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An atlas of the aging lung mapped by single cell
transcriptomics and deep tissue proteomics
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Aging promotes lung function decline and susceptibility to chronic lung diseases, which are the third leading
cause of death worldwide. We used single cell transcriptomics and mass spectrometry to quantify changes in
cellular activity states of 30 cell types and the tissue proteome from lungs of young and old mice. Aging led
to increased transcriptional noise, indicating deregulated epigenetic control. We observed highly distinct
effects of aging on cell type level, uncovering increased cholesterol biosynthesis in type-2 pneumocytes and
lipofibroblasts as a novel hallmark of lung aging. Proteomic profiling revealed extracellular matrix
remodeling in old mice, including increased collagen IV and XVI and decreased Fraser syndrome complex
proteins and Collagen XIV. Computational integration of the aging proteome and single cell transcriptomes
predicted the cellular source of regulated proteins and created a first unbiased reference of the aging lung.
The lung aging atlas can be accessed via an interactive user-friendly webtool at:
https://theislab.github.io/LungAgingAtlas
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The intricate structure of the lung enables gas exchange
between inhaled air and circulating blood. As the organ
with the largest surface area (~70 m?in humans), the lung
is constantly exposed to a plethora of environmental
insults. A range of protection mechanisms are in place,
including a highly specialized set of lung resident innate
and adaptive immune cells that fight off infection, as well
as several stem and progenitor cell populations that
provide the lung with a remarkable regenerative capacity
upon injuryl. These protection mechanisms seem to
deteriorate with advanced age, since aging is the main
risk factor for developing chronic lung diseases, including
chronic obstructive pulmonary disease (COPD), lung
cancer, and interstitial lung disease (ILD)* 3. Advanced age
causes a progressive impairment of lung function even in
otherwise healthy individuals, featuring structural and
immunological alterations that affect gas exchange and
susceptibility to disease”. Aging decreases ciliary beat

frequency in mice, thereby decreasing mucociliary
clearance and partially explaining the predisposition of
the elderly to pneumonia®. Senescence of the immune
system in the elderly has been linked to a phenomenon
called “inflammaging’, which refers to elevated levels of
tissue and circulating pro-inflammatory cytokines in the
absence of an immunological threat®. Several previous
studies analyzing the effect of aging on pulmonary
immunity point to age dependent changes of the immune
repertoire as well as activity and recruitment of immune
cells upon infection and injury4. Vulnerability to oxidative
stress, pathological nitric oxide signaling, and deficient
recruitment of endothelial stem cell precursors have been
described for the aged pulmonary vasculature’. The ECM
of old lungs features changes in tensile strength and
elasticity, which were discussed to be a possible
consequence of fibroblast senescence®, Using atomic
force microscopy, age-related increases in stiffness of
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parenchymal and vessel compartments were
demonstrated recently’, however, the causal molecular
changes underlying these effects are unknown.

Aging is a multifactorial process that leads to these
molecular and cellular changes in a complicated series of
events. The hallmarks of aging encompass cell-intrinsic
effects, such as genomic instability, telomere attrition,
epigenetic alterations, loss of proteostasis, deregulated
nutrient  sensing, mitochondrial dysfunction and
senescence, as well as cell-extrinsic effects, such as
altered intercellular communication and extracellular
matrix remodelingz' . The lung contains at least 40
distinct cell typesw, and specific effects of age on cell type
level have never been systematically analyzed. In this
study, we build on rapid progress in single cell
transcriptomics™ 2 which recently enabled the
generation of a first cell type resolved census of murine
Iungsla, serving as a starting point for investigating the
lung in distinct biological conditions as shown for lung
aging in the present work. We computationally integrated
single cell signatures of aging with state of the art mass
spectrometry driven proteomics14 to generate the first
multi-omics whole organ resource of aging associated
molecular and cellular alterations in the lung.

Results

A single cell atlas of mouse lung aging reveals common
deregulated transcriptional control

To generate a cell-type resolved map of lung aging we
performed highly parallel genome-wide expression
profiling of individual cells using the Dropseq workflow™,
which uses both molecule and cell-specific barcoding,
enabling great cost efficiency and accurate quantification
of transcripts without amplification bias'®. Single cell
suspensions of whole lungs were generated from 3 (n=8)
and 24 (n=7) month old mice. After quality control, a total
of 14,813 cells were used for downstream analysis (Fig.
1a). Unsupervised clustering analysis revealed 36 distinct
clusters corresponding to 30 cell types, including all major
known epithelial, mesenchymal, and leukocyte lineages
(Fig. 1b and d). We observed very good overlap across
mouse samples and most clusters were derived from
>70% of the mice of both age groups (Fig. Sl1a). The
definition of cell types (clusters in tSNE map) was very
comparable between old and young mice, indicating that
the cell type identity was not strongly confounded by the
aging effects (Fig. S1b). Two clusters exclusively contained
cells from a single mouse and were removed from
downstream analysis. Interestingly, we identified even
rare (<1%, 43 cells) cell types such as megakaryocytes,
which were recently identified as a novel unexpected
tissue resident cell type in mouse Iung”. Of note, some

samples contributed as little as a single cell to this
megakaryocyte cluster, emphasizing the power and
accuracy of the computational workflow used here for
data integration from multiple mice.

We wused differential gene expression analysis to
determine cell type specific marker genes with highly
different levels between clusters (Fig. 1c, Table S1). The
clusters were annotated with assumed cell type identities
based on (1) known marker genes derived from expert
annotation in literature, and (2) enrichment analysis
using Fisher’s exact test of gene expression signatures of
isolated cell types from databases including ImmGen'®
and xCell*®. Correlation analysis of marker gene signatures
revealed that similar cell types clustered together,
implying correct cell type annotation (Fig. 1c). We used
the matchSCore tool to compare the cluster identities of
our dataset with the lung data in the recently published
Mouse Cell Atlas®, and found very good agreement in
cluster identities and annotations (Fig. Slc).

It was suggested that aging is the result of an increase in
transcriptional instability rather than a coordinated
transcriptional program, and that an aging associated
increase in transcriptional noise can lead to ‘fate drifts’
and ambiguous cell type identities®® *. Therefore, we
quantified transcriptional noise by calculating the median
euclidean distance between the gene expression profile
of all single cells from each mouse and the average gene
expression profile of the respective cell type. A significant
positive association between transcriptional noise and
age was observed after accounting for cell type identity as
a covariate (Analysis of variance, P: <le-5). Thus, this
analysis confirmed an increase in transcriptional noise
with aging in most cell types (Fig. 1d) in line with previous
reports in the human pancreas21 or mouse CD4+ T cells®™.

