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Abstract 23 

In mammalian cells, >25% of proteins are synthesized and exported through the secretory pathway. 24 

The pathway complexity, however, obfuscates its impact on the secretion of different proteins. 25 

Unraveling its impact on diverse proteins is particularly important, since the pathway is used for 26 

biopharmaceutical production. Here we delineate the core secretory pathway functions and integrate 27 

them with genome-scale metabolic models of human, mouse, and Chinese hamster ovary (CHO) cells. 28 

The resulting reconstructions RECON2.2s, iMM1685s, and iCHO2048s, enable the computation of the 29 

cost and machinery demanded by each secreted protein. We predicted metabolic costs and maximum 30 

productivities of biotherapeutic proteins and identified protein features that most significantly impact 31 

protein secretion. By integrating additional metabolomic, glycoproteomic and ribosomal profiling 32 

data, we further found that CHO cells have adapted to reduce expression and secretion of expensive 33 

host cell proteins. Finally, the model successfully predicts the increase in titers after silencing a highly 34 

expressed selection marker. This work represents a knowledge-base of the mammalian secretory 35 

pathway that serves as a novel tool for systems biotechnology. 36 
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1. Introduction 40 

To interact with their environment, cells produce numerous signaling proteins, hormones, 41 

receptors, and structural proteins. In mammals, these include >3000 secreted proteins (e.g., enzymes, 42 

hormones, antibodies, extracellular matrix proteins, etc.) and >5500 membrane proteins1, most of which 43 

are synthesized and processed in the secretory pathway. The secretory pathway is a complex series of 44 

processes predominantly in the endoplasmic reticulum (ER), Golgi apparatus, and other compartments 45 

of the endomembrane system. In these compartments, the synthesis of the thousands of membrane 46 

and secreted proteins is facilitated by hundreds of other proteins that make up the secretory pathway 47 

machinery. These are used to translate, fold, post-translationally modify, test for quality, sort and 48 

translocate the secreted proteins.  49 

The secretory pathway is particularly important in biotechnology and the biopharmaceutical 50 

industry, since most therapeutic proteins are secreted. Mammalian cell lines such as HEK293, PerC6, and 51 

Chinese hamster ovary (CHO) cells are used extensively to ensure that a secreted biotherapeutic is 52 

properly folded and contains the necessary post-translational modifications (PTMs) 2. For any given 53 

biotherapeutic, different machinery in the secretory pathway may be needed, and each step can exert a 54 

non-negligible metabolic demand on the cells. The complexity of this pathway, however, makes it 55 

unclear how the biosynthetic cost and cellular needs vary for different secreted proteins, each of which 56 

exerts different demands for cellular resources. Therefore, a detailed understanding of the biosynthetic 57 

costs of the secretory pathway could guide efforts to engineer host cells and bioprocesses for any 58 

desired product. The energetic and material demands of the mammalian secretory pathway can be 59 

accounted for by substantially extending the scope of metabolic models. Indeed, recent studies have 60 

incorporated portions of the secretory pathway in metabolic models of yeast 3–5. 61 

Here we present the first genome-scale reconstructions of mammalian metabolism and protein 62 

secretion. Specifically, we constructed these for human, mouse, and CHO cells, called RECON2.2s, 63 

iMM1685s, and iCHO2048s, respectively. Given its dominant role in biotherapeutic production, we focus 64 

here on the biosynthetic capabilities of CHO cells, while providing models as a resource. We first 65 

demonstrate that product-specific secretory pathway models can be built to estimate CHO cell growth 66 

rates given the specific productivity of the recombinant product as a constraint. Second, we identify the 67 

features of secreted proteins that have the highest impact on protein cost and productivity rates. Third, 68 

we use our model to identify proteins that compete for cell resources, thereby presenting targets for 69 

cell engineering. Finally, we derive an expression for computing the energetic cost of synthesizing and 70 
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secreting a product in terms of molecules of ATP equivalents per protein molecule. We use this 71 

