justifications from ethics or morality when discussing
- 114 GMOs (Christenson, Chang Rundgren, & Zeidler, 2014).

115 Genetics contents and curricular development

116 Genetics in secondary school biology curriculum has been emphasised in recent years, as the

117 progress in both basic science of genetics and the technological applications has been rapid.

118 This is likely to lead to both curricular renewal and the constant requirement of teacher

development. Choosing content for genetics courses poses a practical challenge for teachers

and fundamentally shows, what genetics could be seen as constitute of from a teaching

121 perspective.

122 There have been a number of endeavors to outline what would be the core (conceptual)

123 contents of genetics in different levels of lower and upper secondary school curricula.

124 Stewart, Cartier, & Passmore (2005) outlined that basic understanding of genetics requires

understanding three basic models: genetic (i.e., Mendelian inheritance patterns), meiotic (i.e.,

126 chromosome segregation and assortment) and biomolecular (i.e., genotype-to-phenotype

127 process). This was in turn refined by Duncan et al. (2009) who added environment as a

128 context and outlined their learning progression around two big ideas: 1) "All organisms have

129 genetic information that is universal and specifies the molecules that carry out the functions of

130 life. While all cells have the same information, cells can regulate which information is used

131 (expressed)." and 2) "There are patterns of gene transfer across generations. Cellular and

132 molecular mechanisms drive these patterns and result in genetic variation. The environment

133 interacts with our genetic makeup leading to variation." In their Delphi study of genetic

134 literacy, Boerwinkel et al. (2017) furthermore added a difference between somatic and germ

135 line and polygenic inheritance to previous core contents and emphasized also sociocultural

and epistemic knowledge. In general, the diversification of core contents in genetics education

HOW DO TEACHERS CHOOSE CONTENT FOR TEACHING?

- 137 from Mendelian genetics to polygenic traits seems to mirror the change in gene research
- 138 emphasis from quantitative genetics to genomics and whole-genome sequencing.

139 Genetics in the Finnish upper-secondary school biology curriculum

140 In Finland, approximately half of each age class enter general upper secondary schools, which

- 141 aims to both provide general knowledge required for an active participation in society and
- 142 prepare students for further education in tertiary level and working life. Finnish biology
- teachers at upper secondary level have at least Masters level degree, including one-year of
- studies in teacher education and one year of study in biology (see Niemi et al., 2012).

145 Finnish curricula tend to leave substantial freedom for teachers to interpret the educational

aims and develop multiple different methods to implement curricula. Finnish teachers plan

teaching according to local curricula, which are formulated by the education providers and

schools based on the national core curriculum for general upper-secondary schools (FNBE,

149 2003) The core content pertaining to genetics is mostly limited to two courses: Cells and

150 heredity (BI2), which is mandatory for all students, and Biotechnology (BI5), which is an

151 optional course in the biology curriculum (Table 1).

152 [Table 1 here]

153 While teachers' practices and attitudes towards different teaching approaches and methods 154 have been widely studied in science education (e.g., Lederman & Abell, 2014), there is far 155 less research on what contents and examples teachers choose for their teaching and how they 156 justify their choices for instance in an upper-secondary school biology course. As the Finnish 157 school framework provides for ample freedom for teachers to adopt the most suitable teaching 158 methods and biology teachers are generally educated broadly in different fields of biology, 159 this allowed us to explore the curricular genetics contents the teachers emphasize in their 160 teaching and what are teachers' perceptions of controversial and sensitive issues in genetics.

161	We used interviews to examine teachers' answers to questions about how they use three
162	different human-related contexts in their teaching: genetically modified organisms, human
163	hereditary disorders and complex human traits, such as intelligence. The first context, GMOs,
164	is explicitly mentioned in the national core curriculum, and teachers must discuss the ethics of
165	GMOs. The second context, hereditary disorders, is not mentioned in the curriculum, but most
166	known examples of Mendelian genetic traits in human context are hereditary disorders.
167	Thirdly, complex human traits, like intelligence, are not mentioned in the curriculum, but this
168	context can be used to discuss polygenic inheritance. Thus, these contexts differ in how easy
169	it is to avoid using them: while avoiding GMOs is not possible for teachers, complex human
170	traits can be easily avoided.
171	Our research questions were:
172	1. What do teachers perceive as the main contents of genetics teaching in the upper
173	secondary school in biology?
174	2. How teachers argue for their use of human-related contexts in genetics teaching?
175	3. What kind of controversial or sensitive issues do the teachers consider when teaching
176	of genetics?
177	Methods
178	Our research design was a qualitative case study. We conducted open-ended semi-structured
179	interviews with 10 upper secondary high school biology teachers from various schools from
180	Southern and Western Finland between 2015 and 2016 (see Table 2). Teachers were selected
181	purposively to reflect a variation in experience, gender, type of school and geographical
182	location in order to access different teachers with knowledge about upper secondary school
183	biology education. All teachers had biology as a major subject in their university master's

HOW DO TEACHERS CHOOSE CONTENT FOR TEACHING?

184 degree. Additionally, we collected diary data and other teaching materials from teachers how

they actually teach genetics.

186 Interviews

187 The interviews lasted from 40 minutes to 1 hour and 32 minutes. Teachers were asked: a)

188 what they perceive as the most important contents and contexts in genetics, b) how they

acquire knowledge for teaching and c) what examples they use during the two courses, BI2,

190 for Cells and heredity course for all students, and BI5, a Biotechnology optional course (Table

191 1). Especially, we asked how teachers teach the topic of GMOs in the BI5 course and what

192 kind of examples of human genetics they use in courses BI2 and BI5.

193 Our aim was to find out how teachers justify their content and context choices in genetics

teaching. We used a theory-guided content analysis to categorize the data in a six-stage

195 process by following the ideas of abductive analysis laid out by Timmermans and Tavory

196 (2012): 1) we transcribed the interviews; 2) we coded the transcripts one sample at a time by:

a) which subject matter teachers thought was the most crucial and which could be left aside,

b) how they argued for including or excluding certain course content and c) how they

described what they feel students feel important; 3) beginning from the first sample, we

200 named concepts arising from the grouped codes and after each sample, recursively performed

stages 2 and 3 for previously-coded samples (which would correspond to initial analysis as

202 per Charmaz (2003); 4) after initial samples were coded and concepts named, we integrated

203 categories (focused analysis); 5) we contrasted the teachers to each other to understand the

204 connections between categories, and 6) we refined the model. We used the R (R Core Team,

205 2013) package RQDA (Huang, 2017) for the analysis.