Multi-omics data integration of mRNA and protein aging
signatures

To capture age dependent alterations in both mRNA and
protein content, a second independent cohort of young
and old mice was analyzed with a state of the art shotgun
proteomics workflow (Fig. S2 and Table S2). To compare
proteome and transcriptome data we generated in silico
bulk samples from the scRNA-seq data by summing
expression counts from all cells for each mouse
individually (Fig. 2a). Differential gene expression analysis
of 21969 genes from in silico bulks revealed a total of
2362 differentially expressed genes (FDR < 10%) between
the two age groups (Fig. 2b, Table S3). From whole lung
tissue proteomes we quantified 5212 proteins across
conditions and found 213 proteins to be significantly
regulated with age, including 32 ECM proteins (FDR <
10%, Fig. 2c, Supplementary Fig. S2 and Table S2).
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Cell type resolved analysis of lung aging
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Figure 1. A single cell atlas of mouse lung aging. (a) Rows represent hierarchically clustered cell types,

Experimental design — whole lung single cell suspensions of
young and old mice were analyzed using the Dropseq workflow.
(b) The tSNE visualization shows unsupervised transcriptome
clustering, revealing 30 distinct cellular identities. (c) The
dotplot shows (1) the percentage of cells expressing the
respective selected marker gene using dot size and (2) the
average expression level of that gene based on UMI counts.

demonstrating similarities of transcriptional profiles. (d) Boxplot
illustrates transcriptional noise by age and celltype. Barplot to
the right depicts the difference between the median
transcriptional noise values between young and old mice. Purple
color indicates differences trending towards statistical
significant (P: <0.05).
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Prediction of the upstream regulators22 of the observed
expression changes in either the transcriptome or
proteome data gave very similar results (Fig. 2d). In both
datasets from independent mouse cohorts, we
discovered a pro-inflammatory signature, which included
upregulation of 116, 1l11b, Tnf, and Ifng, as well as the
downregulation of Pparg and 1110 (Fig. 2d). Furthermore,
to reveal common or distinct regulation of gene
annotation categories in the transcriptome or proteome
we performed a two dimensional annotation enrichment
analysis23 (Table S4). Again, most gene categories
regulated by age were showing the same direction in
transcriptome and proteome so that the positive Pearson
correlation of the annotation enrichment scores was
highly significant (Fig. 2e). We observed several hallmarks
of aging, including a decline in mitochondrial function and
upregulation of pro-inflammatory pathways
(‘inflammaging’). Interestingly, we detected a strong
increase in immunoglobulins in both datasets, as well as
higher levels of MHC class |, which is consistent with the
observed increase in the interferon pathway (Fig. 2e).
Many extracellular matrix genes, such as Collagen Il were
downregulated on both the mRNA and protein level (Fig.
2f), while the levels of all basement membrane-
associated Collagen IV genes were increased on the
protein level, but decreased at the mRNA level (Fig. 2g).
The differential regulation of Collagen IV transcripts and
proteins highlights the importance of combined RNA and
protein analysis. We validated the increased protein
abundance of Collagen IV using immunofluorescence and
found that interestingly the main increase in Collagen IV
in old mice was found around airways and vessels (Fig.
2h).

The combination of tissue proteomics with single cell
transcriptomics enabled us to predict the cellular source
of the regulated proteins, which can be explored in the
online webtool. Furthermore, single cell RNAseq can
disentangle relative frequency changes of cell types from
real changes in gene expression within a given cell type.
We analyzed age dependent alterations of relative
frequencies of the 30 cell types represented in our
dataset. Since the cell type frequencies are proportions
the data is compositional. Therefore, it is impossible to
statistically discern if a relative change in cell type
frequency is caused by the increase of a given cell type or
the decrease of another. However, after performing
dimension reduction using multidimensional scaling of
the cell type proportions we observed a significant
association between the first coordinate and age (Fig.
S3a, b; Wilcoxon test, P < 0.005), indicating that cell type
frequencies differed between young and old mice.
Interestingly, the ratio of club to ciliated cells was altered
in old mice. While Dropseq data from young mice
contained more club cells than ciliated cells, this ratio was

inverted in old mice with more than twofold more ciliated
cells over Club cells (Fig. S3c). We validated this finding in
situ by quantifying airway club and ciliated cells using
immunostainings of Foxjl (ciliated cell marker) and CC10
(club cell marker) (Fig. S3d). Club cell numbers were
decreased in old mice (Fig S3e), while ciliated cells were
increased (Fig. S3f), leading to a significantly altered ratio
of club to ciliated cells in aged mouse airways (Fig. S3g).

Age dependent changes in composition and organization
of the pulmonary extracellular matrix

The extracellular matrix (ECM) can act as a solid phase-
binding interface for hundreds of secreted proteins,
creating an information-rich signaling template for cell
function and differentiation®. Alterations in ECM
composition and possibly architecture in the aging lung
have been suggested”, however experimental evidence
using unbiased mass spectrometry is scarce. We
previously developed the quantitative detergent solubility
profiling (QDSP) method to add an additional dimension
of protein solubility to tissue proteomeszs'zs. In QDSP,
proteins are extracted from tissue homogenates with
increasing stringency of detergents, which typically leaves
ECM proteins enriched in the insoluble last fraction. This
enables better coverage of ECM proteins and analysis of
the strength of their associations with higher order ECM
structures such as microfibrils or collagen networks. We
applied this method to young and old mice and compared
protein solubility profiles between the two groups (Fig.
3a). Differential comparison of the solubility profiles
between young and old mice revealed 74 proteins,
including eight ECM proteins, with altered solubility
profiles (FDR <20%) (Table S5).

Using principal component analysis of 432 secreted
extracellular proteins we found that the protein solubility
fractions separated in component 1, while the age groups
separated in component 4 of the data (Fig. 3b). Thus,
principal component analysis enabled the stratification of
secreted proteins by their biochemical solubility and their
differential behavior upon aging (Fig. 4c). This analysis
also showed that neither the abundance nor the solubility
of many ECM proteins, including Collagen | and basement
membrane laminins, was altered (Fig. 3c). We uncovered
several ECM proteins with greatly reduced abundance
and/or significant changes in their solubility profiles.
While the most abundant basement membrane laminin
chain (Lamc1l) was unaltered in both abundance (Fig. 3d)
and solubility (Fig. 3g), serving as a control for overall
integrity of the basement membrane and the quality of
our data, the basement membrane-associated trimeric
Fraser Syndrome complex (consisting of Frasl, Freml,
and Frem2) was downregulated (Fig. 3e) and more
soluble (Fig. 3h) in old age.
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Figure 2. Multi-omics analysis of lung aging. (a) Experimental
design - two independent cohorts of young and old mice were
analyzed by RNA-seq and mass spectrometry driven proteomics
respectively. (b, c) The volcano plots show significantly
regulated genes in the (b) transcriptome and (c) proteome. (d)
Gene expression and protein abundance fold changes were used
to predict upstream regulators that are known to drive gene

expression responses similar to the ones experimentally
observed. Upstream regulators could be cytokines or
transcription factors. The color coded activation z-score

illustrates the prediction of increased or decreased activity upon

Incorporation of the Fraser syndrome complex within the
basement membrane (rendering it more insoluble) has
been shown to depend on extracellular assembly of all

mRNA
(cohort 1)

