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In rapidly adapting asexuals, the orientation of G can
reflect selection rather than functional constraints
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ABSTRACT Genetic covariances represent a combination of pleiotropy and linkage disequilibrium, shaped by the population’s
history. Observed genetic covariance is most often interpreted in pleiotropic terms. In particular, functional constraints restricting
which phenotypes are physically possible can lead to a stable G matrix with high genetic variance in fitness-associated traits
and high pleiotropic negative covariance along the phenotypic curve of constraint. In contrast, population genetic models of
relative fitness assume endless adaptation without constraint, through a series of selective sweeps that are well described by
recent traveling wave models. We describe the implications of such population genetic models for the G matrix when pleiotropy
is excluded by design, such that all covariance comes from linkage disequilibrium. The G matrix is highly unstable over the
timescale of selective sweeps, covering a greater range of values than predicted by previous models. However, its orientation is
relatively stable, corresponding to high genetic variance in fitness-associated traits and strong negative covariance - the same
pattern often interpreted in terms of pleiotropic constraints but caused instead by linkage disequilibrium. We find that different
mechanisms drive the instabilities along versus perpendicular to the fitness gradient. The origin of linkage disequilibrium is
not drift, but small amounts of linkage disequilibrium are instead introduced by mutation and then amplified during competing
selective sweeps. This illustrates the need to integrate a broader range of population genetic phenomena into quantitative
genetics.
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Introduction

Natural selection acts on multiple traits simultaneously. The
mean trait value in a population can change either because of
direct selection on trait X, or because of selection on trait Y plus
a genetic correlation between X and Y (Lande 1979; Lande and
Arnold 1983). These genetic correlations are described by the
G matrix, which specifies both additive genetic variances and
covariances. For example, in the case of two traits, each deter-
mined by an additive genetic component and an environmental
component (X = AX + EX and Y = AY + EY), then G is given
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by

G =

 σ2
X = var(AX) σXY = cov(AX , AY)

σXY = cov(AY , AX) σ2
Y = var(AY)

 .

When the G matrix is stable, it is possible to infer past selection
gradients (Lande 1979) and forecast future trait evolution (both
direction and rate; Via and Lande 1985; Arnold 1992; Björklund
1996; Schluter 1996; Teplitsky et al. 2011, 2014). However, mea-
surement of the G matrix has not come into widespread use
for this purpose, perhaps in part because its stability cannot
be assumed a priori. Theoretical models (Turelli 1988; Burger
and Lande 1994; Jones et al. 2003, 2004), comparative studies
(Björklund et al. 2013; Waldmann and Andersson 2000), and
experimental evolution (Wilkinson et al. 1990; Shaw et al. 1995;
Phillips et al. 2001) have all demonstrated that rapid change in
the G matrix is possible. How stable G is in natural populations
remains an open question (Steppan et al. 2002; Arnold et al. 2008).

Comparative studies suggest that at least certain aspects of G
might be stable (Arnold et al. 2008). Early statistical approaches
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that compared the magnitudes of the individual variance and
covariance elements suffered from multiple comparisons and
lacked power (Shaw and Billington 1991; Brodie 1993; Carr and
Fenster 1994; Roff and Mousseau 1999; Shaw and Billington
1991). Moreover, even statistically significant differences needed
to be interpreted in the context of G’s geometric structure. More
recent methods examine common principal components of G
matrices and test for similarity in geometric shape, size and ori-
entation, providing more biologically interpretable information
(Arnold and Phillips 1999; Phillips and Arnold 1999). These
methods suggest that the orientations of G matrices are often
preserved between closely related populations (Arnold et al.
2008).
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Figure 1 The Charnov-Charlesworth model, illustrated for
selection on two traits subject to functional constraint. Func-
tional constraint prohibits phenotypes above and to the right
of the blue line. Fitness contours are shown as red ellipses,
with highest fitness at the center. The population is initial-
ized with trait values far from constraint (I). Selection then
moves the population closer to the optimum, but functional
constraint prevents the population from evolving past the blue
line and it settles in mutation-selection balance at (II). Mu-
tations with negative pleiotropy can be close to neutral and
maintain trait variation along the line of functional constraint,
while mutations affecting only one trait tend to reduce fitness
and are purged.

Our focus here is on traits highly correlated to fitness. Many
of these are life history traits, which can also be highly corre-
lated with one another. Specifically, they are often subject to
constraints, e.g. acquisition vs. allocation, or competing alloca-
tions. The Charnov-Charlesworth model (Figure 1) describes
how functional constraints among life history traits shapes ge-
netic covariances (Charnov 1989; Charlesworth 1990; Walsh 2018,
Chapter 35, Page 23). Functional constraints, where it is physi-
cally impossible for a phenotype to be simultaneously good in
all trait dimensions (or more loosely, constraint-breaking muta-
tions are vanishingly rare), can be visualized as a surface in trait

space. Selection will quickly bring a population to this surface,
but it may spread out along it when different points have similar
overall fitness. From the population’s position along the surface,
mutations can either decrease fitness in all dimensions (and be
quickly lost), or they can increase fitness in some dimensions
while decreasing it others (and potentially be retained as nearly
neutral); mutation from the front is thus interpreted as subject
to a pleiotropic trade-off. In this model, the cause of negative
covariance among adaptive life history traits is constraint, and
the stability of the constraint surface along which the spread
occurs is thus thought to be the cause of the stable orientation of
the G matrix.

