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Abstract 12	  

Venom from the parasitoid wasp Nasonia vitripennis dramatically elevates sorbitol 13	  

levels in its natural fly hosts.  In humans, sorbitol elevation is associated with 14	  

complications of diabetes.  Here we demonstrate that venom also induces this 15	  

disease-relevant phenotype in human cells, and investigate possible pathways 16	  

involved.  Key findings are that (a) low doses of Nasonia venom elevate sorbitol 17	  

levels in human renal mesangial cells (HRMCs) without changing glucose or 18	  

fructose levels; (b) venom is a much more potent inducer of sorbitol elevation than 19	  

glucose; (c) low venom doses significantly alter expression of genes involved in 20	  

sterol and alcohol metabolism, transcriptional regulation, and chemical/stimulus 21	  

response; (d) although venom treatment does not alter expression of the key 22	  

sorbitol pathway gene aldose reductase (AR); (e) venom elevates expression of a 23	  

related gene implicated in diabetes complications (AKR1C3) as well as the 24	  

fructose metabolic gene (GFPT2).  Although elevated sorbitol is accepted as a 25	  

major contributor to secondary complications of diabetes, the molecular 26	  

mechanism of sorbitol regulation and its contribution to diabetes complications are 27	  

not fully understood.  Our findings suggest that genes other than AR could 28	  

contribute to sorbitol regulation, and more broadly illustrate the potential of 29	  

parasitoid venoms for medical application.   30	  

  31	  
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INTRODUCTION 32	  

Venom from the parasitoid wasp Nasonia vitripennis causes significant sorbitol 33	  

accumulation in insect hosts without altering glucose level (1).  Few studies have 34	  

examined the conservation of parasitoid venom phenotypes in a human disease relevant 35	  

model (2).  Elevated sorbitol is believed to be a major contributing factor to secondary 36	  

complications of diabetes (3), particularly kidney disease, which is a leading cause of 37	  

morbidity and mortality in diabetics (4).  However, the mechanism of sorbitol pathway 38	  

regulation in the human kidney and relative contribution to glucose-induced damage is 39	  

not well understood.  Here we demonstrate conservation of this significant Nasonia 40	  

venom phenotype in human cells and present a novel approach to study effects of 41	  

sorbitol elevation in vitro, independent of glucose elevation. 42	  

Parasitoid wasps are small, abundant, and diverse hymenopteran insects with an 43	  

estimated 100-400 thousand species (5-7).  Female wasps inject venom into a fly host to 44	  

manipulate its physiology in ways conducive to the growth of the wasp’s offspring, 45	  

turning the host into an incubator with favorable biochemical composition (1, 2, 8-10).  46	  

Because parasitoid wasps exploit a diverse and evolutionary divergent set of 47	  

invertebrate hosts (11), it is likely that the specific venom targets within these hosts are 48	  

evolutionarily conserved.  There is an interest in utilizing parasitoid venoms for 49	  

pharmacological applications in human disease (12, 13), although it has not been 50	  

extensively explored as of yet.   51	  

Our study organism, N. vitripennis, is a parasitoid wasp often used as an experimental 52	  

and genomic model organism (14, 15).  A complete N. vitripennis genome (16), and 53	  

partially characterized venom proteome are both publicly available (12, 17-19).  Adult 54	  
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Nasonia females produce at least 93 venom peptides, including 23 novel proteins that 55	  

demonstrate no homology to described sequences in other non-parasitoid organisms 56	  

(17, 20).  Upon injection into the fly host (Sarcophaga bullata), Nasonia venom causes 57	  

several discrete metabolic changes, including a striking >20-fold increase in sorbitol with 58	  

no effect on glucose levels (1).  This sorbitol accumulation is preceded by induction of a 59	  

subfamily of aldo-keto reductase (AKR) genes in the fly host, that belong to a larger 60	  

family of AKRs which includes the human aldose reductase (9).   61	  

Aldose Reductase (AR) is annotated as the canonical sorbitol-synthesizing enzyme, it 62	  

is known to convert glucose to sorbitol when glucose levels are high and it is generally 63	  

assumed that elevation of sorbitol is primarily or exclusively caused by this enzyme (21-64	  

23).  However, expression of a related AKR1C3 has been found to be specifically 65	  

elevated in the glomerulus of patients with diabetic nephropathy (24, 25), suggesting that 66	  

related enzymes may also play a role in this disease process.  Sorbitol dehydrogenase 67	  