We contrasted the emerging codes with the assumption that teachers' content and contextchoices are guided by national and local curriculum, teaching materials and teachers' personal

HOW DO TEACHERS CHOOSE CONTENT FOR TEACHING?

208	knowledge. When coding content choices, three different groups emerged: monohybrid
209	crosses in humans, polygenic properties of humans and GMOs. Within these three groups, we
210	coded on later recursions all the mentions of the issues the teachers described that a) they use
211	in teaching, b) they avoid using in teaching, c) the topics in which the students express
212	interest, and d) topics in which the students express no interest in. We then simplified
213	authentic expressions in the open codes to a combinations which would describe general-level
214	biological phenomena, such as evolution, inheritance or gene expression. After half of the
215	samples were coded, selective coding was used to delimit the coding process. Purposive
216	sampling fitted well this research approach as our data was rather rapidly saturated: by the
217	ninth sample, there was no new information useful for the category formation. After the
218	analysis process, we asked teachers whether they agree on our analysis of the emphasis of
219	their teaching.

220 Trustworthiness

221 To assess the connection between descriptions that the teachers gave of their teaching during 222 the interviews and their actual teaching, we asked the teachers to keep diary of their teaching 223 after the interviews. We suggested that teachers write down for each lesson the topics, 224 teaching methods, which textbook chapters and exercises were discussed and on which topics 225 the students asked questions or clarifications. Additionally, teachers who had ready-made 226 lecture slides sent those to us. An outside observer and first author classified diaries and other 227 materials based on previously formed classifications (Table 2), which allowed us to compare 228 teachers' interviews and actual teaching.

We continuously evaluated the trustworthiness for our study in several ways (Morrow, 2005).
During the category formation, we looked for disconfirming data and assessed data saturation.
The credibility was also enhanced by continuous discussion and revising the meanings and
coding of the data during the categorization by the first author and the transcriber, who was a

HOW DO TEACHERS CHOOSE CONTENT FOR TEACHING?

233	sociolinguist. Transferability was improved by a rich description of the research process in the
234	form of an audit trail. Audit trail was drafted based on the memos and the developed coding
235	schemes. The authors evaluated the audit trail and agreed with research process.
236	[Table 2 here]
237	
238	Findings
239	What do teachers perceive as the most important content in genetics courses?
240	When we asked teachers to summarise what they hoped students would learn from upper-
241	secondary school biology courses, the teachers mentioned different contents (Table 2, Table
242	S1). We divided their answers to three distinct themes: 1) development of phenotype, 2)
243	inheritance and continuity and 3) the structure and function of the genes. Some teachers gave
244	several descriptions that fitted two of these themes, but none described all three.
245	The first theme, development of phenotype, contains descriptions that focused on
246	understanding how genes and environment shape the development of different traits (i.e.,
247	genetic determinism). These descriptions were often related directly to how students
248	themselves have developed and to understanding of how human individuals have formed:
249	Teacher J: "Humans are constructed by many factors, of which genome influences
250	greatly, or they are things which we cannot influence ourselves; they come directly
251	from the genome, but also genes do not dictate how we live our lives, what kind of
252	persons we are, and how we behave."
253	The second theme, inheritance and continuity, is centered on the concept that there is genetic
254	continuity in the tree of life and that DNA copies itself from generation to generation.

255 Teachers who described concepts relating to this theme saw the understanding of evolution as

HOW DO TEACHERS CHOOSE CONTENT FOR TEACHING?

256	the focal	point of whole	field of biology	and saw genetics	as central to this understanding.
200	the rocar	point or millione	nena or oronogy	and ban Seneties	as contrai to this anacistantanig.

- 257 Biodiversity was mentioned as one manifestation of this continuity. Sometimes the
- 258 descriptions of the most important ideas were affective:
- 259 Teacher C: "The common thread of life, from the beginning, the same genes are
- flowing; we are composed of genes from a million persons from thousands of years
- and then a new combination pops up, from the stream of life."
- 262 The third theme, the function of the genes, was the simplest theme in terms of how teachers
- described it. They usually said that it was important to understand what genes are and how
- they function, while offering no reference to any reason why it is so. Some teachers
- 265 mentioned that it is important in terms of general knowledge to know these topics.
- 266 Teacher B: "If I say it concisely, what is the gene and how does it function is the core267 knowledge a student should have."

268 Use of human-related contexts in genetics teaching

269 *GMOs*

270 Most of the teachers approached ethical questions as being superimposed on the biological

271 content within a course and they thought the students should know the biological contents of

272 GMOs before discussing their ethical dimensions (Table S2). Some teachers also suggested

- that students have highly polarised opinions on GMOs before coming to a course and that
- 274 "knowledge" could help in seeing the different aspects of the debate.
- 275 Teacher F: "We have two types of students, so that they are pretty black-and-white.
- 276 Some of them have already been kind of brainwashed to think that "this is all great",
- 277 while a minority, or I don't know if they don't just dare to tell me, are against GMOs."

278	Three teachers said that they use SSI as a means to motivate students in the beginning of the
279	course, while the other seven said that they first teach the biological content and then move to
280	ethical discussions. Still, ethical questions were seen as secondary to biological content:
281	Teacher J: "there's not always much time for discussions – the time spent in ethical
282	discussions is always reduced from less than what is spent on the course texts."
283	Human genetics
284	Teachers mentioned that the use of human examples in genetics is mostly limited to
285	Mendelian disorders in BI2 course (Table 2, Table S3) and more complex traits are then
286	discussed at the end of BI2 or during the BI5 courses (Table 2, Table S4). Teachers
287	commonly held the opinion that students are interested in hereditary phenomena in general
288	(Table S5), but there is mismatch in how textbooks frames genetics and what the students'
289	interests are: while students are mainly interested in human genetics, the textbooks lack good
290	examples and teachers did not feel themselves competent to go deeper into the topic:
291	Teacher J: " [student asks] if I have blue eyes and my boyfriend has brown eyes,
292	then what color will our children's eyes be, but unfortunately I have to try to contain
293	their excitement as I don't know the answers to their questions."
294	Some teachers mentioned that they use classic, if not the most correct, examples like a
295	widow's peak or rolling the tongue. All teachers who used these examples said that,
296	nevertheless, they mention to students that in reality, genetics is not that simple.
297	Two teachers mentioned that they try to avoid human context in general and three other
298	teachers said that they try to avoid discussing complex human traits, such as talent,
299	intelligence, or human behavior (Table 2, Table S6):