In the alternative scenario that we consider here, there are no
functional constraints on what trait values are possible. Indeed,
we model the case of no pleiotropy, where each mutation affects
only one fitness-associated trait. Every mutation creates a small
amount of linkage disequilibrium; if the mutation is favored by
selection, this linkage disequilibrium can be amplified by expo-
nential growth of the mutant genotype, provided that there is
insufficient recombination to interrupt this process. This ampli-
fied linkage disequilibrium then contributes to trait covariance
if the alleles in linkage disequilibrium affect different traits. If
there are multiple favored genotypes, each having an advantage
in a different trait, then they may sweep simultaneously. We will
show that during this process, there will be negative covariance
between different fitness-associated traits. Instead of a physi-
cally impassable curve of phenotypic trade-off with negative
covariance along it, we have a traveling wave with negative
covariance (Figure 2). In this scenario, genetic correlations are
due to linkage disequilibrium instead of to pleiotropy, the latter
being absent from the model by construction.

Pleiotropy, rather than linkage disequilibrium, is often as-
sumed to be the cause of most genetic correlations (Lande 1980a;
Wagner 1989; Schluter 2000). Historically, a dominant role for
pleiotropy was favored by the Edinburgh school of quantita-
tive genetics, who argued that recombination would quickly
eliminate linkage disequilibrium (Falconer 1993; Fox and Wolf
2006, Chapter 20), particularly in the randomly mating animal
populations that the Edinburgh school focused on (Lande 1979,
1980b; Arnold et al. 2008; Robertson 1963). In contrast, quanti-
tative geneticists in the alternative, Birmingham school largely
worked on inbred lines of plants, where the effects of linkage dis-
equilibrium were impossible to ignore (Robertson 1963; Mather
and Jinks 2013, Page 25). As the Edinburgh view became more
influential, models for the long-term evolution of the G matrix
focused on genetic correlations that are derived from pleiotropy
(Lande 1980a; Wagner 1989; Jones et al. 2003, 2004). We know
far less about the about the dynamics of genetic correlations
arising from linkage disequilibrium. Here we will show how
completely different processes can give rise to similar patterns
as the Charnov-Charlesworth model illustrated in Figure 1.

Here, we focus on asexual populations, because they are
subject to the strongest linkage disequilibrium due to lack of re-
combination. Indeed, empirical studies of G in life history traits
among the parthenogenetic soil-dwelling nematode Acrobeloides
nanus demonstrate large instabilities in G (Doroszuk et al. 2008).
More definitively implicating linkage disequilibrium, Pfrender
and Lynch (2000) measured temporal instability in the G matrix
for life history traits of Daphnia pulex, and found a buildup of
covariance during asexual propagation that disappeared upon
sex. Another reason to focus on asexuals is that relatively asex-
ual microbes numerically dominate the biosphere, impacting all
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fields of biology (McFall-Ngai et al. 2013).
To study the effects of linkage disequilibrium on G, we have

to consider explicit alleles or genotypes, not just quantitative
traits. Beneficial mutations are discrete not infinitesimal, and
appear on distinct genetic backgrounds. Selective sweeps com-
pete with one another, causing beneficial mutations to be lost in
a process known as “clonal interference”. Clonal interference
slows adaptation (Hill and Robertson 1966) unless recombina-
tion brings beneficial mutations together in the same genotypes,
reducing negative linkage disequilibrium between them (Fisher
1930; Muller 1932). Many classical models of clonal interfer-
ence considered only two loci each with two alleles, or excluded
drift (Felsenstein 1974). More recently, traveling wave models
have been developed to describe clonal interference among large
numbers of loci, arising at arbitrary mutation rates (Rouzine et al.
2003; Desai and Fisher 2007; Park et al. 2010; Good et al. 2012;
Neher et al. 2010; Fisher 2013; Rouzine and Coffin 2010, 2007;
Rouzine et al. 2008). These models show that clonal interference
can have an enormous impact on adaptation rates.

To date, traveling wave models have treated only the evolu-
tion of “fitness”; we adapt them to also consider the evolution
of individual fitness-associated traits and their correlations. We
begin with Desai and Fisher’s (2007) framework of fixed popu-
lation size N and beneficial mutations at rate U, each with the
same selection coefficient s. This yields the rate of adaptation
(Desai and Fisher 2007, Equation 41)

v(U, N, s) ≈ s2 2 ln(Ns)− ln(s/U)

ln2(s/U)
. (1)

Equation (1) holds when NU & 1/ ln(Ns) and U/s � 1 (the
“concurrent mutations regime” where beneficial mutations ap-
pear rapidly relative to the time required for any one of them to
fix).

By Fisher’s fundamental theorem, v(U, N, s) approximately
equals the additive genetic variance in fitness σ2; the approxi-
mation is due to the neglect of mutational flux (Desai and Fisher
2007). Thus, when there is only one adaptive trait, that trait’s ad-
ditive genetic variance is given by v(U, N, s). With two adaptive
traits, Equation (1) still gives the overall fitness variance σ2, but
does not give its decomposition into the variances and covari-
ance, i.e. it does not give the G matrix. Consider just two traits,
each experiencing beneficial mutations at rate U. The overall
adaptation rate is v(2U, N, s), and so by symmetry, adaptation in
each trait alone occurs at rate v1 = v(2U, N, s)/2. This is lower
than the rate v(U, N, s) that would occur if the other trait were
not evolving. We do not know from this how the reduction in
trait-specific adaptation rate is distributed in v1 = σ2

1 + σ1,2 (see
Appendix A for the derivation of this analog to the multivariate
breeder’s equation). What is more, this distribution of adapta-
tion rate reduction between σ2

1 and σ1,2 might change over time
i.e. G may not be constant.