(SD) is another important enzyme in the pathway that converts sorbitol to fructose.  68	  

Insulin-insensitive cells – such as those in the kidney glomerulus, retina, and Schwann 69	  

cells – express relatively little SD.  As a result, these cells accumulate sorbitol when 70	  

glucose to sorbitol conversion is increased (26).  Inhibiting sorbitol synthesis has been a 71	  

major target of drug design to prevent damage to glomerular cells (21, 23, 27-29).  The 72	  

relative contribution of sorbitol to this disease process is not well understood as few 73	  

studies have examined sorbitol pathway regulation in human cells under biologically 74	  

relevant levels of glucose (22), or independent of other potential consequences of 75	  

hyperglycemia.  76	  

In this study, we investigate whether venom from the parasitoid wasp N. vitripennis, 77	  

which dramatically elevates sorbitol in flies without altering glucose levels, can also 78	  
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induce elevation of sorbitol in primary human renal mesangial cells (HRMCs) from the 79	  

glomerulus.  We then compare this induction to high glucose treatment alone to assess 80	  

relative efficacy of venom and glucose to elevate sorbitol.  We also investigate whether 81	  

venom induces targeted gene expression changes prior to sorbitol accumulation as a 82	  

method of identifying potentially causative genes.  Finally, we use computational 83	  

methods to determine the relative binding affinity for glucose of the canonical (AR) and 84	  

other candidate AKR enzymes.  This study reveals a conserved venom function (sorbitol 85	  

elevation) across vastly divergent species (S. bullata and H. sapiens) and provides a first 86	  

step to evaluating additional candidate genes for regulating sorbitol metabolism in 87	  

human cells. 88	  

MATERIAL AND METHODS 89	  

2.1 Cell culture system: Human renal mesangial cells (HRMCs) were chosen because 90	  

of their high rate of metabolic activity, as well as their important roles in regulating blood 91	  

flow in the kidney and in the pathophysiology of diabetic nephropathy (30, 31).  Within 92	  

the kidney, these cells are located in close apposition to the glomerular arterioles and 93	  

therefore are exposed to circulating levels of glucose in the blood.  Primary HRMCs 94	  

(designated P1 in our lab) were purchased from ScienCell and cultured according to the 95	  

published protocol (30-32).  Cells were expanded in culture to P3 and then stored in 96	  

liquid nitrogen for all subsequent experiments.  All RNA-Sequencing (RNA-Seq) and 97	  

metabolic experiments were conducted on HRMCs at low passage number (<P5).  98	  

2.2 Wasp rearing and venom: N. vitripennis were reared as previously described (33, 99	  

34).  Venom was collected by micro-dissection of the venom reservoir of adult female 100	  

Nasonia vitripennis wasps per the previously published protocol (1, 18).  Reservoirs 101	  
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were then lysed by centrifugation; venom was suspended at a concentration of 1 venom 102	  

reservoir equivalent (VRE) per 1 ml of isotonic PBS solution and filtered through 0.22 103	  

mm PVDF centrifugal filters [Millipore-Sigma, Dramstadt Germany] to remove bacterial 104	  

contamination.  To produce different concentrations of venom, serial dilutions in PBS 105	  

were performed.  A total volume of 128 μl for each solution was added to 1 mL cell 106	  

culture medium to produce different venom doses of 0, 1/128, 1/64, 1/16, 1/4, 1, 4, 16, 107	  

64, and 128 VRE per well and applied to cells grown to 70% confluence in a 24-well 108	  

culture plate.  Application of venom doses was randomized and all doses were applied 109	  

over a five-minute period.  Previous estimates of protein concentration indicate that one 110	  

VRE contains approximately 1.54 μg of dry weight venom protein (35), giving a dose 111	  

range of 1.2 x 10-2 to 197.1 mg/mL across our treatment conditions. 112	  

2.3 Effects of venom on HRMCs: The effect of venom was initially assessed by 113	  

microscopy to examine cell count and gross phenotypic changes.  Cells were 114	  

photographed at baseline and again after 1 hour, 4 hours, and 24 hours of incubation 115	  

with venom.  Photos were trimmed, and cell count was assessed using ImageJ Analyze 116	  

Particles function (36).  Intracellular sorbitol level was measured, and RNA-Seq of total 117	  

RNA was used to assess transcription at the same time points in samples that were 118	  

plated and dosed concurrently.  119	  

2.4 Effects of glucose on HRMCs: To compare the effect of glucose versus venom on 120	  

sorbitol level, HRMCs were cultured with escalating doses of glucose (5.5, 11, 25, 55, 121	  