300	Interviewer: Do you discuss how genetics affects learning? What if some students
301	have genes that allow them to achieve better grades?
302	Teacher E: No, no. (pause). No.
303	Interviewer: No?
304	Teacher E: No, we don't discuss that.
305	Interview: No one is interested?
306	Teacher E: No. I'm not interested either (laughs)
307	Interviewer laughs
308	Teacher E: I think it is very sensitive issue. I would reconsider several times before
309	talking about it.
310	Most teachers said that they discuss human behavioral genetics if students ask questions, but
311	they do not bring the topic up themselves. In contrast, some teachers said the discussions are
312	needed, especially in the context of racial issues:
313	Teacher D: "It is relevant for the students if it is discussed in public, societal debate –
314	[they may want to know if] citizens from certain continents are less intelligent than
315	others-, and we have discussed these alternative news a lot, how they publish utter
316	nonsense."
317	Controversial or sensitive issues in genetics
318	Half of the teachers did not identify any sensitive or controversial issues, which they would
319	avoid (Table 2, Table S6). Among the other half there were differences in how they framed
320	sensitive and controversial issues. Most of the argumentation was related to what is seen as
321	biological general knowledge or avoiding misconceptions on genetics: teachers mentioned or

HOW DO TEACHERS CHOOSE CONTENT FOR TEACHING?

322	implied that complex human traits are inherently so complex that there is a significant risk
323	that students would form misconceptions on overtly genetic determinations of these traits.
324	Furthermore, the lack of examples and lack of teacher competence was seen as leading to
325	teaching without meaningful contents. The two teachers who avoid humans as a context
326	argued that humans are just one species, and it is not meaningful to concentrate too much on
327	humans in biology.

328 Additionally, teachers mentioned how some issues are uncomfortable to them or to their

329 students. Regarding students, some teachers acknowledged that discussing human heredity

can pose several challenges (Table 2, Table S6). For example, using blood group testing can

raise questions and even distress students if their blood group is not concordant with their

parents' blood groups. One teacher mentioned she does not want to do pedigrees on simple

traits with students because of the "diversity of families" and her not knowing the

backgrounds of the students. The reason for describing these issues as "uncomfortable" was

framed as a question of teacher not knowing how to deal with discussing these issues or

encountering unexpected reactions from the students. Those teachers willing to discuss

337 genetic disorders of students or their families argued that generally those affected know best

338 about the issues. One teacher also mentioned that sensitive issues bring up emotions, but that

339 it is also natural in a classroom setting:

Teacher C: "Sometimes I've gone and hugged a student – I find it a good way to calm
down. – Every now and then I have tears in my eyes, but I think it's important to show
my own persona in my teaching."

343 Teachers frame genetics teaching with different emphases

Teachers' perceptions of the most important genetic content were closely related to their willingness to use human context in their teaching or even what they said that students find

HOW DO TEACHERS CHOOSE CONTENT FOR TEACHING?

346	interesting (Table 2). For example, none of the teachers whose theme in genetics teaching was
347	classified as "development of phenotype" mentioned that they try to avoid human complex
348	traits. In turn, both teachers who said that students are interested in gene testing had their
349	theme grouped to "inheritance" and both teachers who mentioned students are interested in
350	epigenetics to "development of phenotype."
351	Three different general frameworks of teaching genes and their role arose from the analysis:
221	Three different general frameworks of leaching genes and then fole arose from the analysis.
352	Developmental, Structural and Hereditary (Table 3). We call these emphasis of contents in
353	genetics teaching, as they relate to how teachers argue for their choice of contents and which
354	they see as the most important contents or themes, but also which contexts they use, how they
355	perceive student interest and whether they avoid certain topics. Furthermore, they align with
356	perception of sensitive or controversial issues. We note that these emphases do not consider
357	how teachers understand genes or their function, but rather what teachers see genetics to

358 constitute of from a teaching perspective.

359 A *Developmental* emphasis frames the development of traits as the central theme in genetics 360 and consequently teachers who used this approach were largely open to any discussions, they 361 did not mention any topic they would avoid, and most of them mentioned that they have 362 regular discussions about complex human traits as they felt that students are most interested in 363 these. Furthermore, teachers with *Developmental* emphasis were less likely to describe any perceived sensitive issues than other teachers (Table 2). These teachers were all 364 365 comparatively the less experienced teachers of the interviewed group (12 or fewer years of 366 experience). Their emphasis contrasts with two teachers who used a *Structural* emphasis 367 mentioning only gene function as the central issue. These teachers mentioned avoiding 368 discussing complex traits in humans or humans at all, as they find these both sensitive and not 369 good examples of polygenic inheritance. In contrast, these teachers described hereditary 370 analysis as an interesting part of the genetics course. They were among the most experienced

HOW DO TEACHERS CHOOSE CONTENT FOR TEACHING?

371	teachers (> 20 years). A third emphasis, Hereditary, was characterised by emphasis on the
372	continuity of DNA through the whole tree of life. This emphasis manifested in teachers'
373	answers as being somewhere between the two previous emphasis. Teachers which used this
374	emphasis were willing to discuss complex human traits if the students asked about them, but
375	did not actively raise examples. They generally used an example of human skin color as an
376	example of polygenic traits. More broadly, in genetics, they usually emphasised the
377	understanding of phenomena related to DNA duplications, such as meiosis. A hereditary
378	emphasis was used by both less and more experienced teachers.
379	[Table 3 here]
380	In contrast to the issues involving the human complex traits, genetics content emphasis were
381	not connected how teachers taught GMOs (Table S2). While some teachers were more
382	dismissive about teaching on SSI while discussing GMOs, and said that there was not always
383	time to go through those topics, they were not differentiated based on their genetics emphasis.
384	Furthermore, one teacher who said that they use GMOs as a motivation in the beginning of
385	the course, to explain how genetics are important, said that they do not always have time to go
386	into ethics of GMOs. In general, lack of time is a general perception of teachers in different
387	subjects and countries (Adams & Krockover, 1997; Archbald & Porter, 1994; Fuller, 1969)
388	and the interviewed teachers also expressed this idea repeatedly. This reason worked in
389	concert with the acknowledgement from most teachers that their teaching closely follows to
390	the textbook, and textbooks tend to discuss ethical dimensions of biotechnology at the end of
391	the book (Aivelo & Uitto, 2015).