expression and analyze how the energetic burden of protein secretion has led to an overall suppression 72 

of more expensive secreted host cell proteins in CHO cells. Through this study we demonstrate that a 73 

systems-view of the secretory pathway now enables the analysis of many biomolecular mechanisms 74 

controlling the efficacy and cost of protein expression in mammalian cells. We envision our models as 75 

valuable tools for the study of normal physiological processes and engineering cell bioprocesses in 76 

biotechnology. Our models, Jupyter notebooks, and data are available at 77 

https://github.com/LewisLabUCSD. 78 

 79 

2. Material and Methods 80 

2.1 Reconstruction of the mammalian secretory pathway  81 

A list of proteins and enzymes in the mammalian secretory pathway was compiled from literature 82 

curation, UniProt, NCBI Gene, NCBI Protein and CHOgenome.org (see Supp. File 1). To facilitate the 83 

reconstruction process, the secretory pathway was divided into twelve subsystems or functional 84 

modules (Fig. 1) to sort the components according to their function. These subsystems correspond to 85 

the major steps required to process and secrete a protein. The components from a prior yeast secretory 86 

pathway reconstruction3 were used as a starting reference. To build species-specific models, orthologs 87 

for human, mouse and the Chinese hamster were identified and used, while yeast components and 88 

subsystems that are not present in the mammalian secretory pathway were removed. Additional 89 

subsystems were added when unique to higher eukaryotes, such as the calnexin-calreticulin cycle in the 90 

ER6. These were constructed de novo and added to the reconstruction. The databases and literature 91 

were then consulted to identify the remaining components involved in each subsystem of the 92 

mammalian secretory pathway. Since most components in the mammalian secretory pathway have 93 

been identified in mouse and human, BLAST was utilized to identify the corresponding Chinese hamster 94 

orthologs by setting human as the reference organism and a cutoff of 60% of sequence identity.  See 95 

Supp. File 4 for a concise overview of the mammalian secretory pathway and its comparison with the 96 

yeast secretory pathway. 97 

 98 

2.2 Protein Specific Information Matrix (PSIM)  99 

The PSIM (Supp. File 2) contains the necessary information to construct a protein-specific secretory 100 

model from the template reactions in our reconstruction. The columns in the PSIM are: presence of a 101 
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signal peptide (SP), number of disulfide bonds (DSB), presence of Glycosylphosphatidylinositol (GPI) 102 

anchors, number of N-linked (NG) and O-linked (OG) glycans, number of transmembrane domains 103 

(TMD), subcellular location, protein length, and molecular weight. For most proteins, the information in 104 

the PSIM was obtained from the Uniprot database. When necessary, computational tools were used to 105 

predict signal peptides (PrediSi7) and GPI anchors (GPI-SOM8). Finally, additional information on the 106 

number of O-linked glycosylation sites of certain proteins were obtained from experimental data in 107 

previous studies9,10. The PSIMs of the CHO and human secretomes are a subset of the full PSIM and 108 

contains only the proteins with a signal peptide (predicted or confirmed in Uniprot). The distribution of 109 

all PTMs across the human, mouse and CHO proteomes can be found in Supp. Notebook 5. 110 

 111 

2.3 Detection of N-linked glycosylation sites via mass spectrometry  112 

The number of N-linked glycosylation sites in the PSIM was determined computationally and 113 

experimentally as follows. CHO-K1 cells (ATCC) were lysed, denatured, reduced, alkylated and digested 114 

by trypsin. Desalted peptides were incubated with 10 mM sodium periodate in dark for 1 hour before 115 

coupling to 50 μL of (50% slurry) hydrazide resins. After incubation overnight, non-glycosylated peptides 116 

were washed with 1.5 M NaCl and water. The N-glycosylated peptides were released with PNGaseF at 117 