110, 220 mM) dissolved in the cell culture media.  Standard culture media contains 5.5 122	  

mM (1 g/L) of glucose.  Glucose dose range was selected based on published work 123	  

examining stimulation of the sorbitol pathway by hyperglycemia alone (37).  Of note, 124	  

previous experiments designed to assess activation of the sorbitol pathway routinely use 125	  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 20, 2018. ; https://doi.org/10.1101/351031doi: bioRxiv preprint 

https://doi.org/10.1101/351031


	   7 

the highest glucose dose (220 mM), which is equivalent to a blood glucose level of 3960 126	  

mg/dL, well above the physiological range observed in diabetic patients even during 127	  

acute ketoacidosis (127-1000 mg/dL).  We included these doses in order to evaluate the 128	  

effects of venom relative to standard methods for sorbitol activation.  129	  

2.5 Sorbitol, Glucose and Fructose assays: We assessed intracellular levels of 130	  

sorbitol pathway sugars by removing excess media, washing cells with isotonic PBS 131	  

solution, and then lysing cells in collection solution.  Assays were performed as per 132	  

protocols for the colorimetric D-Sorbitol Assay Kit and Glucose Assay Kit [Adcam, 133	  

Cambridge MA] to measure fructose, sorbitol, and glucose.  Epoch microplate 134	  

spectrophotometer [BioTek, Winooski VT].  Sorbitol elevation is then calculated relative 135	  

to the sorbitol level detected in control samples (5.5 mM glucose, no venom), and 136	  

similarly for fructose and glucose.  To establish comparable measures of sorbitol, fold 137	  

sorbitol elevation was calculated as the increase in sorbitol observed in experimental 138	  

samples relative to controls pooled across all sorbitol assays (venom and glucose 139	  

treatment).  Protein concentration within cell lysate was used as a proxy measure of total 140	  

cell density and was used to normalize sorbitol level. 141	  

2.6 RNA-Seq and gene expression: RNA was collected with TRIzol® reagent as per 142	  

manufacturer’s published protocol [Invitrogen Corporation, Carlsbad CA].  Quality 143	  

measure was obtained using an Agilent 2100 bioanalyzer and all samples were 144	  

determined to have an RNA Integrity of >9.0 prior to sequencing.  mRNA abundance 145	  

was quantified using high throughput RNA-Seq performed on an Illumina Hi-Seq2500 146	  

machine (50 base, single-end reads) with 20-25 million reads per sample, as per our 147	  

previously published workflow (9, 18).  The TruSeq RNA Sample Preparation Kit V2 148	  

[Illumina, San Diego CA] was used for next generation sequencing library construction 149	  
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per manufacturer’s protocols.  The University of Rochester Functional Genomics Center 150	  

performed the library preparation and sequencing according to standard Illumina 151	  

protocols. 152	  

For NGS data processing, raw 50 bp reads were de-multiplexed using configure 153	  

bcl2fastq.pl version 1.8.3.  Low complexity reads and vector contamination were 154	  

removed using sequence cleaner (“seqclean”) and the NCBI univec database, 155	  

respectively.  The FASTX toolkit (fastq_quality_trimmer) was used to remove bases with 156	  

quality scores below Q=13 from the end of each read.  Sequence data are available in 157	  

the NCBI Sequence Read Archive (SRA) SUB4119836, BioProject ID PRJNA475146.  158	  

Cleaned reads were aligned to the human genome assembly version 19/GRCh37 (38) 159	  

using the Burrows-Wheeler Aligner with the default settings (39).  Read counts were 160	  

generated with HTSeq (40).  In a pilot study, we sequenced a single replicate of all 161	  

venom doses at three time points after exposure (1, 4, and 24 hours).  For sorbitol 162	  

elevating doses (1/128, 1/64, and 1/16 VRE) we sequenced two additional biological 163	  

replicates (for a total of three) 4 hours after exposure and assessed gene expression as 164	  

compared to time-matched, pooled, replicated controls (n=5).  Statistical tests of 165	  

differential expression (DE) were performed using the edgeR module in R (41-43).  166	  

Design matrix was programmed to control for batch effect “model.matrix(~batch+group)”.  167	  