Protein
(cohort 2)

ageing. (e) The scatter plot shows the result of a two
dimensional annotation enrichment analysis based on fold
changes in the transcriptome (x-axis) and proteome (y-axis),
which resulted in a significant positive correlation of both
datasets. Types of databases used for gene annotation are color
coded as depicted in the legend. (f, g) Normalized relative
abundance of the depicted (f) interstitial matrix and (g) Collagen
IV genes in the transcriptome and proteome experiments
respectively. (h) Immunofluorescence image of collagen type IV
using confocal microscopy at 25x magnification. Note, the
increased fluorescence intensity around airways in old mice.

three proteinszg, indicating that this assembly and/or the
expression of either one or all subunits of the complex is
perturbed in old mice. Fraser syndrome is a skin-blistering
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disease which points to an important function of the
Fraser syndrome complex proteins in linking the epithelial
basement membrane to the underlying mesenchyme®. In
the lungs of adult mice, expression is restricted to the
mesothelium; Frasl -/- mice develop lung lobulation
defects®. Indeed, we were able to confirm the
mesothelium specific expression of Frasl using our
scRNAseq data (Fig. 3j, k). Another ECM protein with
markedly reduced protein levels (Fig. 3f) and increased
solubility (Fig. 3l) was Collagen XIV, a collagen of the
FACIT family of collagens that is associated with the
surface of Collagen | fibrils and may function by
integrating collagen bundles™. Collagen XIV is a major
ECM binding site for the proteoglycan Decorin®, which is
known to regulate TGF-beta activity33' *, Interestingly, our
scRNAseq data localized Collagen XIV expression to
interstitial fibroblasts, which also specifically expressed
Decorin and were distinct from the lipofibroblasts that
showed very little expression of this particular collagen
(Fig. 3 j/k).

Cell type specific effects of aging

Cell type-resolved differential gene expression testing
between age groups in the single cell data sets identified
391 significantly regulated genes (FDR < 10%) (Fig. 4a;
Table S6). Alveolar macrophages and type 2
pneumocytes, the two cell types with highest number of
cells in the dataset, are discussed as an example for the
type of insight that can be gained from our cell type
resolved resource. Both cell types showed a clearly
altered phenotype in aged mice.

In alveolar macrophages, we found 125 significantly
regulated mRNAs (FDR<10%, Fig. 4b), including the
downregulation of the genes for Eosinophil cationic
protein 1 & 2 (Earl & Ear2), which have ribonuclease
activity and are thought to have potent innate immune
functions as antiviral factors®. The cell surface scavenger-
type receptor Marco, mediating ingestion of unopsonized
environmental particles36, was downregulated in old mice
which may cause impaired particle clearance by alveolar
macrophages. We observed higher levels of the C/EBP
beta (Cebpb), which is an important transcription factor
regulating the expression of genes involved in immune
and inflammatory response537’ % several genes that have
been shown to be upregulated in lung injury, repair and
fibrosis®®, such as Sppl, Gpnmb, and Mfge8 were also
induced in alveolar macrophages of old mice, which may
be a consequence of the ongoing “inflammaging’.

In alveolar type 2 pneumocytes, 121 mRNAs were
significantly regulated (FDR<10%, Fig. 4c). We observed a
strong increase of the Major Histocompatibility Complex
(MHC) class | proteins H2-K1, H2-Q7, H2-D1, and B2m
(Fig. 4c, d), which we validated using an independent flow
cytometry experiment (Fig. 4f). Elevated MHC class |
levels likely result in increased presentation of self-
antigens to the immune system and are consistent with
our observation of a prominent Interferon-gamma
signature in old mice (Fig. 2d), which is known to activate
MHC class | expressionsg. Type-2 pneumocytes of old mice
featured a highly significant upregulation of the enzyme
Acyl-CoA desaturase 1 (Scd1), which is the fatty acyl A9-
desaturating enzyme that converts saturated fatty acids
(SFA) into monounsaturated fatty acids (MUFA) (Fig. 4c,
e). The age dependent upregulation of Scdl in type-2
pneumocytes is a novel observation, which may have
important implications since Scdl is thought to induce
adaptive stress signaling that maintains cellular
persistence and fosters survival and cellular functionality
under distinct pathological conditions™.

To obtain a meta-analysis of changes in previously
characterized gene expression modules and pathways, we
used cell type resolved mRNA fold changes for gene
annotation enrichment analysis (Fig. 5a and b, Table S7)
and upstream regulator analysis (Fig. 5c-e). The analysis
revealed cell type specific alterations in gene expression
programs upon aging. For instance, comparing club cells
to type-2 pneumocytes, showed that Nrf2 (Nfe2l2)
mediated oxidative stress responses were higher in type-
2 pneumocytes of old mice and lower in club cells (Fig.
5c). Aging is known to affect growth signaling via the
evolutionary conserved Igf-1/Akt/mTOR axis’.
Interestingly, we found evidence for increased mTOR
signaling in type-2 and club cells, but not in ciliated and
goblet cells (Fig. 5c). Mesenchymal cells showed
remarkable differences in their aging response (Fig. 5d).
For instance, we observed the pro-inflammatory Il1b
signature in capillary endothelial cells, as well as in
mesothelial and smooth muscle cells, but not in the other
mesenchymal cell types. In myeloid cell types we found
both differences and similarities in the aging response
(Fig. 5e). While, an increased interferon gamma and
reduced 1110 signature in old mice was consistently
observed, other effects were more specific, such as the
increase in Statl target genes in classical monocytes
(Ly6c2+), which was not observed in non-classical
monocytes (Ly6c2-).
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Figure 3. Quantitative detergent solubility profiling of the symbol shape, in component 1 and the age groups, as indicated

aging lung proteome. (a) Experimental design — extraction of
proteins from whole lung homogenates with increasing
detergent stringency results in four distinct protein fractions,
which are analyzed by mass spectrometry. (b) The projections of
a principal component analysis (PCA) of 432 proteins with the
annotation ‘secreted” in the Uniprot and/or Matrisome
database separate the four protein fractions, indicated by

by color, in component 4. (c) The loadings of the PCA are shown.
(d-f) Relative differences in MS-intensity (abundance) of the
indicated proteins. (g-i) The normalized MS-intensity across the
four protein fractions from differential detergent extraction
highlights changes in protein solubility between young and old
mice for the indicated proteins. (j) The tSNE map shows 483
cells of mesenchymal origin (endothelial cells excluded),
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revealing 8 distinct cellular states. (k) The dotplot shows (1) the
percentage of cells expressing the respective selected marker
gene using dot size and (2) the average expression level of that