37 °C and desalted by using a C18 SepPak column. Strong cation exchange (SCX) chromatography was 118 

used to separate the sample into 8 fractions. Each fraction was analyzed on an LTQ-Orbitrap Velos 119 

(Thermo Electron, Bremen, Germany) mass spectrometer. During the mass spectrometry data analysis, 120 

carbamidomethylation was set as a fixed modification while oxidation, pyroglutamine and deamidation 121 

were variable modifications. 122 

 123 

2.4 Construction of secretory models and constraint-based analysis 124 

We wrote Jupyter Notebooks in both Python and MATLAB (see Supp. Jupyter Notebooks 1 and 2) that 125 

take a row from the PSIM as input to produce an expanded iCHO2048s metabolic model with the 126 

product-specific secretory pathway of the corresponding protein. Flux balance analysis (FBA11) and all 127 

other constraint-based analyses were done using the COBRA toolbox12 in MATLAB R2014a and the 128 

Gurobi solver version 6.0.0. The analyses in Figs. 2, 3, and 4 were done using the constraints in Supp. File 129 

3. For the iCHO2048s models secreting human proteins, we set the same constraints in all models and 130 

computed the theoretical maximum productivity (maxqp) while maintaining a growth rate (in units of 131 

1/h) of 0.01. Finally, since the exact glycoprofiles of most proteins in CHO are unknown and some even 132 
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change over time in culture13, we simplified our models by only adding the core N-linked and O-linked 133 

glycans to the secreted proteins. 134 

 135 

2.5 Batch cultivation 136 

Two isogenic CHO-S cell lines adapted to grow in suspension, one producing Enbrel (Etanercept) and the 137 

other producing human plasma protease C1 inhibitor (SERPING1), were seeded at 3 x 105 cells/mL in 60 138 

mL CD-CHO medium (Thermo Fisher Scientific, USA) supplemented with 8 mM L-Glutamine and 1 μL/mL 139 

anti-clumping agent, in 250 mL Erlenmeyer shake flasks. Cells were incubated in a humidified incubator 140 

at 37°C, 5% CO2 at 120 rpm. Viable cell density and viability were monitored every 24 hours for 7 days 141 

using the NucleoCounter NC-200 Cell Counter (ChemoMetec). Daily samples of spent media were taken 142 

for extracellular metabolite concentration and titer measurements by drawing 0.8 mL from each culture, 143 

centrifuging it at 1000 g for 10 minutes and collecting the supernatant and discarding the cell pellet. 144 

 145 

2.6 Titer determination 146 

To quantify Enbrel/SERPING1, biolayer interferometry was performed using an Octet RED96 (Pall 147 

Corporation, Menlo Park, CA). ProA biosensors (Fortebio 18-5013) were hydrated in PBS and 148 

preconditioned in 10 mM glycine pH 1.7. A calibration curve was prepared using Enbrel (Pfizer) or 149 

SERPING1 at 200, 100, 50, 25, 12.5, 6.25, 3.13, 1.56, 0.78 μg/ml. Culture spent media samples were 150 

collected after centrifugation and association was performed for 120 s with a shaking speed of 200 rpm 151 

at 30 °C. Octet System Data Analysis 7.1 software was used to calculate binding rates and absolute 152 

protein concentrations. 153 

 154 

2.7 Extracellular metabolite concentration measurements 155 

The concentrations of glucose, lactate, ammonium (NH4
+), and glutamine in spent media were 156 

measured using the BioProfile 400 (Nova Biomedical). Amino acid concentrations were determined via 157 

High Performance Liquid Chromatography using the Dionex Ultimate 3000 autosampler at a flow rate of 158 

1mL/min. Briefly, samples were diluted 10 times using 20 μL of sample, 80 μL MiliQ water, and 100 μL 159 

of an internal amino acid standard. Derivatized amino acids were monitored using a fluorescence 160 

detector. OPA-derivatized amino acids were detected at 340ex and 450em nm and FMOC-derivatized 161 

amino acids at 266ex and 305em nm. Quantifications were based on standard curves derived from 162 

dilutions of a mixed amino acid standard (250 ug/mL). The upper and lower limits of quantification were 163 