For edgeR, significant DE cutoff was set at the p<0.05 and FDR<0.01 level as per the 168	  

recommended workflow (44).  169	  

2.7 In silico protein structural prediction: AKR proteins from Homo sapiens were 170	  

input into Phyre2 structural prediction software (45) and structures were estimated using 171	  

the Intensive setting.  Previously published structures of control (AKR1A1), candidate 172	  

(AKR1C*, AKR1D1) and known (AR = AKR1B1, SD) H. sapiens sorbitol pathway 173	  
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enzymes were downloaded from NCBI and structures were compared to predicted 174	  

structures for accuracy.  Molecular configuration of ligands and cofactors were 175	  

downloaded from the Research Collaboratory for Structural Bioinformatics, Protein Data 176	  

Bank Ligand Expo database (46, 47).  Docking potential to sorbitol pathway sugars 177	  

(glucose, sorbitol, fructose) was assessed for known H. sapiens enzymes with 178	  

iGemDock (48, 49).  To assess relative docking potential of AKR enzymes, the 179	  

docking algorithm was run with a population size of 200, with 70 generations, and 180	  

simultaneously estimated docking of either cyclical glucose with NADPH cofactor or 181	  

sucrose with NAPD+ cofactor.  iGemDock predictions were generated twice: first with 182	  

default settings, and second with predicted active sites from Phyre2 included.  Optimal 183	  

program parameters were then selected to generate all estimates of relative binding 184	  

affinity. 185	  

RESULTS 186	  

High venom doses are associated with growth inhibition and cell toxicity.  We first 187	  

assessed the effects of different venom doses on HRMC growth and morphology, 188	  

standardizing treatments to venom reservoir equivalents (VRE).  Our group and others 189	  

have previously demonstrated that 1 VRE (~1.54 μg dry weight venom protein) per host 190	  

is sufficient to recapitulate the developmental arrest and delayed host mortality 191	  

phenotype observed in envenomated natural fly hosts, as well as to induce significant 192	  

gene expression changes in conserved metabolic pathways in fly hosts (18, 35).  In our 193	  

initial assessment we examined a wide dose range from 1/128 up to 128 VREs, applied 194	  

to cells at 70% confluence and then incubated for 1 hour, 4 hours, and 24 hours.  All 195	  

venom doses cause an initial decline in cell count at 1 hour, with variable recovery in 196	  
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growth rate (Figure 1).  Sorbitol elevating venom doses (1/128, 1/64, and 1/16 VRE) 197	  

resulted in an accelerated growth rate in the 4-24 hour period over controls.  Signs of 198	  

apoptosis including cell membrane blebbing were evident at the highest doses (64 and 199	  

128 VRE) (Figure 1).  Qualitative signs of less overt cell toxicity including increased 200	  

nuclear inclusions were present at somewhat lower doses (4 and 16 VRE).  We 201	  

observed a marked decrease in cell count at 24 hours after exposure to the highest 202	  

venom doses of 16, 64, and 128 VRE; Intermediate dose 4 VRE caused a slight 203	  

decrease in total cell count (Figure 1).  These findings are consistent with previous 204	  

observations that Nasonia venom causes apoptosis only at very high concentrations (2).  205	  

To avoid complications of cell pathology at the high doses, we concentrated our next 206	  

analyses on lower venom doses (1/128 to 1 VRE). 207	  

Nasonia venom elevates intracellular sorbitol in primary HRMCs without changing 208	  

intracellular glucose or fructose levels.  We assessed intracellular levels of sorbitol 209	  

pathway sugars as per our experimental protocol (see Methods).  After 1 and 4 hours of 210	  

incubation with venom we observed no elevation of sorbitol or fructose level over that of 211	  

controls for any of the venom doses (1/128 – 1 VRE).  Sorbitol was markedly elevated 212	  

after 24-hours of exposure, when venom caused a 5 to 25-fold increase in intracellular 213	  

sorbitol levels (Figure 2).  Elevation of sorbitol was greatest at the lowest venom dose 214	  

(1/128 VRE - 9.6 x 10-2 mg per mL).  Significant increases were found at 1/128, 1/16, 215	  

1/4, and 1 VRE (n=6 per venom dose; 2-tailed student’s t-test p<0.001 for 1/128 and 1 216	  