Increased cholesterol biosynthesis
pneumocytes and lipofibroblasts

in aged type-2

Pulmonary surfactant homeostasis is a tightly regulated
process that involves synthesis of lipids by type-2
pneumocytes and Iipofibroblasts“. Lipid metabolism in
alveolar type-2 cells is regulated by sterol-response
element-binding proteins (SREBPs), such as Srebf2 and
their negative regulators Insigl and Insig2. Deletion of
Insigl/2 in mouse type-2 pneumocytes activated SREBPs
and led to the accumulation of neutral lipids (cholesterol
esters and trigylcerids) in type-2 pneumocytes and
alveolar macrophages, accompanied by lipotoxicity-
related lung inflammation and tissue remodeling™.
Interestingly, we observed very similar gene expression
changes in type-2 pneumocytes of old mice as reported
for the Insigl/2 deletion. Consistently, the upstream
regulator analysis predicted increased activity of Srebf2
and reduced activity of Insigl specifically in type-2
pneumocytes of old mice (Fig. 5c). The upstream
regulator analysis was based on 25 known targets of
SREBP/Insigl, all of which were increased in aged type-2
pneumocytes (Fig. 6a). Using gene annotation enrichment
analysis on Uniprot Keywords, GO terms and KEGG
pathways (Table S7) we found increased cholesterol
biosynthesis as the top hit in type-ll pneumocytes and
lipofibroblasts and no other cell type (Fig. 6b). Indeed,
most of the Insigl/2 target genes are directly involved in
cholesterol biosynthesis (Fig. 6c).

To confirm the increased cholesterol biosynthesis and
analyze the actual lipid content of the cells we used the
Nile red dye to stain neutral lipids in cells of a whole lung
suspension after depletion of leukocytes (Fig. 6d). Using
flow cytometry we quantified the Nile red lipid staining
and found a significant increase in both mean
fluorescence intensity (Fig. 6d, e), and number of Nile red
positive cells (Fig. 6f, g) in the CD45 negative cells of old
mice. CD45+ cells were not significantly altered, indicating
that the increase in neutral lipid content is specific to
epithelial cells and fibroblasts. Thus, we have shown for
the first time that increased cholesterol biosynthesis and
neutral lipid content in type-2 pneumocytes and
lipofibroblasts is a hallmark of lung aging.

Discussion

Increasing both health and lifespan of humans is one of
the prime goals of the modern society. In order to better
understand age-related chronic lung diseases such as
COPD, lung cancer or fibrosis, intense efforts in integrated

gene based on UMI counts. Proteins that were found to be up-
or downregulated are highlighted in red and blue respectively.

multi-omics systems biology tools for the analysis of lung
aging are needed”. In this work, we present the first
single cell survey of mouse lung aging and
computationally integrate transcriptomics data with deep
tissue proteomics data to build an atlas of the aging lung.
The lung aging atlas and associated raw data can be
accessed at https://theislab.github.io/LungAgingAtlas
(Figure S4). It features five dimensions that can be
navigated through gene and cell type specific queries: (1)
cell type specific expression of genes and marker
signatures for 30 cell types, (2) regulation of gene
expression by age on cell type level, (3) cell type resolved
pathway and gene category enrichment analysis, (4)
regulation of protein abundance by age on tissue level, (5)
regulation of protein solubility by age.

The highly multiplexed nature of droplet based single cell
RNA sequencing used in this study allows the direct
analysis of thousands of individual cells freshly isolated
from whole mouse lungs, providing unbiased
classification of cell types and cellular states. Two
previous studies have analyzed aging effects using single
cell transcriptomicszo' 2 and found increased
transcriptional variability between cells in human
pancreas and T cells. In this study, we identify aging
associated increased transcriptional noise, which may
result from deregulated epigenetic control, in most cell
types of the lung, indicating that this phenomenon is a
general hallmark of aging that likely affects most cell
types in both mice and humans. This new concept is
supported by our study and it will be interesting when
and how future investigations will shed light on the
molecular mechanisms driving this phenomenon.

We have used two independent cohorts of young and old
mice and uncovered remarkably well conserved aging
signatures in both mRNA and protein. Thus, the two
datasets validate each other and show that on gene
category and pathway level, the analysis of protein and
MRNA content can lead to overall similar results with
important differences. Hallmarks of aging, such as the
downregulation of mitochondrial oxidative
phosphorylation and the upregulation of pro-
inflammatory signaling pathways were consistently
observed in both datasets. On the level of individual
genes/proteins, however, we often observed interesting
differences, which indicates that for functional analysis of
a particular gene/protein it remains essential to also
analyze the protein, which ultimately executes biological
functions.
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Figure 4. Cell type specific differential gene expression
analysis. (a) Heatmap displays fold changes derived from the
cell type resolved differential expression analysis. Rows and
columns correspond to cell types and genes, respectively.
Negative fold change values (blue) represent higher expression
in young compared to old. Positive fold change values are
colored in pink. (b, c) Volcano plots visualize the differential
gene expression results in Alveolar macrophages (b) and
alveolar type-2 pneumocytes (c). X and Y axes show average
log2 fold change and -logl0 p-value, respectively. (d, e) Violin

The example of basement membrane collagen IV genes
that were all downregulated on the mRNA level but

plots depict normalized expression values of two exemplary
genes H2-K1 (d) and Scdl (e) across age groups for type-2
pneumocytes. (f) The indicated cell lineages were gated by flow
cytometry as shown in the left panel in a CD31 and Epcam co-
staining and evaluated for H2-K1 expression on protein level.
The histograms show fluorescence intensity distribution of the
H2-K1 cell surface staining for the indicated lineages and age
groups. (g) Boxplot shows mean fluorescence intensity for H2-K1
in the indicated cell lineages across four replicates of mice. P-
values are from an unpaired, two-tailed t-test.

upregulated on the protein level serves as a reminder
that mRNA analysis should always be taken with a grain of
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salt. Next to mass spectrometry based methods, novel
single cell methods combining mRNA and protein
analysis, such as CITE-seq43, will become ever more
important in the near future. We show that the
combination of single cell-resolved mRNA analysis and
bulk proteomics is highly complementary by using the
single cell expression data to understand the most likely
cellular origin of proteins that showed altered abundance
with age. Spatial transcriptomics methods for high
throughput detection of transcripts in single cells in situ
are currently quickly evolving44’ . Traditional antibody
based methods for single cell protein analysis in situ are
however not well multiplexed and do not easily scale for
high throughput. Thus, to fully develop the enormous
potential of single cell multi-omics data integration
(M.Colomé-Tatché & F.J.Theis 2018;
https://doi.org/10.1016/j.coisb.2018.01.003), the field
depends on current and future developments in methods
for simultaneous protein and mRNA analysis on single cell
level in situ™®*’.