100 and 0.5 ug/mL, respectively.  164 
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 165 

2.8 Estimation of the energetic cost of secreting a protein as the number of ATP equivalent 166 

molecules 167 

We estimated the energetic cost of synthesizing and secreting all 5,641 endogenous CHO cell proteins. 168 

These proteins were chosen for containing a signal peptide in their sequence and/or for being localized 169 

in the cell membrane (according to the UniProt database). The energetic cost (in units of number of ATP 170 

equivalents) of secreting each protein (length L) was computed using the following formulas and 171 

assumptions: 172 

1. Energy cost of translation. For each protein molecule produced, 2L ATP molecules are cleaved 173 

to AMP during charging of the tRNA with a specific amino acid; 1 GTP molecule is consumed 174 

during initiation and 1 GTP molecule for termination; L - 1 GTP molecules are required for the 175 

formation of L-1 peptide bonds; L - 1 GTP molecules are necessary for L-1 ribosomal 176 

translocation steps. Thus, the total cost of translation (assuming no proofreading) is 4L. 177 

2. Average cost of signal peptide degradation. On average, signal peptides have a length of 22 178 

amino acids. Thus, the average cost of degrading all peptide bonds in the signal peptide is 22. 179 

This average cost was assigned to all proteins analyzed. 180 

3. Energetic cost of translocation across the ER membrane. During activation of the translocon, 2 181 

cytosolic GTP molecules are hydrolyzed. From there, a GTP molecule bound to the folding-182 

assisting chaperone BiP is hydrolyzed to GDP for every 40 amino acids that pass through the 183 

translocon pore14. Thus, the cost of translocation is L/40 + 2. 184 

4. Energetic cost of vesicular transport and secretion. We used published data15–17 (see Supp. File 185 

1) to compute stoichiometric coefficients for reactions involving vesicular transport. That is, the 186 

number of GTP molecules bound to RAB and coat proteins in each type of vesicle (COPII and 187 

secretory vesicles). We found that a total of 192 and 44 GTPs must be hydrolyzed to transport 188 

one COPII or secretory (i.e. clathrin coated) vesicle from the origin membrane to the target 189 

membrane, respectively. Since vesicles do not transport a single protein molecule at a time, we 190 

estimated the number of secreted protein molecules that would fit inside a spherical vesicle 191 

(see estimated and assumed diameters in Supp. File 1). For that, we assumed that the secreted 192 

protein is globular and has a volume VP (nm3) that is directly proportional to its molecular weight 193 

MW18: 194 

𝑉𝑃  =  𝑀𝑊 × 0.00121 195 
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Finally, we assumed that only 70 percent of the vesicular volume can be occupied by the target 196 

protein. Thus, the cost of vesicular transport via COPII vesicles with Volume VCOPII is: 197 

192 𝐺𝑇𝑃𝑠 ÷ (𝑉𝐶𝑂𝑃𝐼𝐼  × 0.7 ÷ 𝑉) 198 

Similarly, the cost of vesicular secretion is: 199 

44 𝐺𝑇𝑃𝑠 ÷ (𝑉𝑆𝑒𝑐𝑟𝑒𝑡𝑜𝑟𝑦  × 0.7 ÷ 𝑉) 200 

 201 

2.9 Constraints used in models and Pareto optimality frontiers 202 

All models were constrained using different sets of experimental uptake rates, which can be found in 203 

Supp. File 3. To construct Pareto optimality frontiers, we used the robustAnalysis function from the 204 