392 Teacher self-identification and relationship to actual teaching

When we provided teachers with the descriptions of the genetics emphasis and our analysis of their interview, six teachers agreed with our analysis, three teachers disagreed and we could

HOW DO TEACHERS CHOOSE CONTENT FOR TEACHING?

not contact one teacher (Table 2). All disagreeing teachers had their teaching emphasis

labelled to Developmental. Two of the teachers also argued for that their emphasis was not

- the one they would have preferred for genetics teaching, but it was mostly dictated by national
- 398 curriculum, which mentions evolution and development in different courses.
- 399 We obtained teaching diaries and other teaching materials with enough information for our
- 400 analysis from five teachers. In categorization, the interrater reliability was high (Cohen's
- 401 kappa: 0.88). The concurrence between interviews and diaries was variable as some teachers
- 402 were fully concordant (such as teachers B and H), whereas Teachers G and J had two
- discordant categorizations (Table S7). In total, 18 of 22 analysing units were concordant
- 404 between the interviews and diaries.

405 Factors behind teachers' choice of content

406 Although there were large differences in teachers' emphasis in genetics teaching, there were 407 some similarities in their arguments on factors influencing their content choices (Table 2). 408 While the teachers described their teaching in very different terms, all expect teacher E said 409 that 1) they follow closely the textbook content. Because the contents of biology textbooks for 410 upper-secondary school is highly similar (Aivelo & Uitto, 2015), teachers clearly had 411 different personal priorities on the most important contents and contexts. All schools follow 412 2) the national core curriculum (FNBE, 2004), and this was evident in teachers' descriptions 413 of their content choices (Table 2, 3). Furthermore, this was emphasised by the inclusion of 414 GMOs in the biology core curriculum by all teachers (Table 3). The national core curriculum 415 is also the basis for the tasks on the matriculation examination that the students take in the end 416 of the upper secondary school in Finland (Niemi et al., 2012) and teachers acknowledged that 417 3) previous exam questions guide their teaching.

HOW DO TEACHERS CHOOSE CONTENT FOR TEACHING?

418	The aforementioned factors were quite similar for each teacher, but our results also reveal
419	perceived differences among teachers and the 4) school-specific circumstances in which they
420	are working. Some of the teachers compared their school to other schools, and suggested that
421	some attributes of their school attract students with specific interests or motivation or
422	competence to study biology. Likewise, teachers described differences in course
423	arrangements, and noted if it was possible to conduct experiments in the classroom.
424	Furthermore, teachers expressed that there are 5) personal reasons that affect their course
425	content selection. On many occasions the teachers acknowledged the limits of their
426	competence, either regarding genetics contents, such as when they are unable to answer
427	complicated questions of the students, or pedagogically, when they mentioned they might
428	have problems in successful guiding of classroom discussions.
429	Discussion
425	Discussion
430	Teachers' emphasis in genetics
431	Our findings suggest that there were fundamental differences in Finnish upper secondary

432 school biology teachers' perceptions on the most important themes in genetics and genetics

teaching and subsequently how they chose course content and context while teaching

434 genetics. The perceptions can be classified to three distinct content emphasis, which we

435 named *Structural*, *Hereditary* and *Developmental*. These emphases are formulated on the

basis of what teachers interpret as 1) the central themes in genetics, 2) how they use human

437 contexts in their genetics teaching, 3) how they understand students' interest towards different

438 contents and contexts and 4) whether they perceive genetics include sensitive or controversial

439 issues.

440 Our findings are partly similar to those of Van Driel et al. (2007), who found separate

subgroups of teachers who teach either subject-matter oriented focusing on fundamental,

442	theoretical concepts or learner-centered emphasising societal issues. While Structural
443	emphasis can be seen as subject-matter oriented, Developmental emphasis is not learner-
444	centered in similar sense as in Van Driel et al.'s study, as the orientation is not as much
445	societal as it is personal. Stewart, Cartier and Passmore (2005) outlined three different models
446	of genetics understanding: inheritance pattern model, meiotic model and biomolecular model.
447	These models are quite close to our concept of content emphasis: inheritance patterns model
448	and Hereditary emphasis are similar and Structural resembles meiotic model while
449	Developmental has less common with biomolecular model.
450	The diversity of emphases can be explained, for example, with complex educational context
451	in Finnish upper secondary school. Finnish upper secondary school aims to train students for
452	tertiary education, but also to develop scientific literacy to those students who do not study
453	biology further. The biology course "Cells and heredity" is compulsory to all students of
454	which approximately one third complete biology part of matriculation examination
455	(Matriculation Examination Board, 2019). Thus, the teachers are balancing with what Roberts
456	(2007) referred to as vision I (as knowledge within science) and vision II (as knowledge in
457	everyday situations) of the scientific literacy.
458	Moreover, genetics content emphasis can be seen as partly overlapping with "science teaching
459	orientations" (Magnusson, Krajcik, & Borko, 1999) as they contain knowledge of the
460	importance of different concepts, interpretation of curricula, the motivations of the students,
461	and representations and context of core concepts. In comparison, while the science teaching
462	orientations describe teachers' perceptions about teaching and especially instruction methods,
463	we did not find that genetics content emphasis would limit the instruction methods.
464	Nonetheless, the different emphases raises the question of how differential teacher
465	understanding of core concepts and contexts influences teaching methods or orientations to

HOW DO TEACHERS CHOOSE CONTENT FOR TEACHING?

teaching science. In a follow-up study, we aim to study teachers' gene concepts and whether

467 they relate to different emphasis.

468 Human-related contexts involve controversial and sensitive issues

469 Our research setting in comparing three different human-related contexts - GMOs, Mendelian 470 human traits and complex human traits - contrasts the effects of curriculum-dictated context 471 choice and free choice by teachers, and highlights the difference between personal and 472 societal relevance. Our interviews showed a paradoxical approach by teachers: while they said 473 that genetics is a societally relevant topic, and that students should learn analytical tools to 474 take part in decision-making and be responsible consumers, this was not evident in their 475 descriptions of their teaching. Without exception, teachers formulated the basic science as the 476 main issue and, in many cases, societal aspects of GMOs were described to be taught only "if 477 there was time at the end of the course." Our results agree with Tidemand and Nielsen's 478 (2017) suggestion that emphasis on biological content (as opposed to more societal context) is 479 driven by teachers' identity as biology teachers. Nevertheless, all teachers did teach GMOs as 480 they are explicitly mentioned in national curriculum.

481 In comparison, some teachers described avoiding human genetics contexts which could be 482 seen as personally highly relevant to students. These teachers were also more likely to 483 describe controversial or sensitive issues related to genetics teaching. It is noteworthy, that 484 teachers framed sensitive issues in human genetics in relation to students personally, as 485 something which concerns individual students and not as much society at large. Thus, in 486 Rowling's (1996) categorization, the teachers were more worried about sensitive issues than 487 controversial issues. Furthermore, this suggests that there is a trade-off between personal 488 relevance to students and perceived problems arising from sensitive issues. As this was not 489 mentioned in relation to GMO teaching, teachers seem to be more hesitant towards this 490 personal relevance, rather than societally controversial issues.