We analyzed the foundations of lung tissue architecture
by quantifying compositional and structural changes in
the aged extracellular matrix using state of the art mass
spectrometry workflows. The ECM is not only key as a
scaffold for the lungs overall architecture, but also an
important instructive niche for cell fate and phenotypeu'
8 Recent proteomic studies have demonstrated that at
least 150 different ECM proteins, glycosaminoglycans and
modifying enzymes are expressed in the lung, and these
assemble into intricate composite biomaterials that are
characterized by specific biophysical and biochemical
propertie527' %% Due to this complexity of the ECM, both
in terms of composition and posttranslational
modification, and the assembly of ECM proteins into
supramolecular structures, it is presently unclear on
which level and how exactly the aging process affects the
lungs” ECM scaffold. We used detergent solubility
profiling to screen for differences in protein crosslinking
and complex formation within the ECM. Surprisingly,
most solubility profiles were not significantly altered with

age, indicating that aging-related ECM remodeling does
not involve large differences in covalent protein
crosslinks. However, we observed a few very strong
changes in the ECM, which were completely novel in the
context of aging and are open for future investigation into
their functional implications.

In order to stabilize the alveolar structure during
breathing-induced expansion and contraction, type-2
pneumocytes produce and secrete pulmonary surfactant,
which is a thin film of phospholipids and surfactant
proteins“. The lipid composition of pulmonary surfactant
has been shown to change with ageso, and electron
microscopy of surfactant and the lipid loaded lamellar
bodies in type-2 pneumocytes revealed ultrastructural
disorganization with ageSI. This may be related to our
finding that cholesterol biosynthesis and neutral lipid
content is upregulated in type-2 cells of old mice. It is
currently unclear at which level the homeostasis of lipid
metabolism is altered in the aged lungs. We found strong
similarity of the aged type-2 phenotype with the
phenotype in Insigl/2 knock out mice that accumulated
neutral lipids, accompanied by lipotoxicity-related lung
inflammation and tissue remodeling“. Thus, it is possible
that part of the chronic inflammation we observed in the
aged lung is influenced by deregulation of lipid
homeostasis. The inflammatory phenotype may also be
related to epithelial senescence, as mice with a type-2
pneumocyte specific deletion of telomerase, and thus
premature aging with increased senescence in these cells,
developed a pro-inflammatory tissue microenvironment
and were less efficient in resolving acute lung injurysz.

In summary, we have demonstrated that the lung aging
atlas presented here contains a plethora of novel
information on molecular and cellular scale and serves as
a reference for the large community of scientists studying
chronic lung diseases and the aging process. The data also
serves as analysis template for the currently ongoing
worldwide collection of data for a Human Lung Cell Atlas,
which will hopefully enable analysis of aging effects in
human lungs.
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Figure 5. Cell type specific pathway and upstream regulator
analysis. (a, b) The bar graph shows the result of a gene
annotation enrichment analysis for (a) alveolar macrophages,
and (b) type-ll pneumocytes, respectively. Gene categories with
positive  (upregulated in old) and negative scores
(downregulated in old) are highlighted in red and blue
respectively. (c-e) Upstream regulators are predicted based on
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the observed gene expression changes for (c) epithelial, (d)
mesenchymal, and (e) myeloid cells. Cell types and regulators
were grouped by unsupervised hierarchical clustering (Pearson
correlation) and the indicated transcriptional regulators and
cytokines, growth factors and ECM proteins are color coded
based on the activation score as shown.
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Figure 6. Increased cholesterol biosynthesis in type 2 nodes. (d) Nile red staining of neutral lipids in cells from a whole

pneumocytes and lipofibroblasts in aged mice. (a) The graph
shows genes known to be negatively regulated by Insigl that
were found to be upregulated in type-2 pneumopcytes of old
mice. (b) Selected gene categories found to be significantly (FDR
<5%) up- (positive enrichment scores) or downregulated
(negative enrichment scores) in the indicated cell-types. (c)
Segment of the cholesterol biosynthesis pathway. Diamant
shaped nodes represent enzymes that were found to be
upregulated in type-2 pneumocytes of old mice. The
biochemical intermediates are named in between the enzyme

suspension depleted for CD45+ leukocytes (CD45 lineage
negative cells). (e) Quantification of nile red stainings using flow
cytometry. Histograms show flow cytometry analysis of Nile Red
in aged (red) and young (blue) mice, unstained control is
represented in gray. Cells were stratified by size in bins of large
(FSC hi) and small (FSC lo) cells using the forward scatter. (f, g)
Nile Red mean fluorescence intensity (MFIl) quantification across
three individual mice for (f) CD45 negative and forward scatter
(FSC) high, and (g) FSC low cells. P-values are from an unpaired,
two-tailed t-test.
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Supplementary Figure S1. Excellent technical reproducibility  visualization of overlap between cell type markers derived from
and correct cell type annotation. (a, b) tSNE visualization  the Mouse Cell Atlas (lung) and this study (c) . Red colors
colored by mouse sample (a) and age group (b). machSCore indicate higher matchSCore values.
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32 significantly regulated Matrisome proteins (FDR <10%)

Supplementary Figure S2. Whole lung tissue proteomes of
mouse lung aging. (a) The histogram shows the normal
distribution of mass spectrometry (MS) intensities for the
quantified proteins in all replicates and experimental groups.
For t-test statistics the missing values (proteins not detected in
the respective sample) were replaced by a normal distribution
of random values at the lower end of the distribution of real
values (data imputation). (b) Proteins regulated with a false

discovery rate < 10% are highlighted in red in the vulcano plot
showing the indicated fold changes and p-values from t-test
statistic. Matrisome proteins are shown as rectangles and all
other proteins as filled circles. (c) The z-score values of 32
significantly regulated extracellular matrix proteins were
grouped by unsupervised hierarchical clustering (Pearson
correlation)
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Supplemental Fig S3. Cell type frequency analysis reveals an
altered ratio of club to ciliated cells in airways of old mice. (a)
The MDS plot shows the mouse-wise euclidean distances of cell
type proportions for the two age groups (b) The box plot shows
the significant difference in euclidean distance of cell type
proportions. (c) Relative difference in proportion in percent of
all cell in the dataset for the indicated cell types. (d) Club and

ciliated cells were stained using a CC10 and Foxjl antibody
respectively. (e, f) The box plots show the quantification of (e)
Ciliated and (f) Club cells from counting 2647 cells in 14 airways
of two mice of each age group. (g) Ratio of ciliated to club cells
in 14 airways. P-values are from an unpaired, two-tailed t-test
using Welch’s correction.
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Supplementary Figure