COBRA Toolbox in Matlab 2015b using biomass as the control and secretion of the recombinant protein 205 

as the objective reactions, respectively. 206 

 207 

2.10 Analysis of gene expression versus protein cost 208 

Ribosome-profiling data19 were used to quantify the ribosomal occupancy of each transcript in CHO 209 

cells. A cutoff of 1 RPKM was used to remove genes with low expression (10,045 genes removed from 210 

day 3 analysis and 10,411 from day 6 analysis). We used Spearman correlation to assess the variation of 211 

expression levels with respect to protein ATP cost. 212 

 213 

2.11 CHO-DG44 model and prediction of neoR knock-out effect on specific productivity 214 

Ribosome-profiling data, specific productivity, product sequence, and growth rates of an IgG-producing 215 

CHO-DG44 cell line were obtained previously19. From the same cultures, we obtained further cell dry 216 

weight and metabolomic data from spent culture medium for this study. The mCADRE algorithm20,21 was 217 

used to construct a DG44 cell line-specific iCHO2048s model. The specific productivity and the RPKM 218 

values of the secreted IgG were used to estimate the translation rate for the neoR selection marker 219 

gene. We assumed that the flux (in units of mmol/gDW/h) through the neoR translation reaction (vneoR) 220 

should be proportional to that of the IgG translation rate (vIgG, calculated from the measured specific 221 

productivity) and related to their expression ratios (i.e. the RPKM values of their genes in the ribosome-222 

profiling data). 223 

𝑣𝑛𝑒𝑜𝑅 =
𝑅𝑃𝐾𝑀𝑛𝑒𝑜𝑅

2(𝑅𝑃𝐾𝑀𝑙𝑖𝑔ℎ𝑡 + 𝑅𝑃𝐾𝑀ℎ𝑒𝑎𝑣𝑦)
𝑣𝐼𝑔𝐺  224 
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Finally, a reaction of neoR peptide translation (which is expressed in cytosol and is not processed in the 225 

secretory pathway) was added to construct a neoR-specific iCHO2048s model. Uptake and secretion 226 

rates of relevant metabolites on days 3 and 6 of cell culture were used to constrain our model. Because 227 

recombinant proteins represent 20% of total cell protein22, we scaled the coefficients of all 20 amino 228 

acids in the model’s biomass reaction accordingly (i.e. each coefficient was multiplied by 0.8). We then 229 

used FBA to predict the specific productivity of IgG with or without neoR.  230 

 231 

2.12 Cell dry weight measurements 232 

For cell dry weight measurements, 6 tubes containing 2 mL of culture samples of known viable cell 233 

density and viability were freeze dried, weighed, washed in PBS, and weighed again. The difference in 234 

weight was used to calculate the mass per cell. The procedure resulted in an average cell dry weight of 235 

456 pg per cell. As a simplification, we assumed that cell dry weight does not significantly differ from 236 

this average measured value during culture and thus was used when computing flux distributions in all 237 

simulations. 238 

 239 

2.13 Calculation of amino acid uptake, growth rates and specific productivity from 240 

experimental data 241 

Supp. File 3 contains the uptake and secretion rates used to constrain the iCHO2048s models19,22,23. 242 

When rates were not explicitly stated in the studies we consulted, we used a method we developed 243 

previously24. Briefly, appropriate viable cell density, titer, and metabolite concentration plots were 244 

digitized using WebPlot Digitizer software and we computed the corresponding rates as follows: 245 

● Growth rate (in units of inverse hours): 246 

𝜇 = 1
𝑉𝐶𝐷

𝑑
𝑑𝑡

𝑉𝐶𝐷  247 

Where VCD is the viable cell density (in units of cells per milliliter) 248 

● Specific productivity (in units of picograms per cell per hour): 249 

𝑞𝑝 =
1

𝑉𝐶𝐷

𝑑

𝑑𝑡
𝑇𝑖𝑡𝑒𝑟  250 

● Consumption or production rate vx of metabolite x (in units of millimoles per gram dry weight 251 

per hour): 252 

𝑣𝑥 =
1

𝑉𝐶𝐷

𝑑

𝑑𝑡
[𝑥] 253 

 254 
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3. RESULTS 255 

3.1 In silico reconstruction of the mammalian protein secretion pathway 256 

We mapped out the core processes involved in the synthesis of secreted and membrane proteins in 257 

mammalian cells (i.e. human, mouse, and Chinese hamster). This included 261 components (gene 258 

products) in CHO cells and 271 components in both human and mouse. The components are involved in 259 

secretory reactions across 12 subsystems (i.e., functional modules of the secretory pathway; Fig. 1A). 260 