Here we analyze a two-dimensional traveling wave model of
asexual adaptation, and find that linkage disequilibrium alone,
in the absence of pleiotropy, leads on average to greatly elevated
variance of fitness-associated traits and to strong negative co-
variance between them. The G matrix arising in this way has
a strong bias toward an orientation reflecting the direction of
selection, rather than the nature of functional constraints, but
its elements are highly unstable over the timescale of selective
sweeps.

Materials and Methods

We consider an asexual haploid population of fixed size N evolv-
ing in continuous time. There is no pleiotropy (each mutation
affects only one trait), and there is no epistasis. To keep the
model as simple as possible, we assume that there are two traits,
each with the same rate of beneficial mutations U, and that each
mutation has the same fitness benefit s.

We do not consider deleterious mutations (see Discussion).
All individuals that have accumulated i mutations in the first
trait and j in the second have the same Malthusian relative fitness
ri,j = is + js. We refer to a set of individuals with the same i
and j as a “class” and denote their abundances and frequencies
by ni,j and pi,j respectively. The population’s mean fitness is
r̄ = īs + j̄s, where ī and j̄ are the mean numbers of beneficial
mutations (Figure 2, red dot). Equally fit classes lie on a fitness
isoclines (Figure 2, red line). The selective advantage of an
individual in class (i, j) with respect to an average individual in
the population is si,j = ri,j − r̄.

Figure 2 Representative two-dimensional genotype distribu-
tion. Individuals with equal numbers of beneficial mutations
in each trait are combined into classes (squares). Abundances
of the bulk (grayscale squares) behave deterministically, while
abundance of the stochastic front (light and deep blue squares)
behave stochastically. The fittest genotypes in the population
(deep blue squares) are referred to as the high-fitness front.
The red dot marks the class with approximately average num-
bers of beneficial mutations in each trait. Equally fit classes lie
along fitness isoclines, which are the lines parallel to the red
line shown. In asexuals, beneficial mutations must occur on
the fittest genetic backgrounds in order to contribute to the
adaptive process. These mutations are represented by arrows
from the bulk into the stochastic front. Classes in the stochas-
tic front become part of the bulk once their abundances have
become sufficiently large, advancing the stochastic front to
include new classes. As classes below the population mean
fitness isocline decline and those above increase exponentially,
a two-dimensional traveling wave is produced. Simulation
parameters: N = 109, s = 0.02, and U = 10−5.

We restrict our attention to the large N regime in which most
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classes are so large that their frequency grows or declines approx-
imately deterministically due to selection (N � 1/s). We refer
to these classes as the “bulk” (Figure 2, grayscale squares). How-
ever, higher fitness mutant lineages arising along the already
high-fitness “front” of the population will start with a single indi-
vidual, and initially behave stochastically (Figure 2, blue squares;
arrows show mutations). Mutations creating new classes at the
front will often go extinct before attaining appreciable frequen-
cies, but some will make it to high enough abundances that they
begin to grow deterministically. The transition from stochastic
to deterministic behavior is called “establishment” and roughly
corresponds to the lineage reaching abundance ni,j > 1/si,j (De-
sai and Fisher 2007). Beneficial mutations that are not at the
front are swamped by deterministic exponential dynamics and
can be ignored.

Beneficial mutations at the front create new genetic variation,
while selection in the bulk eliminates it. As the abundance of
classes above and to the right of the red line grow in Figure 2, and
those below and to the left decline, a two-dimensional traveling
wave results, with the red line itself traveling diagonally up and
right. The distribution of abundances within the bulk is the
outcome of previous establishments at the front. Stochasticity in
mutation and establishment at the front is thus propagated into
the bulk (Hallatschek 2011; Fisher 2013; Desai et al. 2013; Pearce
and Fisher 2018) and hence into the G matrix.

We simulate the dynamics of the two-dimensional traveling
wave in discrete time using Matlab code developed by Pearce
and Fisher (2018). They use a conservative threshold of ni,j >
10/s for considering a class to be in the deterministic bulk for
which stochastic fluctuations in growth can be ignored.

In the bulk, the growth (or decline) of a class due to selection
is calculated according to

ñi,j(t + 1) = ni,j(t)esi,j .

Following selection, abundances are adjusted for mutational
flux, yielding

n∗i,j(t + 1)= (1− 2U)ñi,j(t + 1)+

+U
(

ñi−1,j(t + 1) + ñi,j−1(t + 1)
)

.

Outside of the bulk, to capture stochasticity due to drift and
mutation, abundances are sampled from a Poisson distribution
with mean n∗i,j(t + 1). The classic Wright-Fisher model entails
binomial sampling, but Poisson sampling is more convenient
and a close approximation. Individuals with selective advantage
s reproducing with birth rate 1 + s and death rate 1. Thus, each
time step represents one generation.

To enforce a constant population size, abundances are
rescaled by setting

ni,j(t + 1) = Round

[
n∗i,j(t + 1)

(
N

∑ n∗i,j(t + 1)

)]
.