S4. A user friendly and interactive
webtool to navigate the Lung Aging Atlas. (a) The first tab "Lung
cell type signatures’ provides a cell type dotplot (left panel) and
a color coded tSNE map (middle panel) for gene specific queries
and illustrates cell type specific expression of any gene of

interest. A cell type query produces a list of top marker genes
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for the cell type of interest (right panel). (b) The panel ‘Lung
aging protein” features a dot plot to illustrate the most likely
cellular source of the protein of interest (left panel), a box plot
to show alterations in total lung tissue protein abundance in old
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mice (middle panel), and a line plot to show protein solubilities.
Protein solubility is measured by relative quantification of
protein abundance across four fractions. Fraction 1 (FR1)
contains proteins with highest and fraction 4 (ECM) with lowest
solubility. Curves that peak on the right (ECM) thus represent
insoluble proteins. (c) The tab "Lung aging mRNA" again features
the dotplot (left panel), a volcano plot that shows fold changes
[old/young] on the x-axis and -logl0 p-values on the y-axis
(middle panel), and a violin plot of the log2 UMI counts

illustrating mRNA abundance in young and old mice. The dot
and violin plot are navigated with the gene specific query, while
the volcano plot requires navigation via the cell type query. The
volcano plot has a toggle over function that allows identification
of genes and can thus be used to browse through differential
gene expression between young and old cells of any cell type of
interest. (d) In the tab "Lung aging - annotation enrichments’,
the gene annotation enrichments between old and young can
be browsed for all 30 cell types.

Methods

Generation of single cell suspensions from whole mouse
lung

Lung tissue was perfused with sterile saline from the right
to the left ventricle of the heart and subsequently inflated
via a catheter in the trachea, by an enzyme mix
containing dispase (50 caseinolytic units/ml), collagenase
(2 mg/ml), elastase (1 mg/ml), and DNase (30 ug/ml).
After tying off the trachea, the lung was removed and
immediately minced to small pieces (approx. 1 mm?). The
tissue was transferred into 4 ml of enzyme mix for
enzymatic digestion for 30 min at 37°C. Enzyme activity
was inhibited by adding 5 ml of PBS supplemented with
10% fetal calf serum. Dissociated cells in suspension were
passed through a 70 um strainer and centrifuged at 500 x
g for 5 min at 4°C. Red blood cell lysis (Thermo Fischer 00-
4333-57) was done for 2 min and stopped with 10% FCS
in PBS. After another centrifugation 5 min at 500 x g (4°C)
the cells were counted using a Neubauer chamber and
critically assessed for single cell separation and viability.
250.000 cells were aliquoted in 2.5 mL of PBS
supplemented with 0.04% of bovine serum albumin and
loaded for Drop-Seq at a final concentration of 100
cells/uL.

Single cell RNA sequencing

Drop-seq experiments were performed largely as
described previously™ ' **, with few adaptations during
the single cell library preparation. Briefly, using a
microfluidic PDMS device (Nanoshift), single cells (100/ul)
from the lung cell suspension were co-encapsulated in
droplets with barcoded beads (120/ul, purchased from
ChemGenes Corporation, Wilmington, MA) at rates of
4000 pl/hr. Droplet emulsions were collected for 15
min/each prior to droplet breakage by perfluorooctanol
(Sigma-Aldrich). After breakage, beads were harvested
and the hybridized mRNA transcripts reverse transcribed
(Maxima RT, Thermo Fisher). Unused primers were
removed by the addition of exonuclease | (New England
Biolabs), following which beads were washed, counted,
and aliquoted for pre-amplification (2000 beads/reaction,
equals ~100 cells/reaction) with 12 PCR cycles (primers,
chemistry, and cycle conditions identical to those
previously described™. PCR products were pooled and

purified twice by 0.6x clean-up beads (CleanNA). Prior to
tagmentation, cDNA samples were loaded on a DNA High
Sensitivity Chip on the 2100 Bioanalyzer (Agilent) to
ensure transcript integrity, purity, and amount. For each
sample, 1 ng of pre-amplified cDNA from an estimated
1000 cells was tagmented by Nextera XT (lllumina) with a
custom P5 primer (Integrated DNA Technologies). Single
cell libraries were sequenced in a 100 bp paired-end run
on the Illumina HiSeq4000 using 0.2 nM denatured
sample and 5% PhiX spike-in. For priming of read 1, 0.5
UM Read1CustSeqB (primer sequence:
GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC) was
used.

Bioinformatic processing of scRNA-seq reads

The Dropseq core computational pipeline was used for
processing next generation sequencing reads of the
scRNA-seq data, as previously described™. Briefly, STAR
(version 2.5.2a) was used for mapping54. Reads were
aligned to the mm10 genome reference (provided by
Drop-seq group, GSE63269). For barcode filtering, we
excluded barcodes with less than 200 genes detected.

Single cell data analysis

After constructing the single cell gene expression count
matrix, we used the R package Seurat™ and custom
scripts for analysis.

Quality control. A high proportion of transcript counts
derived from mitochondria-encoded genes can indicate
low cell quality. Similarly cells with unusually high UMI
count levels may represent cell doublets. Therefore we
removed cells with >10% mitochondria derived counts
and >5000 total UMI counts from the downstream
analysis.

Unsupervised clustering and visualization. Highly variable
genes were defined within each mouse sample (young,
n=8; old n=7) separately following Seurat standard
approach. Next, genes appearing in >4 mouse samples in
the set of highly variable genes were defined as a set of
consensus highly variable genes. To minimize the effect of
cell-cycle on clustering we removed cell-cycle genes56
from the set of consensus highly variable genes. All 14813
cells passing quality control were merged into one count
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matrix and normalized and scaled using Seurat’s
NormalizeData() and ScaleData() functions. The reduced
set of consensus highly variable genes was used as the
feature set for independent component analysis using
Seurat’s RunlICA() function. The first 50 independent
components were used for tSNE visualization and Louvain
clustering using the Seurat functions RunTSNE() and
FindClusters(), respectively.