VRE, p<0.05 for 1/16 and ¼ VRE) and a non-significant increase at 1/64 (p=0.12).  All 217	  

venom doses 1/128 to 1 VRE significantly increased sorbitol over the controls (ANOVA 218	  

p<0.0001).  These results demonstrate conservation of the prominent Nasonia venom 219	  

phenotype, sorbitol elevation, between the natural fly host S. bullata (1) and cultured 220	  
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cells from Homo sapiens.  This phenotype coincides with an apparent absence of cell 221	  

growth inhibition or visible signs of apoptosis.  The finding suggests that the mechanism 222	  

of venom-induced sorbitol accumulation is likely conserved, and therefore represents an 223	  

important potential target for understanding sorbitol pathway regulation.  224	  

Venom is a strong inducer of sorbitol elevation compared to glucose.  To 225	  

compared the venom phenotype to glucose-mediated sorbitol elevation, we also 226	  

incubated HRMCs with escalating glucose concentrations and then assayed intracellular 227	  

sorbitol levels at 24 hours.  There is a significant elevation of sorbitol at the highest 228	  

glucose concentrations of 110 mM and 220 mM (19.8 – 39.6 g/L) as compared to 229	  

controls in standard culture media (n=4 per glucose concentration; 2-tailed student’s t-230	  

test p<0.05 for 110 and 220 mM, and not significant for 11, 25, and 55 mM) (Figure 3).  231	  

Yet, peak glucose-induced sorbitol elevation was less than half that observed with low 232	  

doses of venom – 1.2 x 10-8 g of venom (1/128 VRE) had 2.1 times the effect of 3.96 x 233	  

10-2 g (220 mM) of glucose on sorbitol level.  This gives venom a per unit weight 234	  

efficacy in inducing sorbitol elevation that is 2.1 x 106 greater than glucose.  As 235	  

these calculations are based on total venom concentration, it is likely that the specific 236	  

venom factors involved in sorbitol elevation are even more potent.  237	  

Low-dose venom alters expression of human metabolic genes in a pattern similar 238	  

to that observed in the natural fly host.  To initially survey genome wide gene 239	  

expression changes in HRMCs exposed to different venom doses, single RNA-Seq 240	  

replicates were employed for 1 hour, 4 hours and 24 hours after low-dose venom 241	  

exposure (0, 1/128 VRE, 1/64 VRE, 1/16 VRE).  At 1-hour post venom exposure, RNA-242	  

Seq showed no differentially expressed genes compared to control for any of the doses, 243	  

suggesting that venom is not directly targeting preformed mRNA within the cells.  After 4 244	  
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hours a number of genes are differentially expressed (153 at 1/128 VRE, 95 at 1/64 245	  

VRE, and 182 at 1/16 VRE).  In contrast, by 24 hours relatively fewer genes are 246	  

differentially expressed at all venom doses compared to controls (67 at 1/128 VRE, 22 at 247	  

1/64 VRE, and 127 at 1/16 VRE).  248	  

Based on these results, we decided to focus attention on changes at 4 hours because 249	  

they are most likely to reflect primary effects of venom that correspond to the observed 250	  

sorbitol elevation at 24 hours post-exposure.  Two additional biological replicates were 251	  

sequenced for each of the sorbitol-elevating venom doses (1/128, 1/64, and 1/16 VRE) 252	  

along with two additional experimental controls, for a total of 3 biological replicates per 253	  

dose and 5 control samples.  The number of significant venom responsive genes ranged 254	  

from 137 (1/16 VRE) to 1605 (1/64 VRE) with the lowest dose (1/128) being intermediate 255	  

(426) (Figure 4).  256	  

There is a set of 127 genes that were significantly differentially expressed across all 3 257	  

sorbitol-elevating doses (p<0.05, FDR<0.01, Figure 4); with 58 genes down-regulated 258	  

and 69 up-regulated in response to venom treatment.  The direction of change for each 259	  

of these genes was the same across all three venom doses.  This represents only 0.54% 260	  

of transcripts detectable in HRMCs (127/23368 contigs).  Gene ontologies of this 261	  

overlapping set (n=127) cluster in a limited number of metabolic pathways, which 262	  

includes up-regulation of sterol and small molecule metabolism, as well as modulation of 263	  

chemical/stimulus response and cell signaling genes, and down-regulation of 264	  

developmental and structural genes (Tables S1 & S2).   265	  

At 4 hour post treatment, up-regulated genes primarily function in metabolism, including 266	  

alcohol (lanosterol synthase, insulin induced gene 1, acetyl-coa acetyltransferase 2, 267	  
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farnesyl diphosphate synthase), steroid hormones and cholesterol (nadp-dependent 268	  

steroid dehydrogenase-like, 7-hydroxycholesterol reductase, 24-dehydroxycholesterol 269	  

reductase, LDL receptor, and 2 sterol regulatory element binding transcription factors), 270	  

and hydroxyl compounds (synuclein alpha, mevalonate decarboxylase).  Down-271	  

regulated genes include those involved in extracellular matrix organization (matrix 272	  

metallopeptidase 1, collagen type IV and V, chondroitin sulfate n-273	  

acetylgalactosaminyltransferase I, and gremlin), cell migration (fibroblast growth factor I, 274	  

split homolog), chemotaxis (thrombospondin I, endothelin I, coagulation factor III), fatty 275	  

acid transport (insulin receptor substrate 2), coagulation and regulation of wound healing 276	  