Simulations were initialized with monoclonal populations of
size N and relative fitness set to zero. Parameter value ranges for
s and U were informed by values obtained during experimental
evolution: U ∼ 10−5 and s ∼ 0.02 for Saccharomyces cerevisiae
(Desai et al. 2007) and U ∼ 10−5 and s ∼ 0.01 for Escherichia coli
(Perfeito et al. 2007). Levy et al. (2015) used more sophisticated
barcoding techniques to estimate the distribution of fitness ef-
fects for beneficial mutations in S. cerevisiae. Most lineages that
established had selection coefficients in the range 0.02− 0.05
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Figure 3 Clonal interference is substantial with even just a sec-
ond adaptive trait. (a) The rate of adaptation of a focal trait
as a function of the total number of traits undergoing adap-
tation, from Equation 2. The x-axis shows the total number
of traits (including trait one) on a log scale. For k = 1, trait
one evolves alone and there is no reduction, while for k = 2,
trait one evolves at 62.2% of the rate that it would if it were
not subject to clonal interference with a second trait. Steeply
diminishing effects are seen with the addition of more traits.
While the adaptation rate eventually asymptotes to zero for
high k in Equation (2), note that this expression is only valid
when kU/s � 1. (b) Clonal interference between two traits
is substantial and depends little on U and s, except in the top
left corner where kU/s � 1 has broken down. Contour lines
are labeled as the rate of adaptation in a focal trait relative to
the rate that would be achieved in the absence of clonal in-
terference with a second trait, matching the second point in
(a). N = 109 throughout and the points in (a) used s = 0.02,
U = 10−5.

with corresponding beneficial mutation rates on the order of
∼ 10−5. Although population sizes for E. coli during infection
can be as large as ∼ 1012 (König et al. 1998; Wilson and Gaido
2004), we used smaller sizes of N ∼ 107 − 1011 in our simula-
tions. Before collecting data, we allowed the simulation to run
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Figure 4 Variance of a focal trait σ2
1 (open diamonds), the magnitude of its covariance with the other trait |σ1,2| (open circles), and

the trait’s contribution to adaptation v1 (simulated, solid circles; Eq. (1), solid line), averaged over 1.5× 106 generations. The y-axis
is normalized relative to what the variance of the focal trait would be in the absence of the second trait; observed variance is always
greater than this. While on its own, increased variance would accelerate adaptation, negative covariance more than cancels this out
(|σ1,2| > σ2

1 − v(U, N, s)) for a net reduction in the trait-specific adaptation rate below the value of v(U, N, s) that would be seen in
the absence of clonal interference. For the parameter values not being varied on the x-axis, s = 0.02, U = 10−5 and N = 109.

for 5,000 generations to achieve beneficial mutation-selection
balance.

We calculate trait means r̄1 = ∑i,j pi,jis1 and r̄2 = ∑i,j pi,j js2,
variances σ2

1 = ∑i,j pi,j(ri − r̄1)
2, σ2

2 = ∑i,j pi,j(rj − r̄2)
2, and

covariance σ1,2 = ∑i,j pi,j(ri − r̄1)(rj − r̄2). There are no envi-
ronmental effects in our model. Because there is no epistasis,
r̄ = r̄1 + r̄2, and the instantaneous rate of adaptation of the
population is v(2U, N, s) ≈ σ2

1 + σ2
2 + 2σ1,2.

Our simulations were carried on a desktop linux machine
running Matlab 2018a. Our version of the Pearce and Fisher
(2018) simulation code, together with Python scripts to generate
figures, is available at https://github.com/MaselLab/Gomez_et_al_
2018.

Results

1. Clonal interference is substantial even for only two traits
As discussed in the Introduction, adding a new fitness-
associated trait reduces the rate of adaptation in a focal trait
from v(U, N, s) to v1 = v(2U, N, s)/2. Generalizing to k traits,
each with equal U and s, from Equation (1) we have

v1(U, s, N; k)
v(U, N, s)

≈1
k

ln2[s/U]

ln2[s/(kU)]

ln[N2s(kU)]

ln[N2sU]
. (2)

Each additional trait increases clonal interference on the focal
trait by a diminishing amount, with curvature apparent even
with respect to the logarithm of the number of traits (Figure 3).
This suggests that much can be learned even from the simplest
case of clonal interference between only two fitness-associated
traits.

2. The mean effect of clonal interference on G
The reduction in v1 due to clonal interference can be broken
down into the effects on variance and on covariance, v1 = σ2

1 +
σ1,2, with clonal interference affecting the two components of

G. We find that the reduction in v1 is driven by high levels
of negative covariance (Figure 4, open circles). This negative
covariance slows the removal of additive variance from the
population, causing variance to be substantially higher (Figure 4,
open diamonds). Negative covariance both cancels out the effect
of the increased variance on the rate of trait change, and goes
beyond it to cause the overall reduction in v1 to levels below
v(U, N, s). While variances and covariance depend on s and U,
the effects cancel out such that the reduction in v1 is insensitive
to all three parameters.

Importantly, clonal interference in a rapidly adapting pop-
ulation can explain the common observation of high genetic
variance in two fitness-associated traits combined with strong
negative covariance between them, even in the complete absence
of pleiotropic trade-offs imposed by functional constraints. This
is striking, because under the Charnov-Charlesworth model,
this is interpreted as evidence for constraint-driven trade-offs.

3. Variances and covariances are unstable
Figure 4 shows temporally-averaged variances and covariance.
These values are highly unstable over time (Figure 5a). Indeed,
the instability is so pronounced that variances and covariances
in Figure 4 show significant noise, due to the difficulty in getting
a good estimate of the mean even when averaging over a long
time period. This is compatible with the fact that substantial
instability in G has been observed empirically (Pfrender and
Lynch 2000; Doroszuk et al. 2008).