Cell type marker discovery. The Seurat FindAllMarkers()
function was used to identify cluster specific marker
genes. Based on manual annotation and with guidance of
the enrichment analysis (see below) the 36 clusters were
assigned to 30 cell type identities. Using the annotation of
cell type identities the FindAllMarkers() function was
called to identify the final set of cell type markers used
throughout this analysis.

Ambient RNA identification. An important technical detail
needed our attention and is briefly described here. As
infrequently discussed in the community but not yet
addressed, we also observed ‘ambient mRNA" effects,
which we believe are the consequence of free mRNA
released from dying cells hybridizing with beads in
droplets during the microfluidic capture of single cells in
the Dropseq workflow. The ambient mRNAs are typically
derived from highly abundant transcripts and this artefact
is inherent to all droplet based methods (including the
commercially available 10x platform). Here, it can be
exemplified by the Scgblal gene in Figure 1C that is
known to be highly specific for Club and Goblet cells but
was nevertheless detected in almost 100% of the cells in
our data. However, the UMI count levels were much
higher in Club and Goblet cells (representing the real
source of expression) indicating that the mRNA counts
observed in all other clusters were ambient mRNA
background. To independently confirm this we therefore
determined all genes that showed ambient mRNA
background by analyzing the identity of genes on beads at
the tailend of the total UMI count distribution (on
average 10 UMls per barcode), representing empty beads
that were never in contact with a real cell but
nevertheless contain information from free floating
ambient mRNA. We identified 153 genes (Table S8) with
an “ambient mRNA" effect and accounted for this effect in
downstream analysis.

Cell type annotation. To aid the assignment of cell type to
clusters derived from unsupervised clustering, we
performed cell type enrichment analysis. Cell type gene
signatures obtained from bulk level gene expression were
downloaded from the ImmGen and xCell resources. Each
gene signature obtained from our clustering was
statistically evaluated for overlap with gene signatures
contained in these two resources. Mouse gene symbols
were capitalized to map to human gene symbols. Overlap

between gene signatures was evaluated using Fisher’s
Exact test.

Mouse Cell Atlas integration. Cell type marker signatures
in our data (Table S1) were compared to cell type marker
signatures in the Mouse Cell Atlas (MCA)™. MatchSCore
(Mereu et al 2018, bioRxiv doi:
https://doi.org/10.1101/314831) was used to quantify
overlap between cell type marker signatures derived from
our study and the MCA. Marker genes with adjusted p-
value < 0.1 and average log fold change > 1 were
considered.

Quantifying transcriptional noise. Transcriptional noise in
the gene expression profiles was quantified in a
multivariate fashion following previous work™. Briefly,
the euclidean distance between the gene expression
profile of each cell and the average expression profile of
the respective cell type was calculated for each mouse.
Median euclidean distance was used to summarize
transcriptional noise at the mouse level. To statistically
assess the association between transcriptional noise and
age within each cell type Wilcoxon’s rank sum test was
used. To statistically assess the global association
between transcriptional noise and age, analysis of
variance was used In particular, transcriptional noise was
modelled as the dependent variable with cell type as a
covariate and age as the explanatory variable.

Cell type frequency analysis. Cell type frequencies were
calculated based on the counts of cells annotated to each
cell type for each mouse. Counts were transformed to
proportions using the DR_data() function of the
DirichletReg R package which causes the values to shrink
away from extreme values of 0 and 1. Next, the mouse-
wise euclidean distances were calculated based on these
proportions using the dist() R function followed by
multidimensional scaling using the isoMDS() R function.
To statistically assess the association between age and
the first coordinate derived from the multidimensional
scaling Wilcoxon test was applied. Relative changes in cell
type frequencies were calculated by subtracting the
median cell type proportion of the young mice from the
cell type proportions of the old mice.

Cell type resolved differential expression analysis. Cell
type resolved differential expression analysis was
performed using the Seurat differential gene expression
testing framework. Within each cell type cells were
grouped by age and differential testing performed using
the Seurat FindMarkers() function. To account for the
effect of ambient mRNAs, testing of ambient mRNAs was
limited to cell types in which the ambient mRNA was a
cell type marker gene.

Cell type resolved pathway analysis. The 1D annotation
enrichment analysis23 was done with the freely available
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software package Perseus’’, as previously described”. To
predict the activity of upstream transcriptional regulators
and growth factors based on the observed gene
expression changes, we used the Ingenuity® Pathway
Analysis platform (IPA®, QIAGEN Redwood City,
www.giagen.com/ingenuity) as previously described®.
The analysis uses a suite of algorithms and tools
embedded in IPA for inferring and scoring regulator
networks upstream of gene-expression data based on a
large-scale causal network derived from the Ingenuity
Knowledge Base. The analytics tool ‘Upstream Regulator
Analysis'22 was used to compare the known effect
(transcriptional  activation or repression) of a
transcriptional regulator on its target genes to the
observed changes to assign an activation Z-score. Since it
is a priori unknown which causal edges in the master
network are applicable to the experimental context, the
‘Upstream Regulator Analysis’ tool uses a statistical
approach to determine and score those regulators whose
network connections to dataset genes as well as
associated regulation directions are unlikely to occur in a
random model®. In particular, the tool defines an overlap
P-value measuring enrichment of network-regulated
genes in the dataset, as well as an activation Z-score
which can be used to find likely regulating molecules
based on a statistically significant pattern match of up-
and down-regulation, and also to predict the activation
state (either activated or inhibited) of a putative
regulator. In our analysis we considered genes with an
overlap P-value of >7 (logl0) that had an activation Z-
score > 2 as activated and those with an activation Z-
score < -2 as inhibited.

Proteomics and multi-omics data integration

Detergent solubility profiling. For proteome analysis
~100mg of fresh frozen total tissue (wet weight) of mouse
lungs was homogenized in 500 pl PBS (with protease
inhibitor cocktail) using an Ultra-turrax homogenizer.
After centrifugation the soluble proteins were collected
and proteins were extracted from the insoluble pellet in 3
steps using buffers with increasing stringency as
described in the QDSP protocolzs. Peptides from LysC and
trypsin proteolysis of the four protein fractions in
guadinium hydrochloride (enzyme/protein ratio 1:50),
were purified as previously described on SDB-RPS
material stage-tipszg.