HOW DO TEACHERS CHOOSE CONTENT FOR TEACHING?

491	The avoidance of human contexts is a complex issue as teachers used numerous reason for
492	steering clear, for example, human genetics: a) students are not interested in these topics, b)
493	teachers do not have enough content knowledge, c) teachers do not have pedagogical
494	knowledge for teaching sensitive issues and d) discussing genetics in human context would
495	lead to negative learning outcomes, such as misconceptions. In general, controversial issues
496	were thought to lead to misconceptions, whereas sensitive issues were seen to lead to
497	awkward situations for individual students. We are not able to assess how relevant these
498	different factors are, but it is clear from our content emphasis classification that there are
499	fundamental differences in how teachers perceive the most important contents and contexts in
500	genetics. Furthermore, contrary to the previous studies (Hess, 2008; Phillips, 1997), our study
501	suggests that Finnish teachers are open to discuss complex human traits and other sensitive
502	issues in classroom even when they are not experienced.

503 Limitations of the study

504 While the number of interviews in our study is limited, we reached data saturation rapidly. 505 One reason for this may be the similarities in the educational background of the teachers, as 506 all of them had master's degree with biology as the major subject, and pedagogical studies in 507 teacher education as a minor subject. Moreover, the textbooks used by the teachers are quite 508 similar, emphasizing gene structure and function (Aivelo & Uitto, 2015). Due to small 509 number of participants and limited knowledge on teachers' background, we cannot discuss 510 other factors than those mentioned by the teachers: namely, the role of used textbooks, 511 biology curriculum, practicing for the matriculation examination and school-specific and 512 personal factors. The interpretive disagreements on genetics content emphasis between some 513 teachers and researchers were all related to *Developmental* emphasis. Nevertheless, the 514 interrater reliability in categorization and the concordance between teacher interviews and 515 diaries was rather high.

HOW DO TEACHERS CHOOSE CONTENT FOR TEACHING?

516	Potential sources of bias were minimized by allowing the interviews to be as freely advancing
517	as possible and questions were designed to prevent confirmation bias by probing for
518	disconfirming answers and leading questioning by starting each strain of questions by as
519	general questions as possible. Research positionality was reflected regularly through
520	interactions between the authors and in discussions with outside researchers and biology
521	teachers. The authors have multi-faceted relationship towards participant community as they
522	are involved in teacher education and in-service teachers' continuing education and both have
523	background as upper secondary school biology teachers. Both authors have also been
524	involved in national core curriculum process. Thus, the authors are insiders in the participant
525	community but also hold positions of power. This setting was approached by emphasizing to
526	teachers that they are experts in teaching practice and that the researchers were genuinely
527	interested on their answers.

528 *Implications for research and teaching practice*

529 National curriculum for upper secondary schools gives a substantial freedom to teachers to

interpret the contents and goals of biology education in classroom practice (FNBE, 2004;

531 Niemi et al., 2012). This may partly explain the fundamental differences in content emphasis

that we found. Consequently, in school practice, teacher education, and in-service training, the

teachers should be made more aware and provide opportunities for self-reflection on the

534 emphasis they take in teaching science.

535 We also suggest that our findings on which contents teachers choose for their teaching

536 provides a well-grounded hypothesis for further research on the content perspective of

537 experienced, autonomous biology teachers. The relationship between content emphasis and

the choice of course content could provide a more widely applicable hypothesis for studying

teaching and learning genetics in biology education, because teachers have freedom to choose

540 whether or not to apply sensitive human context to their teaching.

HOW DO TEACHERS CHOOSE CONTENT FOR TEACHING?

541	In light of GMO SSIs being integrated in the teaching, independent of teacher inclinations, we
542	suggest that the curriculum development would be valuable approach if genetics education
543	aims to better incorporate societal and personal relevance. Furthermore, curriculum
544	development needs to be connected with teacher education emphasizing pedagogical content
545	knowledge (Käpylä, Heikkinen, & Asunta, 2009). While teachers appreciate a "knowledge
546	first" approach to SSI and avoidance of human related topics, there is a perceived lack of
547	useful and tested teaching materials. Content knowledge is important for successful reasoning
548	regarding SSI: thus, a delicate balance needs to be sought (Lederman et al., 2014; Sadler &
549	Zeidler, 2004)
550	From our interviews, it is clear that the personal relevance in teaching can be a double-edged
551	sword in the classroom: while some teachers see it as a possibility, some seem to avoid it due
552	to a number of reasons. This needs to be addressed more in professional development. In
553	general, the ways of teaching controversial and sensitive issues are not well-studied and the
554	recommendations themselves are controversial (Christopher Oulton et al., 2004). Thus, both
555	societal and personal relevance should be taken more into account in science and especially in
556	biology teacher education and in-service training.

557

Conclusions

Based on qualitative case study and teacher interviews, we have found that teachers'
perceptions of genetics teaching reflected three different emphases, which we named as

560 Structural, Hereditary, or Developmental content emphasis. These emphases consists of

teachers' perceptions of the most important themes in genetic content, willingness to teach

about human traits, perceived sensitive or controversial issues in genetics and students'

563 perceived interests. Interestingly, teachers having *Structural* emphasis described avoidance of

564 human genetics context in their teaching, while teachers with *Developmental* emphasis

described very abundant use of human genetics contexts. Thus, teachers' perceptions of which

HOW DO TEACHERS CHOOSE CONTENT FOR TEACHING?

566	themes in genetics are the most important could also shape how likely they are to use
567	personally relevant contexts in their teaching. As we did not observe the actual teaching
568	practice, we do not know how well these emphases manifest in teaching itself and whether
569	these have an actual effect on student learning outcomes. Our ongoing research project could
570	shed light in this by comparing student interests and attitudes to their teacher's genetics
571	content emphasis. Nevertheless, we suggest that teachers' perceptions on the most important
572	themes in their teaching can have wide-ranging consequences, for example, inclusion of
573	socioscientific issues in the teaching.
574	Our results also revealed different approaches to the sensitive and controversial issues in
575	genetics teaching. Not all teachers perceived that sensitive or controversial issues would affect
576	their teaching and those who did, usually describe sensitive rather than controversial issues,
577	thus suggesting that teachers are more worried about personal issues in genetics. Indeed,
578	sensitivity was sometimes used as a justification to not include contents or contexts which are
579	personally relevant to genetics teaching. We note that teachers would need more support to
580	handle controversial and sensitive issues in the classroom. In contrast to personally relevant
581	human genetics, Finnish curriculum specifically mentions GMOs and compels teachers to
582	discuss them. Subsequently, every teacher mentioned that they discuss GMOs. Thus, we also
583	argue that curricular development is an effective way to increase the prominence of societal or
584	personal relevance in biology education.