Indeed, our simulations predict far greater instability than
previous models. Instability has been quantified in terms of
change in the sum of the two variances. In previous simulations,
this sum had a range of 80% of its mean over a period of 4000
generations (Jones et al. 2012). The same quantity in our simu-
lations had a range of 192% of its mean over that same period
of time. Our simulations also exhibited a much larger range for
the inverse eccentricity of G (where eccentricity is defined by
the ratio of G’s smallest and largest eigenvalue λ2/λ1), 320%
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of the mean inverse eccentricity in contrast to 125% for Jones
et al. (2012). What is more, the simulations of Jones et al. (2012)
were performed with N = 1024 while ours were performed
with N = 109, and the way in which genetic drift enters that
model means that unlike in our model, increasing N would
substantially reduce the instability.

Variances and covariances are dominated by the distribution
of abundances among the most abundant or “dominant” geno-
types. When we collapse the two-dimensional distribution into
a one-dimensional traveling fitness wave, as shown in Figure 6a,
the set of dominant genotypes are found primarily within the
peak, which have approximately completed their exponential
growth and are about to begin declining in frequency. This sin-
gle one-dimensional “fitness class” consists of all the genotype
classes that lie along a diagonal fitness isocline. The fluctua-
tions of the G matrix can be understood by focusing on the
distributions of frequencies within diagonal isoclines.

As discussed in the introduction, negative covariance in our
model arises from the amplification of linkage disequilibrium
generated by the beneficial mutations producing the fittest geno-
types. Negative covariance thus originates with the stochastic
dynamics of the high-fitness front. The relative ratios among
high-fitness front classes are approximately “frozen” during the
amplification that takes place after establishment, because bene-
ficial mutations that occur after establishment of the high-fitness
front (Figure 2, pale blue squares) contribute little to the relative
frequencies of classes along a fitness isocline (Desai et al. 2013).
As a result, the relative frequencies along a diagonal after estab-
lishment (Figure 6a, top green) are later found in the dominant
classes (peak in Figure 6a, bottom green) once the traveling wave
has moved that far.

The average time required for the high-fitness front to become
the dominant group is given by the mean sweep time (Fisher
2013; Desai and Fisher 2007, Page 1178)

τSW ∼ ln(s/U)/s. (3)

Figure 6b plots the correlation between covariances in the bulk
and covariances in the high-fitness front as a function of the
time offset between the two. The correlation peaks with ap-
proximately 66% of fluctuations in bulk covariance measured
explained by the value of covariance at the high-fitness front τSW
generations ago, confirming that fluctuations in G are primarily
caused by changes in the distribution of relative frequencies of
classes within successive high-fitness fronts. These have some
short-term stability, because establishment times in the new front
depend on the feeding classes that were part of the previous
front. We shall see below that the instability of the components of
G is driven primarily by fluctuations in the leading eigenvalue.

4. The orientation of the G matrix is mostly stable, while differ-
ent forces drive the instability of the two eigenvalues
The eigenvalues and eigenvectors of G have been used to sum-
marize its shape, size and orientation. Specifically, the orienta-
tion of G is specified by its eigenvectors, ranked by their eigen-
values, where each eigenvector quantifies the genetic variance
its respective eigenvector. Each eigenvector can be specified by
m angles relative to the m trait axes. Because the eigenvectors
form an orthonormal set and thus each gives information about
the others, only m(m− 1)/2 angles are needed for the matrix as
a whole (Hohenlohe and Arnold 2008). Empirical comparisons
of related populations often find that the orientation of G is
stable even when its individual elements are not (Arnold et al.
2008).
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Figure 5 Behavior of G over time. (a) Variance of trait one (σ2
1 ,

dashed line), its covariance with trait two (σ1,2, dotted line),
and its contribution to adaptation (v1, solid line). Variances
of σ2

1 (1.307) and σ1,2 (1.02) are about four times larger than
the variance of v1 (0.27) (units of v(U, N, s)2). (b) Normalized
eigenvalues of G, λ2 and λ1, measure genetic variation along
the direction of selection and the perpendicular “neutral di-
rection”, respectively. Normalization disguises the fact that
λ̄1 ∼ 5× λ̄2; as a result, it is fluctuations in λ1 that drive those
in variances, covariance, and angle. Fluctuations in λ2 have a
different cause and are uncorrelated. Spikes in λ1 are due to
enlargement of the high-fitness front, followed by its collapse
(colored lines mark time points at which the 2D distribution
is shown in Figure 7). (c) The angle between the second eigen-
vector of G and direction of selection (vector (1, 1)) has mean
0, and deviations from the mean orientation are usually small.
Simulation parameters: s = 0.02, U = 10−5 and N = 109.

For a two dimensional trait space, one can give the orientation
of G using a single angle. Prior work on only two traits has
used the angle between the first eigenvector and an arbitrary
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Figure 6 The G matrix is dominated by the highest abundance classes, whose composition reflects the previous distribution of
classes along the high-fitness front. (a) Each fitness class combines all genotypes along the same fitness isocline (diagonal in Figure
2). The two-dimensional traveling wave in two-dimensional trait space can thus be projected onto a one-dimensional traveling
wave in fitness space. Shading indicates the distinct genotypes defined in 2-dimensional trait space. Selection makes the most
abundant fitness class exponentially larger than other fitness classes, meaning that the distribution of distinct genotypes within
a single fitness class dominates the variances and covariances of the population as a whole. As the peak shifts from one fitness
class to the next, variances and covariances may change substantially. (b) The correlation over time between covariance within the
high-fitness front and covariance within the peak classes is highest with a time offset equal to the mean sweep time τSW given in
Equation (3) (the average time required for the front to become the peak; dashed line). This is because the distribution of genotypes
within a fitness class was set during the stochastic phase, and simply propagated deterministically until this fitness class became
the most abundant. The dynamics of the stochastic front explain 66% of fluctuations in the covariance detected in the bulk after τ̄SW
generations.