Mass _spectrometry: Data was acquired on a
Quadrupole/Orbitrap type Mass Spectrometer (Q-
Exactive, Thermo Scientific) as previously described®.
Approximately 2 pg of peptides were separated in a four
hour gradient on a 50-cm long (75-um inner diameter)
column packed in-house with ReproSil-Pur C18-AQ 1.9 um
resin (Dr. Maisch GmbH). Reverse-phase chromatography
was performed with an EASY-nLC 1000 ultra-high
pressure system (Thermo Fisher Scientific), which was

coupled to a Q-Exactive Mass Spectrometer (Thermo
Scientific). Peptides were loaded with buffer A (0.1% (v/v)
formic acid) and eluted with a nonlinear 240-min gradient
of 5-60% buffer B (0.1% (v/v) formic acid, 80% (v/v)
acetonitrile) at a flow rate of 250 nl/min. After each
gradient, the column was washed with 95% buffer B and
re-equilibrated with buffer A. Column temperature was
kept at 50 °C by an in-house designed oven with a Peltier
element®® and operational parameters were monitored in
real time by the SprayQc software®. MS data were
acquired with a shotgun proteomics method, where in
each cycle a full scan, providing an overview of the full
complement of isotope patterns visible at that particular
time point, is follow by up-to ten data-dependent MS/MS
scans on the most abundant not yet sequenced isotopes
(top10 method)eo. Target value for the full scan MS
spectra was 3 x 10° charges in the 300-1,650 m/z range
with a maximum injection time of 20 ms and a resolution
of 70,000 at m/z 400. Isolation of precursors was
performed with the quadrupole at window of 3 Th.
Precursors were fragmented by higher-energy collisional
dissociation (HCD) with normalized collision energy of 25
% (the appropriate energy is calculated using this
percentage, and m/z and charge state of the precursor).
MS/MS scans were acquired at a resolution of 17,500 at
m/z 400 with an ion target value of 1 x 10> a maximum
injection time of 120 ms, and fixed first mass of 100 Th.
Repeat sequencing of peptides was minimized by
excluding the selected peptide candidates for 40 seconds.

Mass spectrometry raw data processing: MS raw files
were analyzed by the MaxQuant®* (version 1.4.3.20) and
peak lists were searched against the human Uniprot
FASTA database (version Nov 2016), and a common
contaminants database (247 entries) by the Andromeda
search engine62 as previously described®.

QDSP data analysis: The quantitative detergent solubility
profiling (QDSP) analysis was done as previously
described®, Briefly, intensities were first normalized such
that the mean log2 intensities of the young and the old
samples are zero, respectively. Using the normalized
intensities, a two-way ANOVA with the two-factor
treatment (old/young) and solubility fraction (FR1, FR2,
FR3, INSOL) and the corresponding interaction term was
performed using the R function aov(). Proteins significant
in the interaction term correspond to proteins for which
the solubility profile changes between young and old
mice. Therefore, the corresponding P-value was used for
filtering the significantly changed profiles after FDR
correction.

In silico bulk differential expression analysis. In silico bulk
samples were generated by summing UMI counts across
all cells within one sample. Differential gene expression
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analysis of in silico bulk samples was performed using the
R package DESeq2 (v1.20.0)%.

2D annotation enrichment analysis. Statistical and
bioinformatics operations, such as normalization, pattern
recognition, cross-omics comparisons and multiple-
hypothesis testing corrections, were performed with the
Perseus software package®’. The 2D annotation
enrichment test used to compare proteome and
transcriptome, is based on a two-dimensional
generalization of the nonparametric two-sample test. The
false discovery rate is stringently controlled by correcting
for multiple hypothesis testingB.

Flow cytometry

Isolated total lung cell suspensions were used to detect
and quantify cell populations and activation by flow
cytometry. We depleted red blood cells by positive
selection of Terl99 cells, followed by CD45 bead
separation (Miltenyi Biotec; Bergish Gladbach, Germany).
Next, we analyzed cells by FACS cell suspensions before
and after CD45 separation and stained cells suspensions
with anti-mouse CD31, EpCAM, Podoplanin, (Biolegend;
San Diego, CA, USA), H2-K1 (Thermo Fisher Scientific;
Waltham, Massachusetts, USA). Cells were stained in the
dark at 4°C, for 20 minutes. CD45 lineage negative cells
were stained with Nile Red (Santacruz Biotechnology), in
a 1:1000 dilution for 10 min at 4°C, as previously
reported“. Data acquisition was performed in a BD
Fortessa flow cytometer (Becton Dickinson; Heidelberg,
Germany). Data were analyzed using the FlowJo software
(TreeStart Inc; Ashland, OR, USA). Data were reported as
absolute numbers (cells/uL), normalized by beads counts
(BD Truecount TM Beads tubes; BD Biosciences,
Heidelberg, Germany). For H2-K1 and Nile Red, data were
analyzed by mean fluorescence intensity (MFI). Negative
thresholds for gating were set according to isotype-
labeled, and unstained controls.

Immunofluorescence and histology

For immunofluorescence microscopy, mouse lungs were
perfused with PBS, fixed in 4% paraformaldehyde (pH
7.0), and embedded in paraffin for FFPE sections. The
paraffin sections (3.5 um) were deparaffinized and
rehydrated, and the antigen retrieval was accomplished
by pressure-cooking (30 s at 125°C and 10 s at 90°C) in
citrate buffer (10 mM, pH 6.0). After blocking for 1 h at
room temperature with 5% BSA, the lung sections were
incubated with the primary antibodies overnight at 4°C,
incubated with the secondary antibodies (1:250) for 2
h, followed by DAPI (Sigma-Aldrich, 1:2,000) for 20 min at
room temperature. Images were acquired with an LSM
710 microscope (Zeiss). The following primary (1) and
secondary (2) antibodies were used: (1) CC10 rabbit
(Santa Cruz, sc-25554), Foxjl mouse (Santa Cruz, sc-
53139), Collagen IV rabbit (Abcam, ab6586), Podoplanin
goat (R&D Systems, AF3244); (2) donkey anti-mouse
Alexa Fluor (AF) 647 (Invitrogen, A21447), donkey anti-
rabbit AF 568 (Invitrogen, A10042), donkey anti-goat AF
488 (Invitrogen, A21202).

The frequency of ciliated (nuclear Foxj1+) and club cells
(CC10+) were quantified by counting 2647 cells, covering
a total length of 22 mm airway in 28 individual airways
(young, n=14; old n=14) of two mice of each age group.
We normalized cell numbers to the total length of their
respective airway using the ZEN 2.3 SP1 software for
image processing.

Data availability

Proteome raw data can be downloaded from the PRIDE
repository under the accession number XXX. scRNA-seq
raw data can be downloaded from the Gene Expression
Omnibus under the accession number XXX and accessed
via the EBIs single cell expression atlas under the link XXX.
The whole lung aging atlas can be accessed via an
interactive user-friendly webtool at:
https://theislab.github.io/LungAgingAtlas
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