These components represent the core secretory machinery needed in the transition of a target protein 261 

from its immature state in the cytosol (i.e., right after translation) to its final form (i.e., when it contains 262 

all post-translational modifications and is secreted to the extracellular space). Each component in the 263 

reconstruction either catalyzes a chemical modification on the target protein (e.g., N-linked 264 

glycosylation inside ER lumen/Golgi) or participates in a multi-protein complex that promotes protein 265 

folding and/or transport. This distinction between catalytic enzymes and complex-forming components 266 

is important for modeling purposes as a catalytic component consumes or produces metabolites that 267 

are directly connected to the metabolic network (e.g., ATP, sugar nucleotides). Because all components 268 

of the core secretory pathway were conserved across human, mouse and hamster (Fig. 1B), we 269 

generated species-specific reconstructions and used them to expand the respective genome-scale 270 

metabolic network reconstructions (Recon 2.225, iMM141526, iCHO176623) and called these metabolic-271 

secretory reconstructions Recon 2.2s, iMM1685s, and iCHO2048s, respectively. A detailed list of the 272 

components, reactions and the associated genes can be found in Supp. File 1. 273 
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 274 

Figure 1 - Components in the reconstruction of secretory pathway in mammalian cells. (A) The 275 

reconstruction comprises 261 proteins in CHO cells and 271 proteins in human and mouse that are 276 

distributed across 12 subsystems. The different component numbers arise from the fact that the 277 

Chinese hamster proteome annotation only contains one alpha and one beta proteasome subunits, 278 

whereas the human and mouse contain 12 subunits of different subtypes. The detailed description of all 279 

components can be found in Supp. File 1. (B) High similarities were seen for proteins in CHO and human, 280 

with a high mean percentage identity in each subsystem (calculated with the sequence alignment tool 281 

BLAST). (C) Simplified schematic of reactions and subsystems involved in the secretion of a monoclonal 282 

antibody (mAb). A total of eight subsystems are necessary to translate, fold, transport, glycosylate, and 283 

secrete a mAb. The color of the subsystem names indicates if the reactions occur in the cytoplasm 284 
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(yellow), the ER lumen (red) or the Golgi apparatus (blue). GPI = Glycosylphosphatidylinositol, ER = 285 

Endoplasmic Reticulum, ERAD = ER associated degradation. 286 

 287 

3.2 iCHO2048s predicts measured growth rates for recombinant-protein-producing cells  288 

We first validated the accuracy of iCHO2048s predictions using published growth and specific 289 

productivity rates of IgG-producing CHO cell lines from two independent studies19,27. For this, 290 

we built an IgG-secreting iCHO2048s model using the information in the PSIM matrix for the 291 

therapeutic monoclonal antibody (mAb) Rituximab. We then constrained the model’s Rituximab-292 

specific secretory pathway with the reported productivity value in each study and used FBA to 293 

predict growth (Fig. 2A). Later, to assess the ability of iCHO2048s to predict growth rates in 294 

cases when CHO cells are producing non-antibody proteins, we collected data from two batch 295 

culture experiments using Enbrel- and SERPING1-producing isogenic CHO cell lines. We 296 

constructed two iCHO2048s models for each case and predicted growth rates on days 1 (early 297 

exponential growth phase) through 5 (late exponential growth phase) of culture while 298 

constraining the protein secretion rate to the measured specific productivity value (Fig. 2B-C). 299 