trait axis (Jones et al. 2003, 2004, 2007; Guillaume and Whitlock
2007; Revell 2007), or the angle between the where the first
eigenvector begins and where it is later (Björklund et al. 2013).
We instead measure the orientation of G as the angle between
G’s second eigenvector and the direction of selection because
they are closely associated, with the expected angle equal to
zero and the magnitude of deviation from zero indicating the
degree of instability in orientation. Since selection is identical
on both traits, the vector (1, 1) in our two-dimensional trait
space represents the direction of selection. To generalize our
measure of orientation to more dimensions, we would measure
the angle between the vector (1, ..., 1) and whichever eigenvector
is most closely aligned with this direction. We expect that this
eigenvector will have the smallest eigenvalue since selection
removes most genetic variation along in the direction of the
vector (1, ..., 1).

We find that the angle measuring G’s orientation remains
relatively stable. In Figure 5b the magnitude of this angle av-
erages 3.4o, which means that G remains closely aligned with
the perpendicular “neutral” direction. This suggests that any
observed stability in the orientation of G could reflect stability in
the direction of selection of a traveling wave, rather than stability
of functional constraints.

Figure 5c shows the behavior of the two eigenvalues, λ1 and
λ2. The smaller eigenvalue λ2 measures genetic variation in the
direction of selection, and λ1 measures genetic variation perpen-
dicular to it, oriented along isoclines. Stochasticity in the speed
at which the high-fitness front advances drives fluctuations in
λ2, while fluctuations in the width of the high-fitness front drive
fluctuations in λ1. In simulations, λ1’s average value over the
period of the simulations was five times larger than the average
λ2. It is the dynamics of λ1 that correspond to the fluctuations
seen in σ2

1 and σ1,2. In contrast, the dynamics of λ2 correspond
to the overall adaptation rate v1 + v2, and to some extent also
v1 = σ2

1 + σ1,2 alone. This explains why, in our simulations, the
variance in the time series of genetic variances and covariance is
about four times larger than the variance in the time series data
for v1 (Figure 5a).

As a new high-fitness front forms, it tends to be one class
longer than the last front (Figure 2, dark blue classes), which
will eventually increase λ1. When there is little variance in abun-
dance among classes in the old front, beneficial mutations are
fed into the new front at approximately the same rate, except
for the two edge classes, which are fed at half the rate. Despite
this disadvantage, classes at the edges do not on average take
twice as long to establish, because the classes that feed them are
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Figure 7 Expansion and collapse of the high-fitness front depicted with snapshots (a-f) of the two-dimensional distribution, cor-
responding by color to vertical lines in Figure 5b. Snapshots are approximately τSW apart (∼ 690 generations), in each case one
generation before the first still higher fitness genotype appears by mutation. Squares with blue outlines are in the stochastic growth
phase, and are fed mutations from classes along the fitness isocline indicated by the black line. (a) A narrow high-fitness front fol-
lowing a recent minor collapse, concentrated in two adjacent squares without outlines. (b) Even as genetic variation in the bulk
declines, it increases within the narrow high-fitness front, breaking apart into two dominant segments. (c) The segments stochasti-
cally converge again, allowing for later widening of the front. (d) The width of the high-fitness front reaches a maximum, although
maximum covariance will occur only τSW generations later. The lower right portion of the front is moving ahead of the top left
section, setting it up for later collapse. (e) λ1 is at a local maximum, and the front is collapsing. The portion of the bulk no longer
connected to the high-fitness front declines. (f) The high-fitness front collapses further as one segment continues to dominate its ad-
vances. Genetic variance in the neutral direction drops and causes negative covariance to decrease. Simulation parameters: s = 0.01,
U = 10−5 and N = 109.

growing exponentially. The probability that both edge classes
establish before the next advance is therefore greater than the
probability that neither will, creating an intrinsic tendency to-
ward expansion of the high-fitness front (see Pearce and Fisher
(2018) for a more detailed analysis of the front dynamics).

Over time, the abundances among classes in the front diverge
stochastically. Small variations in abundance caused by stochas-
tic establishment times change the rate at which beneficial muta-
tions are fed into the next front, and thus cause establishment
times to vary even more in the next front (Desai and Fisher 2007,
Appendix D). Eventually, the differences in establishment times
are large enough for the front to become segmented into com-
peting sections that race to advance first. The winning section
goes on to form a new and smaller front, as illustrated in Figure

7d to Figure 7e.

Following collapse to a new, small front, variation in abun-
dance among front classes is low, allowing for front expansion
to resume until variation grows high enough to cause the front
to collapse again. The high-fitness front cycles through phases
of expansion and collapse (Figure 5c and Figure 7).

A different (and previously described; Desai and Fisher 2007)
process drives fluctuations in λ2, namely instabilities in the
rate at which the front advances, rather than instabilities in
the width of the front. The value of λ2 is closely related to
the distance si,j between the high-fitness front and the mean
population fitness. Since the front advances stochastically, it
will sometimes advance faster than the population mean fitness,
temporarily increasing si,j. This causes the front to accelerate,
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because fitness classes along the front will have a greater fitness
advantage, and therefore produce more mutants with greater
chance of establishment. Thus, si,j is dynamically unstable in the
short-term, and so too is λ2. Eventually, fluctuations in si,j that
accelerate the front also begin to accelerate the rate of adaptation
in the bulk, once classes in the front become the dominant group
τSW generations later. si,j then decreases, causing the front’s rate
of advancement to decrease as well; this stabilizes si,j over the
longer term.