585

HOW DO TEACHERS CHOOSE CONTENT FOR TEACHING?

586	Acknowledgments
587	The authors wish to thank the ten biology teachers who participated in this study, Marlene
588	Broemer for checking the language in manuscript, Lotta Aarikka for transcribing the
589	interviews and providing debriefing during initial analysis, Justus Mutanen for teaching diary
590	analysis and fruitful discussions and Niklas Gericke for comments on earlier version of
591	manuscript.
592	Appendix
593	Supplemental material in Figshare (doi: 10.6084/m9.figshare.8427056) includes following
594	tables containing representative quotes from teacher interviews:
595	Table S1: Teacher's descriptions of the central theme of their teaching.
596	Table S2: Teacher's descriptions of GMOs in their teaching.
597	Table S2: Teacher's descriptions of the human Mendelian disorders in their teaching.
598	Table S3: Teacher's descriptions of the complex human traits in their teaching.
599	Table S5: Teacher's descriptions of the perceived student interest in genetics.
600	Table S6: Teacher's descriptions of perceived sensitive issues.
601	Table S7: The concurrence between teaching diary and other materials in comparison to
602	teacher interviews.
602	

603

604	References
605 606 607	Adams, P. E., & Krockover, G. H. (1997). Concerns and perceptions of beginning secondary science and mathematics teachers. <i>Science Education</i> , 81(1), 29–50. https://doi.org/10.1002/(SICI)1098- 237X(199701)81:1<29::AID-SCE2>3.0.CO;2-3
608 609	Aivelo, T., & Uitto, A. (2015). Genetic determinism in the Finnish upper secondary school biology textbooks. NorDiNa - Nordic Studies in Science Education, 11(2), 139–152.
610 611	Ajzen, I. (1991). The theory of planned behavior. <i>Orgnizational Behavior and Human Decision Processes</i> , 50, 179–211. https://doi.org/10.1016/0749-5978(91)90020-T
612 613 614	Albe, V., & Simonneaux, L. (2002). L'enseignement des questions scientifiques socialement vives dans l'enseignement agricole: Quelles sont les intentions des enseignants□? Aster, (34), 131–156. https://doi.org/10.4267/2042/8791
615 616 617	Archbald, D. A., & Porter, A. C. (1994). Curriculum control and teachers' perceptions of autonomy and satisfaction. <i>Educational Evaluation and Policy Analysis</i> , 16(1), 21–39. https://doi.org/10.3102/01623737016001021
618 619	Board, M. E. (2019). Ilmoittautumiset eri kokeisiin. Retrieved July 2, 2019, from https://www.ylioppilastutkinto.fi/ext/stat/FS2019A2010T2010.pdf
620 621 622	Bryce, T., & Gray, D. (2004). Tough acts to follow: The challenges to science teachers presented by biotechnological progress. <i>International Journal of Science Education</i> , 26(6), 717–733. https://doi.org/10.1080/0950069032000138833
623 624	Charmaz, K. (2003). Grounded theory. In J. A. Smith (Ed.), <i>Qualitative Psychology: A Practical Guide to Research Methods</i> . Thousand Oaks, CA, USA.
625 626	Cheung, D., & Wong, HW. (2010). Measuring teacher beliefs about alternative curriculum designs. <i>Curriculum Journal</i> , <i>13</i> (2), 225–248. https://doi.org/10.1080/0958517021013686
627 628 629	Christenson, N., Chang Rundgren, S. N., & Zeidler, D. L. (2014). The relationship of discipline background to upper secondary students' argumentation on socioscientific issues. <i>Research in Science Education</i> , 44(4), 581–601. https://doi.org/10.1007/s11165-013-9394-6
630 631 632	Cohen, R., & Yarden, A. (2009). Experienced junior-high-school teachers' PCK in light of a curriculum change: "The cell is to be studied longitudinally." <i>Research in Science Education</i> , <i>39</i> (1), 131–155. https://doi.org/10.1007/s11165-008-9088-7
633 634 635	Cotton, D. R. E. (2006). Implementing curriculum guidance on environmental education: The importance of teachers' beliefs. <i>Journal of Curriculum Studies</i> , <i>38</i> (1), 67–83. https://doi.org/10.1080/00220270500038644
636 637	Cronin-Jones, L. L. (1991). Science teacher beliefs and their influence on curriculum implementation: Two case studies. <i>Journal of Research in Science Teaching</i> , 28(3), 235–250. https://doi.org/10.1002/tea.3660280305
638 639 640	Dawson, V. M., & Venville, G. (2008). Teaching strategies for developing students' argumentation skills about socioscientific issues in high school genetics. <i>Research in Science Education</i> , 40(2), 133–148. https://doi.org/10.1007/s11165-008-9104-y
641 642	Dawson, V., & Taylor, P. (2000). Do adolescents' bioethical decisions differ from those of experts? <i>Journal of Biological Education</i> , 34(4), 184–188. https://doi.org/10.1080/00219266.2000.9655716
643 644 645	Finnish National Board of Education (2004). <i>National Core Curriculum for Upper Secondary Schools</i> . Helsinki, Finland: Finnish National Board of Education. Retrieved from http://www.oph.fi/download/47678_core_curricula_upper_secondary_education.pdf
646 647	Fuller, F. F. (1969). Concerns of teachers: a developmental conceptualization. American Educational Research Journal, 6(2), 207–226. https://doi.org/10.3102/00028312006002207
648	Gess-Newsome, J., & Lederman, N. G. (1995). Biology teachers' perceptions of subject matter structure and its

HOW DO TEACHERS CHOOSE CONTENT FOR TEACHING?