(serpin peptidase inhibitor, heparin-binding egf-like growth factor, coagulation factor III).  277	  

A large number of DE genes are annotated as ‘Positive Regulation of Transcription from 278	  

RNA Polymerase II Promoter’ (enrichment score 2, p=9.10E-04, E=3.67E-02).  This 279	  

includes both up-regulated (n=10) and down regulated (n=6) genes.  The finding 280	  

suggests a direct effect of Nasonia venom on transcriptional regulation in HRMCs and 281	  

may explain the persistence of venom effects 24 hours post-exposure. 282	  

MT-RNR2-like 1 is the most significantly differentially expressed gene in this overlapping 283	  

set.  It is a mitochondrial-derived nuclear gene with sequence homology to Humanin 1.  284	  

Humanin and its derivatives have been implicated in protection against oxidative stress 285	  

mediated by superoxide dismutase (50, 51).  Low dose venom causes between a -9.11 286	  

to -9.26 log2-fold decrease in expression of this gene at 4 hours, and this gene has the 287	  

highest DE rank across all sorbitol-elevating doses of venom. 288	  

We also examined DE genes at 24 hours of exposure by pooling the three single-289	  

replicate, low-dose venom exposed samples (1/128, 1/64, and 1/16 VRE).  At this time-290	  
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point there were 47 differentially expressed genes; with 12 down-regulated and 35 up-291	  

regulated.  Of these 26 were not differentially expressed at 4 hours. The remaiing 21 292	  

genes were differentially expressed at both 4 and 24 hours, with 18 showing the same 293	  

direction of change (17 genes remain up-regulated and 1 gene remains down regulated) 294	  

and 3 showing a significant reversal in expression (Table S3).  All differentially 295	  

expressed genes show a marked reduction in the magnitude of the fold change at 24 296	  

hours as compared to 4 hours.  Gene ontology analysis of the full set of 47 genes again 297	  

shows significant enrichment for alcohol and steroid metabolism, and hormone response 298	  

(Table S3).   299	  

The broad pattern of change is similar to our previous findings of venom-induced 300	  

expression effects in the natural fly host transcriptome, including alcohol, steroid 301	  

metabolism, and hormone biosynthesis (9).  The observation suggests strongly 302	  

conserved venom functions between two species that are approximately 520 million 303	  

years divergent from one another, the divergence time of deuterostomes and 304	  

protostomes (52).  305	  

Canonical sorbitol pathway genes AR and SD do not show expression changes, 306	  

but AKR1C3 does.  Both venom and glucose cause elevation of sorbitol at 24-hours.  307	  

We therefore investigated sorbitol pathway gene expression changes that precede this 308	  

elevation, for known and suspected genes involved in sorbitol metabolism (53).  Neither 309	  

the canonical AR (AKR1B1) nor the downstream enzyme in the sorbitol pathway, SD, 310	  

showed significant up-regulation 4 hours after treatment with Nasonia venom.  In 311	  

contrast, sorbitol-elevating Nasonia venom doses (1/128, 1/64, 1/16 VRE = 1.2 x 10-2, 312	  

2.4 x 10-2, 9.6 x 10-2 μg/mL) cause significant up-regulation of the gene encoding an 313	  

enzyme related to AR, AKR1C3 (log2-fold change and FDR of 1.28 at 1.95E-3, 1.20 at 314	  
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9.44E-04, and 1.05 at 8.26E-03 respectively).  These low venom dose responses were 315	  

observed 4-hours after venom treatment, which is 20-hours prior to the detected sorbitol 316	  

accumulation.   Neither AR nor AKR1C3 are significantly differentially expressed at 24 317	  

hours in our single-replicate pilot experiment.  318	  

AKR1C3 belongs to the same protein family as AR but is not recognized as a sorbitol 319	  

pathway gene.  However, the gene has previously been identified amongst the top 50 320	  

genes differentially expressed in vivo in diabetic nephropathy (54).  AKR1C3 is a 321	  

member of a sub-family of aldo-keto reductase encoding genes, arranged in a syntenic 322	  

group on human chromosome 10p15-p14, some of which are known to be 323	  

transcriptionally co-regulated (55).  Studies have focused on the function of AKR1C* 324	  

sub-family enzymes in steroid hormone metabolism (56).  Their role in sugar metabolism 325	  

has not been investigated.  These candidate sorbitol-pathway AKRs exhibit 48-49% 326	  

protein sequence identity with the canonical sorbitol synthesizing enzyme AR (AKR1B1) 327	  