Discussion

Clonal interference in rapidly adapting asexual populations in-
creases genetic variance in fitness-associated traits and creates
strong negative genetic covariances between them, even in the
total absence of pleiotropy. These effects are driven by linkage
disequilibrium introduced by beneficial mutations at the high-
fitness front and then amplified during selective sweeps. While
the overall pattern is of high variance and strongly negative
covariance, and the orientation of G is stably aligned with the
direction of selection, the magnitudes of these G matrix elements
are unstable over the timescale of selective sweeps. This pattern
of wildly unstable magnitudes has been observed empirically in
asexuals (Pfrender and Lynch 2000; Doroszuk et al. 2008); here
we capture it for the first time in a formal model. This resulted
in much larger instabilities in G’s components than had been
found in previous models (Jones et al. 2012).

While this is a proof of principle work, we can nevertheless
make a first attempt at qualitative predictions. The phenomenon
described here predicts large fluctuations in the magnitude of G
elements over a characteristic timescale of selective sweeps. In
contrast, models in which adaptation has hit a wall of functional
constraint predict small fluctuations only.

The effects of deleterious mutations and recombination

In our model we made a number of simplifying assumptions.
Two seem worthy of discussion: our neglect of deleterious muta-
tions and of recombination. Deleterious mutations are undoubt-
edly common in all species, and even microbes can occasionally
undergo recombination. However, we do not believe that a
fuller treatment of either would lead to qualitatively different
results from those presented here, which all rely on the same
basic dynamic of the selective amplification of beneficial muta-
tions at the high-fitness front. Deleterious mutations generally
do not prevent new and fitter genotypes from appearing and
sweeping. So long as these sweeps occur, the amplification of
stochastically created linkage disequilibrium would continue
to produce instabilities in G. The net behavior of G will be a
combination of the dynamics we describe due to sweeps and the
dynamics due to contributions from stabilizing selection at the
trait level (as discussed in the Introduction). The contribution of
this paper is to characterize the effect of sweeps on G, as a novel
phenomenon.

Similarly, recombination will only eliminate the basic dynam-
ics behind our findings if it is strong enough to eliminate linkage
disequilibrium between genotypes generated by different benefi-
cial mutations. Recombination, like mutation, can produce new
fitness classes at the high-fitness stochastic front when. These
too are amplified by subsequent selection, with qualitatively
similar dynamics to the sweeps initiated by beneficial mutations
as described by our model. With recombination, the genome
will fragment into independently evolving linkage blocks, with

an effective mutation rate U/(RTc) where recombination is rep-
resented as a larger total map length R, and Tc is the coalescence
time (Neher et al. 2013; Good et al. 2014; Weissman and Hal-
latschek 2014). So long as NU/(RTc) � 1/ ln(Ns), we expect
partial selective sweeps and large negative correlations within
linkage blocks, with negligible covariance across blocks. How-
ever, while the dynamics we describe will still occur, because
genome-wide variance but not covariance scales with the num-
ber of linkage blocks, this will significant reduce the amount of
covariance in G. While this reduces the scope of our findings,
map length R may be negligibly small in the facultatively sexual
world of microbes.

Linkage disequilibrium in other models for G
Two previous quantitative genetic models have traced the impact
of linkage disequilibrium on G. First is the Bulmer effect (Bulmer
1971; Walsh and Lynch 2018, Chapter 16). This describes the
fact that selection which perturbs a previously stable state can
generate linkage disequilibrium faster than it changes allele
frequencies, at least when the number of loci contributing to
a quantitative trait is large. This perturbation effect applies to
much shorter timescales than the long-term steady state linkage
disequilibrium considered here.

Second, Lande (1984) found conditions under which stabi-
lizing selection on traits can create large and stable genetic cor-
relations at equilibrium, via linkage disequilibrium. Selective
sweeps do not routinely occur under stabilizing selection, but
dominate in our regime. Because they amplify the stochasticity
of mutation, they are responsible for the large instabilities in G
seen in our work but not found in Lande’s. While many traits
are undoubtedly both polygenic and under stabilizing selection
(Charlesworth et al. 1982; Haller and Hendry 2014), it is also true
that genomic evidence has made it clear that selective sweeps
are abundant, even in sexual populations (Kern and Hahn 2018),
and can make large contributions to linkage disequilibrium.

Balance of forces versus mutation-driven evolution
Genetic variances and covariances are affected by selection, mu-
tation, drift, recombination and migration (Walsh and Lynch
2018). These evolutionary processes have been historically
viewed as “forces” acting on allele frequencies in the population
(Gillespie 2004) and used to explain a variety of evolutionary
phenomena. Past work on the G matrix has used the forces
view both to gain intuition (Arnold et al. 2008), and to calcu-
late equilibrium values of genetic variances and covariances
(Lande 1975, 1980a, 1984; Tallis and Leppard 1988; Charnov
1989; Charlesworth 1990; Houle 1992).