The model’s predictions agreed well with the reported/measured values. There were cases 300 

where iCHO2048s predicted a much higher growth rate than what was measured in the first 301 

days of batch culture (Fig. 2B-C). Since FBA computes theoretical maximum growth rates given 302 

a set of constraints, these over-prediction cases point at situations where CHO cells do not 303 

direct resources towards biomass production (during very early stages of culture), a discrepancy 304 

that is attenuated in later stages of culture (days 4-5 in Fig. 2B-C). In conclusion, these results 305 

confirm the ability of protein-specific reconstructions to capture the specific energetic 306 

requirements that each recombinant product imposes on CHO cell metabolism.  307 

  308 
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Figure 2 – Recombinant-protein-producing models of iCHO2048s predict measured growth rates. (A) 309 

Growth rates were computed using an IgG-specific iCHO2048s model and compared to experimentally-310 

measured growth rates from six datasets from two previous studies using IgG-producing cell lines. NT 311 

and TK specify the initials of the first author of thetwo studies (Neil Templeton, Thomas Kallehauge). (B-312 

C) Additional growth, productivity, and metabolomic data were obtained from Enbrel and SERPING1-313 

producing CHO cells, and models were constructed. (B) The model-predicted growth rates were 314 

consistent with experimental growth rates of of Enbrel-producing CHO cells and (C) SERPING1-producing 315 

CHO cells at almost all time points. Error bars in B and C represent the standard deviation of three 316 

biological replicates. In all cases, the iCHO2048s models were constrained to produce the recombinant 317 

protein at the measured specific productivity rate. The values used to constrain each of the iCHO2048s 318 

models are reported in Supp. File 3. 319 

 320 

3.3 Protein composition and complexity significantly impact model-predicted productivity 321 

To produce a specific product, CHO cells may utilize different modules of the secretory pathway based 322 

on the protein attributes and post-translational modifications (PTMs). For example, the synthesis of a 323 

mAb requires the use of multiple processes and consumes several different metabolites, such as amino 324 

acids for protein translation, redox equivalents for forming disulfide bonds, ATP equivalents for vesicular 325 

transport, and sugar nucleotides for protein glycosylation (Fig. 1C). Therefore, we set out to generate 326 

eight product-specific secretory pathway models for biotherapeutics commonly produced in CHO cells 327 

(Fig. 3A): bone morphogenetic proteins 2 and 7 (BMP2, BMP7), erythropoietin (EPO), Etanercept, factor 328 

VIII (F8), interferon beta 1a (IFNB1), Rituximab, and tissue plasminogen activator (tPA). The resulting 329 

iCHO2048s models were used to compute Pareto optimality frontiers between maximum cell growth (μ) 330 

and specific productivity (qP) assuming all eight CHO cells grow under the same conditions. That is, all 331 

eight models were given the same measured glucose and amino acid uptake rates23 as model constraints 332 

(see Supp. File 3) 333 
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 334 

Figure 3 - Construction of product-specific iCHO2048s models. (A) Eight product-specific iCHO2048s 335 

models were constructed for biotherapeutics commonly produced in CHO cells. (B) Pareto optimality 336 

frontiers of growth/productivity (𝜇/𝑞𝑝) trade-off curves were computed for the eight iCHO2048s models 337 

using the same constraints and experimental data from Supp. File 3. The shaded region corresponds to 338 

range of maximum productivity at commonly observed growth rates in CHO cell cultures. The molecular 339 

weight (in Daltons) of each biotherapeutic is shown in the legend. (C) All protein features (PTMs, 340 

transmembrane domains, and amino acid compositions) were analyzed to quantify their contribution to 341 

the explained variation of specific productivity. 342 

 343 

We computed the tradeoff between growth (𝜇; inverse hours or 1/h) and specific productivity (qp; pg 344 

protein produced per cell per day or PCD) as a Pareto optimal “𝜇/qp curve” for each protein (Fig. 2B). 345 