- relationship to classroom practice. *Journal of Research in Science Teaching*, 32(3), 301–325.
 https://doi.org/10.1002/tea.3660320309
- Gray, D. S., & Bryce, T. (2006). Socio-scientific issues in science education: Implications for the professional development of teachers. *Cambridge Journal of Education*, *36*(2), 171–192.
 https://doi.org/10.1080/03057640600718489
- Hand, M., & Levinson, R. (2012). Discussing controversial issues in the classroom. *Educational Philosophy and Theory*, 44(6), 614–629. https://doi.org/10.1111/j.1469-5812.2010.00732.x
- Haney, J. J., Czerniak, C. M., & Lumpe, A. T. (1996). Teacher beliefs and intentions regarding the
 implementation of science education reform strands. *Journal of Research in Science Teaching*, *33*(9), 971–
 https://doi.org/10.1002/(SICI)1098-2736(199611)33:9<971::AID-TEA2>3.0.CO;2-S
- Hargreaves, A., Lieberman, A., Fullan, M., & Hopkins, D. (Eds.). (2010). Second International Handbook of
 Educational Change. Part 1. London, UK: Springer.
- Hashweh, M. Z. (1987). Effects of subject-matter knowledge in the teaching of biology and physics. *Teaching and Teacher Education*, 3(2), 109–120. https://doi.org/10.1016/0742-051X(87)90012-6
- Hashweh, M. Z. (2005). Teacher pedagogical constructions: A reconfiguration of pedagogical content
 knowledge. *Teachers and Teaching: Theory and Practice*, 11(3), 273–292.
 https://doi.org/10.1080/13450600500105502
- Henze, I., Van Driel, J., & Verloop, N. (2007). The change of science teachers' personal knowledge about teaching models and modelling in the context of science education reform. *International Journal of Science Education*, 29(15), 1819–1846. https://doi.org/10.1080/09500690601052628
- Hess, D. (2008). Controversial issues and democratic discourse. In L. S. Levstik & C. A. Tyson (Eds.),
 Handbook of Research in Social Studies Education (pp. 124–136).
- Hofstein, A., Eilks, I., & Bybee, R. (2011). Societal issues and their importance for contemporary science
 education-a pedagogical justification and the state-of-the-art in Israel, Germany, and the USA. *International Journal of Science and Mathematics Education*, 9(6), 1459–1483.
 https://doi.org/10.1007/s10763-010-9273-9
- 675 Huang, R. (2017). RQDA: R-based Qualitative Data Analysis. Retrieved from http://rqda.r-forge.r-project.org

Käpylä, M., Heikkinen, J., & Asunta, T. (2009). Influence of content knowledge on pedagogical content
knowledge: The case of teaching photosynthesis and plant growth. *International Journal of Science Education*, *31*(10), 1395–1415. https://doi.org/10.1080/09500690802082168

- Kuş, Z. (2015). Science and social studies reachers' beliefs and practices about teaching controversial issues:
 Certain comparisons. *Journal of Social Science Education*, 14(3), 84–97. https://doi.org/10.2390/jsse-v14 i3-1385
- Lazarowitz, R., & Bloch, I. (2005). Awareness of societal issues among high school biology teachers teaching
 genetics. *Journal of Science Education and Technology*, *14*(5–6), 437–457.
 https://doi.org/10.1007/s10956-005-0220-4
- Lederman, N. G., & Abell, S. K. (2014). *Handbook of research on science education. Volume II.* New York,
 USA: Routledge.
- Lederman, N. G., Antink, A., & Bartos, S. (2014). Nature of Science, Scientific Inquiry, and Socio-Scientific
 Issues arising from genetics: A pathway to developing a scientifically literate citizenry. *Science and Education*, 23(2), 285–302. https://doi.org/10.1007/s11191-012-9503-3
- Lee, H., Abd-El-Khalick, F., & Choi, K. (2006). Korean science teachers' perceptions of the introduction of
 socio-scientific issues into the science curriculum. *Canadian Journal of Science, Mathematics and Technology Education*, 6(2), 97–117. https://doi.org/10.1080/14926150609556691
- Leonard, B. (2010). Controversial issues in biology education? You bet! Here are some. *The American Biology Teacher*, 72(7), 407–407. https://doi.org/10.1525/abt.2010.72.7.3

- Levin, F. S., & Lindbeck, J. S. (1979). An analysis of selected biology textbooks for the treatment of
 controversial issues and biosocial problems. *Journal of Research in Science Teaching*, *16*(3), 199–203.
 https://doi.org/10.1002/tea.3660160304
- Lewis, J., & Leach, J. (2006). Discussion of socio-scientific issues: The role of science knowledge. *International Journal of Science Education*, 28(11), 1267–1287. https://doi.org/10.1080/09500690500439348
- Loewenberg Ball, D., Feiman-Nemser, S., Ball, D. L., & Feiman-Nemser, S. (1988). Using textbooks and
 teachers' guides: A dilemma for beginning teachers and teacher educators. *Curriculum Inquiry*, 18(4),
 401–423. https://doi.org/10.1080/03626784.1988.11076050
- Lynagh, M., Gilligan, C., & Handley, T. (2010). Teaching about, and dealing with, sensitive issues in schools:
 How confident are pre-service teachers? *Asia-Pacific Journal of Health, Sport and Physical Education*,
 1(3–4), 5–11. https://doi.org/10.1080/18377122.2010.9730332
- Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources, and development of pedagogical content
 knowledge for science teaching. *Examining Pedagogical Content Knowledge*, 95–132.
 https://doi.org/10.1007/0-306-47217-1_4
- Morrow, S. L. (2005). Quality and trustworthiness in qualitative research in counseling psychology. *Journal of Counseling Psychology*, 52(2), 250–260. https://doi.org/10.1037/0022-0167.52.2.250
- Newton, P., Driver, R., & Osborne, J. (1999). The place of argumentation in the pedagogy of school science.
 International Journal of Science Education, 21(5), 553–576. https://doi.org/10.1080/095006999290570
- Niemi, H., Toom, A., & Kallioniemi, A. (2012). *Miracle of Education. The Principles and Practices of Teaching and Learning in Finnish Schools.* Rotterdam, Netherlands: Sense Publishers.
- Oulton, Chris, Dillon, J., & Grace, M. M. (2004). Reconceptualizing the teaching of controversial issues.
 International Journal of Science Education, 26(4), 411–423.
 https://doi.org/10.1080/0950069032000072746
- Oulton, Christopher, Day, V., Dillon, J., & Grace, M. (2004). Controversial issues Teachers' attitudes and practices in the context of citizenship education. *Oxford Review of Education*, *30*(4), 489–507. https://doi.org/10.1080/0305498042000303973
- 721 Owens, D. C., Sadler, T. D., & Zeidler, D. L. (2017). Controversial issues in the science classroom. *Phi Delta* 722 *Kappan*, 99(4), 45–49. https://doi.org/10.1177/0031721717745544
- Pedretti, E. G., Bencze, L., Hewitt, J., Romkey, L., & Jivraj, A. (2008). Promoting issues-based STSE
 perspectives in science teacher education: Problems of identity and ideology. *Science and Education*, 17(8–9), 941–960. https://doi.org/10.1007/s11191-006-9060-8
- Phillips, J. P. (1997). Florida teachers' attitudes toward the study of controversial issues in public high school social studies classrooms. Florida State University.
- Reiss, M. J. (1999). Teaching ethics in science. *Studies in Science Education*, 34(1), 115–140.
 https://doi.org/10.1080/03057269908560151
- Remillard, J. T., & Bryans, B. (2004). Teachers' orientations toward mathematics curriculum materials:
 Implications for teacher learning. *National Council of Teachers of Mathematics*, *35*(5), 352–388.
 https://doi.org/10.2307/30034820
- Rowling, L. (1996). A comprehensive approach to handling sensitive issues in schools, with special reference to
 loss and grief. *Pastoral Care in Education*, *14*(1), 17–21. https://doi.org/10.1080/02643949609470950
- Sadler, T. D., & Zeidler, D. L. (2004). The morality of socioscientific issues: Construal and resolution of genetic
 engineering dilemmas. *Science Education*, 88(1), 4–27. https://doi.org/10.1002/sce.10101
- Shawer, S. F. (2017). Teacher-driven curriculum development at the classroom level: Implications for
 curriculum, pedagogy and teacher training. *Teaching and Teacher Education*, 63, 296–313.
 https://doi.org/10.1016/j.tate.2016.12.017
- 740 Spiegel, D. L., & Wright, J. D. (1984). Biology teachers ' preferences in textbook characteristics. Journal of