The metaphor of “forces” evokes vectors that can be added.
Equilibria of allele frequencies and related properties correspond
to vectors that sum to zero. The classic example is a deleterious
allele in balance between the force of mutation and the force
of selection. The forces view has been criticized as a poor de-
scription of random genetic drift, which describes Brownian
motion rather than a vector (Walsh 2000; Matthen and Ariew
2002; Walsh 2004), but it is still possible to talk about expected
allele frequencies in balance between e.g. mutation, selection,
and drift. A second, more serious critique is that mutation is not
only a (very weak) vector acting on existing allele frequencies, it
also controls which alleles exist to have their frequencies acted
upon (Yampolsky and Stoltzfus 2001; Stoltzfus 2006).

In our context, interactions between evolutionary processes
exhibit net effects that cannot be decomposed into independent
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vectors. This provides a third reason why the metaphor of evo-
lutionary processes as vectors/forces is inappropriate. In our
model, the most important stochastic “force” is not random
genetic drift, but the introduction of beneficial mutations (com-
bined with their establishment in the presence of drift). Each
beneficial mutation appears on one genetic background, in com-
plete linkage disequilibrium with all other loci. The contribution
of this linkage disequilibrium to genetic covariance is small,
because the allele frequency of a mutant initially present in a
single individual is small. However, selection can dramatically
amplify the magnitude of this linkage disequilibrium. The am-
plification of stochastic effects at the high-fitness front cannot
be understood by a model of adding vectors, but arises through
non-linear amplification. Fisher (2011) uses the metaphor of the
mutational nose leading the dog to describe this scenario, whose
effects on linkage disequilibrium are described by Garcia et al.
(2018). No matter how big the total population is, the fittest sub-
group steering the evolution of the population will always be
small and hence stochastic, and its stochastic fate will eventually
shape the entire population.

Quantitative genetics versus population genetics

Our model differs in several important ways from previous
quantitative genetic approaches. First, we assume no functional
constraint nor other form of pleiotropy. Second, we assume
no recombination, in contrast to quantitative genetic models
that normally assume so much recombination such that linkage
disequilibrium is negligible.

Third, most previous models used to simulate the stability
of G have considered traits under stabilizing selection (Wagner
1989; Jones et al. 2003; Guillaume and Whitlock 2007; Revell 2007).
A partial exception is Jones et al. (2004, 2012), who simulated
a shifting optimum phenotype. While the moving optimum
mathematically enters the model in the same way as stabilizing
selection, it can mimic directional selection when the optimum
is far from the population. However, their simulations focused
on the regime where the population included the optimal phe-
notype. This ruled out the possibility of a stochastic nose and
the amplification dynamics that we describe here. While the sit-
uation they considered was thus very different, they also found
that directional selection increased genetic variances, and was re-
sponsible for stability in G’s orientation. However, their genetic
covariance was positive, rather than negative, as a consequence
of the shape of the phenotype-fitness map in their model.

The selective sweeps that are key to the phenomena we de-
scribe here are generally absent from most quantitative genetic
models. Models for adaptation range on a spectrum from pop-
ulation genetics to quantitative genetics. Population genetic
models include more details about allele and genotype frequen-
cies and their temporal behavior. Quantitative genetic models
are derived from population genetics, omitting details of genetic
architecture in order to focus on statistical properties. More re-
cently, population genetic details (in particular, a more discrete
i.e. non-infinitesimal view of genes) have been essential to mak-
ing progress in the historically quantitative genetic domain of
QTLs and GWAS (Caballero et al. 2015; Simons et al. 2018). A
deeper synthesis of the two approaches is not yet achieved.

Our model incorporates features from both methodologies.
We specify discrete genotypes and track changes in their abun-
dances, allowing us to model the establishment process and
subsequent selective amplification of the linkage disequilibrium
it produces, which translates into trait covariance under clonal

interference. We used this to derive traditional quantitative ge-
netic properties: traits, their genetic variances, and covariance.
We found a classic pattern of high genetic variances and negative
covariance in fitness-associated traits, but in our case it was not
due to functional constraints. We also found that G is unstable
over the timescale of selection, meaning that estimates of the
G matrix are not likely to yield quantitatively accurate predic-
tions for the long-term evolution of fitness-associated traits in
the regimes considered here. Our work demonstrates the need
to view adaptive scenarios from both a population genetic and
quantitative genetic perspective, to better understand adaptive
processes in traits that lie in between Mendelian and quantitative
extremes.
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Appendix A

In our model of equal selection on two traits, the rate of adap-
tation in trait 1 is the sum of its genetic variance and genetic
covariance, i.e. v1 = σ2

1 + σ1,2. Here we derive this expression,
which is analogous to the multivariate breeder’s equation but
in continuous time and for a discrete genetic basis, from our
definitions of mean fitness for each trait, r̄1 and r̄2, and the deter-
ministic expressions for changes in genotypes abundances (see
Methods). When the population is at capacity ( ∑i,j ni,j(t) ≈ con-
stant N), genotype frequencies within the bulk change according
to the ODE

dpi,j

dt
≈ pi,j(ri,j − r̄).

Substituting this into the time derivative of mean fitness in trait
r̄1 yields

v1 =
dr̄1
dt

= ∑
i,j

dpi,j

dt
is = ∑

i,j
pi,j(ri,j − r̄)is.

Substituting (ri,j− r̄) = (i− ī)s+(j− j̄)s in the expression above
gives

v1 = ∑
i,j

pi,j(i− ī)is2 + ∑
i,j

pi,j(j− j̄)is2 = σ2
1 + σ1,2.

This can also be done for the second trait to get v2 = σ2
2 + σ1,2,

and thus, the total rate of adaptation must be

v(2U, N, s) ≈ σ2
1 + σ2

2 + 2σ1,2.
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