(57).   328	  

Based on the RNASeq results, AKR1C3 is a potential candidate for involvement in 329	  

sorbitol synthesis.  To investigate the likelihood of enzyme interaction with sorbitol 330	  

pathway substrates, we estimated relative binding affinity (Km) of candidate sorbitol 331	  

pathway AKRs from humans, using in silico modeling of docking potential for glucose 332	  

with NADPH cofactor bound.  Docking potential is the predicted affinity of small 333	  

molecules, in this case glucose, for a receptor of known or predicted 3-dimensional 334	  

structure (48, 49).  The more negative the estimate produced by iGemDocks, the greater 335	  

the predicted binding affinity for the target substrate.  Three AKR1C* sub-family 336	  

enzymes (1C1, 1C2, 1C3) exhibited greater relative binding affinity for glucose than did 337	  

the canonical sorbitol-synthesizing enzyme AR (AKR1B1) (Table 3).  AKR1C3 had the 338	  
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highest predicted binding affinity for glucose (-70.46 relative to -65.04 for AR).  AKR1C1, 339	  

1C2, 1C3 enzymes could therefore interact with elevated glucose more strongly than the 340	  

low-affinity AR, which required high levels of substrate to catalyze the glucose to sorbitol 341	  

conversion, both in vitro and in vivo (53).  A role of these AKRs in glucose to sorbitol 342	  

conversion in human insulin-insensitive cells has not been widely considered, but these 343	  

results suggest that they warrant further investigation.  344	  

Discussion 345	  

Here we present the first demonstration that parasitoid venom can affect a clinically 346	  

important trait (sorbitol level) in human cells.  The sorbitol pathway is thought to be a 347	  

major contributor to pathogenesis of diabetic kidney disease (3, 26, 58).  However, the 348	  

effects of the sorbitol pathway on cellular dysregulation have been inextricable from 349	  

other effects of hyperglycemia in previous in vitro and in vivo model systems (22, 37).  350	  

Nasonia venom uncouples sorbitol pathway activation from hyperglycemia in human 351	  

kidney cells in vitro and is a highly potent inducer of sorbitol elevation (2.1 x 106 higher 352	  

efficacy than glucose per unit weight).  Venom also elevates sorbitol without elevating 353	  

glucose in the natural fly host of Nasonia (1).  Therefore, this demonstrates conservation 354	  

of a parasitoid wasp venom phenotype in human cells with potential medical relevance.  355	  

Direct interaction of venom proteins with sorbitol pathway enzyme(s) is a possible 356	  

mechanism of action but would likely lead to immediate alteration of catalytic function.  357	  

However, at 1 and 4 hours after venom exposure, we did not observe significant 358	  

elevation of sorbitol levels, making this mechanism less likely.  In contrast, venom 359	  

treatment induces transcription of likely sorbitol pathway enzymes (AKRs) at 4 hours 360	  

post exposure, which precedes intracellular sorbitol elevation observed at approximately 361	  

24-hours.  These findings support a model of parasitoid wasp venom acting through a 362	  
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transcriptional mechanism to alter sorbitol metabolism in HRMCs under normoglycemic 363	  

conditions.   364	  

Nasonia venom significantly elevates sorbitol in human renal cells in culture without 365	  

altering levels of glucose or fructose.  We examined gene expression changes occurring 366	  

at 4 hours, 20 hours prior to the elevated sorbitol phenotype, to identify a putative 367	  

mechanism.  We focused our attention on the AKRs that have been implicated in sorbitol 368	  

metabolism and/or diabetic nephropathy (59).  One of these genes (AR) has traditionally 369	  

been annotated as encoding the primary sorbitol-synthesizing enzyme.  Although AR 370	  

was not responsive to venom another related enzyme, AKR1C3, was significantly 371	  

upregulated in response to low venom doses.  AKR1C3 has been implicated in the 372	  

pathophysiology of diabetic nephropathy - although no mechanism has been proposed 373	  