HOW DO TEACHERS CHOOSE CONTENT FOR TEACHING?

- 741 *Reading*, 27(7), 624–628.
- Stewart, J., Cartier, J. L., & Passmore, C. M. (2005). Developing Understanding Through Model-Based Inquiry.
 How Students Learn, 515–565.
- Team, R. C. (2013). R: A language and environment for statistical computing. Vienna, Austria.: R Foundation
 for Statistical Computing. Retrieved from http://www.r-project.org/
- Tidemand, S., & Nielsen, J. A. (2017). The role of socioscientific issues in biology teaching: from the
 perspective of teachers. *International Journal of Science Education*, 39(1), 44–61.
 https://doi.org/10.1080/09500693.2016.1264644
- Timmermans, S., & Tavory, I. (2012). Theory construction in qualitative research: From grounded theory to
 abductive analysis. *Sociological Theory*, *30*(3), 167–186. https://doi.org/10.1177/0735275112457914
- Van Driel, J. H., Beijaard, D., & Verloop, N. (2001). Professional development and reform in science education:
 The role of teachers' practical knowledge. *Journal of Research in Science Teaching*, *38*(2), 137–158. https://doi.org/10.1002/1098-2736(200102)38:2<137::AID-TEA1001>3.0.CO;2-U
- van Driel, J. H., Bulte, A. M. W., & Verloop, N. (2008). Using the curriculum emphasis concept to investigate
 teachers' curricular beliefs in the context of educational reform. *Journal of Curriculum Studies*, 40(1),
 107–122. https://doi.org/10.1080/00220270601078259
- Wieringa, N., Janssen, F. J. J. M., & van Driel, J. H. (2011). Biology teachers designing context-based lessons
 for their classroom practice: The importance of rules-of-thumb. *International Journal of Science Education*, 33(17), 2437–2462. https://doi.org/10.1080/09500693.2011.553969
- Zeidler, D. L., Walker, K. A., Ackett, W. A., & Simmons, M. L. (2002). Tangled up in views: Beliefs in the
 Nature of science and responses to socioscientific dilemmas. *Science Education*, 86(3), 343–367.
 https://doi.org/10.1002/sce.10025

763

HOW DO TEACHERS CHOOSE CONTENT FOR TEACHING?

Table 1: The Core content described in the Finnish national curriculum with selected parts

from courses BI2 and BI5

Topics	BI2—Cell and genetics	BI5—Biotechnology		
	Mandatory course	Optional course		
DNA and genes	DNA structure and	DNA, gene and genome		
	function	structure		
	Genes and alleles			
	Protein synthesis	Gene function and regulation		
Cell functions	Gametes and meiosis			
	Mitosis			
Inheritance	Inheritance mechanisms			
	Population genetics			
Applications		Gene technology		
SSI		Ethics and legal issues in gene		
		technology		

Running head: HOW DO TEACHERS CHOOSE CONTENT FOR TEACHING?

Table 2: Summary of interviews of ten interviewed teachers. For details, see the supplemental material.

Teacher	Gender	Central theme of teaching	Examples of Human Mendelian traits	Examples of Complex human traits	Perceived controversial or sensitive issues	Perceived student interest	Genetics content emphasis	Teacher concurrence with analysis
А	Female	Development of phenotype	Disorders, lactose intolerance	Life style diseases	None	Artistic talent, epigenetics	Developmental	Yes
В	Male	Development of phenotype	Disorders, blood groups, tongue roll	Height, skin colour, talent	None	Epigenetics, talents, monohybrid crosses	Developmental	Yes
С	Female	Inheritance and continuity	Disorders	Eye color, generally avoid	Intelligence	Gene tests	Hereditary	Yes
D	Male	Inheritance and continuity	Disorders	Height, skin colour	Human race- related	Medical genetics	Hereditary	No answer
Е	Male	The structure and function of genes	Eye colors, generally avoid	Shoe size, generally avoid	Intelligence	Mono- and dihybrid crosses	Structural	Yes
F	Female	Development of phenotype	Disorders, tongue roll, widow's peak	Height	None	Challenging contents	Developmental	No; Structural
G	Female	The structure and function of genes	Tongue roll, eye colors, generally avoid	Height, hair coloration, generally avoid	Intelligence, talent, genetic disorders	Mono- and dihybrid crosses	Structural	Yes
Н	Female	Inheritance and continuity	Tongue roll, ear lobe	Skin color, generally avoid	None mentioned	Inheritance patterns	Hereditary	Yes
Ι	Male	Development of phenotype	Disorders	Stress reaction, intelligence	None	Sex-related traits	Developmental	No; Structural
J	Female	Development of phenotype	Disorders, eye colour, ear lobe	Height, skin colour	Developmental disorders	Musicality, own complex traits	Developmental	No; Hereditary

Running head: HOW DO TEACHERS CHOOSE CONTENT FOR TEACHING?

- 767 Table 3: Three different content emphasis and the teacher perceptions and descriptions which
- 768 differ between emphasis.

Content emphasis	Structural	Hereditary	Developmental
Central theme	Gene structure and	Continuity of DNA	Development of
	function	through time	traits
Human context			
1. Human Mendelian	Avoid	Use as examples	Use as examples
disorders			
2. Complex human	Avoid	If students ask	Use as examples
traits			
Perceived student	Monohybrid,	Gene tests, medical	Epigenetics, complex
interest	dihybrid crosses	genetics	human traits

769