(54).  374	  

Protein structural prediction and glucose docking reveal that AKR1C* enzymes have a 375	  

relatively higher binding affinity for glucose than the canonical sorbitol synthesizing 376	  

enzyme AR (AKR1B1).  AKR1C3 may catalyze sorbitol synthesis in vivo, thereby 377	  

contributing to sorbitol accumulation and glomerular dysfunction.  This enzyme has been 378	  

identified as one of fifty top genes up-regulated in the glomerulus of patients with 379	  

diabetic nephropathy (54).  AR has a low affinity for glucose and has been shown to 380	  

catalyze sorbitol synthesis in vitro only when intracellular glucose levels are artificially 381	  

elevated to levels much higher than would be experienced in vivo (60).  Other AKRs may 382	  

more efficiently catalyze sorbitol synthesis and therefore could also serve this function in 383	  

vivo at physiologic intracellular glucose levels, comparable to those experienced by 384	  

kidney cells during hyperglycemia (53, 61-63).   385	  
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This study clearly reveals the potential of using Nasonia venom for studying sorbitol 386	  

regulation in human cells, specifically to investigate how sorbitol elevation affects cellular 387	  

mechanisms independent of elevated glucose.  Next steps include identification of the 388	  

causative venom component(s) and testing for molecular interactions both in the native 389	  

host (S. bullata) and in human kidney cells.  Additionally, identification of the molecular 390	  

target of the venom would have important implications for (a) understanding sorbitol 391	  

pathway regulation under altered metabolic conditions, (b) identifying the effect of 392	  

sorbitol pathway activation independent of hyperglycemia, and (c) more effectively 393	  

targeting therapeutics aimed at preventing sorbitol pathway activation and its various 394	  

downstream effects on cellular function.    395	  

The genome-wide transcriptional analyses indicate that Nasonia venom alters early (4 396	  

hour) expression in a relatively small set of genes (127, or 0.54% of human genes that 397	  

are enriched for metabolic categories, including sterol, alcohol, and hormone 398	  

metabolism.  Therefore, Nasonia venom constituents represent a potentially valuable 399	  

source of metabolic effectors.  More broadly, given the rapid turnover of venom 400	  

repertoires in parasitoids (17, 64) and immense number of species (100,000 – 400,000), 401	  

parasitoid venoms may represent a rich resource for discovery of biologics of medical 402	  

and research relevance.  403	  
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Figure 2. Intracellular sorbitol elevation with venom treatment. Low dose 
Nasonia venom elevates sorbitol but not glucose or fructose in cultured Human 
Renal Mesangial Cells (HRMSc) at 24 hours (ANOVA** p<0.0001; 2-tailed 
student’s t-test p<0.001 for 1/128 and 1 VRE, p<0.05 for 1/16 and ¼ VRE, 
p=0.12 for 1/64 VRE) (n=6 samples per group). Fold changes are shown relative 
to the zero venom control.
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Figure 3. Moderate 
sorbitol elevation with 
high glucose 
treatment. High-dose 
glucose treatment 
elevates sorbitol level 
in HRMCs at 24 hours 
(n=4 samples per 
group) (*p<0.05). Fold 
changes are shown to 
the 5.5 mM and zero 
venom control.
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Figure 4. Relatively few genes (n=127) are consistently differentially 
expressed in response to sorbitol-elevating doses of Nasonia venom.  
Venn diagram of significantly differentially expressed genes (P<0.05, 
FDR<0.01) in human renal mesangial cells after 4 hours of exposure to 
low venom concentrations: 1/124, 1/64, 1/16 venom reservoir 
equivalents (VRE). 
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Table 1. Relative binding affinity for glucose of canonical 
and non-canonical AKR enzymes. Homo sapiens AKR1C* 
sub-family enzymes exhibit greater relative affinity for cyclical 
glucose than does the canonical sorbitol pathway enzyme 
Aldose Reductase (AR = AKR1B1). AKR1C3 has the highest 
predicted affinity for glucose (more negative value = greater 
binding affinity).!

Enzyme Glucose NADPH 
AKR1A1 -64.10 -118.40

AKR1B1 (AR) -65.04 -124.77
AKR1C1 -69.58 -103.59
AKR1C2 -66.42 -65.054

AKR1C3 -70.46 -120.73
AKR1C4 -62.86 -107.34

!
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