This curve defines the frontier of maximum specific productivity and maximum growth rates under the 346 

assumption that CHO cells can utilize all available resources towards production of biomass and 347 

recombinant protein only. The hinges in some of the 𝜇/qp curves are indicative of a transition between 348 

regions in the 𝜇/qp that are limited by distinct protein requirements (e.g., amino acids).  349 

 350 

An analysis of the 𝜇/qp curves for the eight biotherapeutics demonstrates that under the measured 351 

growth conditions, maximum productivities vary from 20-100 PCD at common growth rates (Fig. 2B, 352 

shaded region) to 70-150 PCD for senescent CHO cells. Neither the molecular weight (MW) nor product 353 

length can explain the 2-fold range differences in maximum productivity for different proteins. For 354 

example, the 𝜇/qp curves show tPA (MW = 61,917 Da) can express at higher PCD than BMP2 (MW = 355 

44,702 Da) despite being larger, because the N-glycans in BMP2  reduce productivity due to the higher 356 

cost of synthesizing core N-glycans (see Table 1), consistent with previous observations in yeast5. 357 

Furthermore, the degree and directionality of these effects will depend on the nutrient uptake rates, 358 
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highlighting the need in CHO bioprocessing to tailor culture media in a host cell and product-specific 359 

manner. Thus, while intuitively larger proteins would be expected to exert more bioenergetic cost on 360 

protein secretion, we find that specific compositional attributes of both the recombinant protein and 361 

the culture media significantly impact biosynthetic capacity. 362 

 363 

Table 1. Protein specific information matrix of biotherapeutics secreted in eight iCHO2048s models 

Protein Name 

Total number 
of amino 
acids in 

biotherapeutic 

Molecular 
Weight [Da] 

Total number 
of disulfide 

bonds in 
mature 
protein 

Total number 
of N-glycans 

in mature 
protein 

Total number 
of O-glycans 

in mature 
protein 

Estimated 
secretory 
cost [ATP 

equivalents] 

IFNB1 187 22294 1 1 0 777 

EPO 193 21037 2 3 1 801 

BMP2 396 44702 4 5 0 1618 

BMP7 431 49313 4 4 0 1759 

tPA 562 61917 17 3 1 2286 

Etanercept** 934 102470 7 6 26 3784 

Rituximab* 1328 143860 17 2 0 5370 

F8 2351 267009 8 22 0 9488 

       

* = Rituximab is a tetramer (2 light and 2 heavy chains)    

** =  Etanercept is a dimer      
 364 

 365 

3.4 iCHO2048s accurately predicts protein productivity increase following gene knock-down 366 

Kallehauge et al.19 demonstrated that a CHO-DG44 cell line producing an antiviral mAb28 also expressed 367 

high levels of the neoR selection-marker gene (Fig. 4A-B). Upon neoR knockdown, the titer and 368 

maximum viable cell densities of the CHO-DG44 cell line were increased. To test if iCHO2048s could 369 

replicate these results, we constructed a model for the Kallehauge et al. DG44 cell line and measured 370 

exometabolomics, and dry cell weight to parameterize the model. Since expression of neoR uses 371 

resources that could be used for antibody production, we predicted how much additional antibody 372 

could be synthesized with the elimination of the neoR gene. We simulated antibody production 373 

following a complete knockout of neoR (see Table 2 and Fig. 4B) and predicted that the deletion of neoR 374 

could increase specific productivity by up to 4% and 29% on days 3 (early exponential phase) and 6 (late 375 

phase) of culture, respectively (Fig. 4C). This was consistent with the experimentally observed values of 376 

2% and 14%. We then computed the 𝜇/qp curves for both the control and the neoR in silico knockout 377 

conditions on day 6. We found that the length of the 𝜇/qp curve (i.e. the size of the set of Pareto optimal 378 
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flux distributions, here denoted by delta (𝛥)) increased by 18% percent when neoR production is 379 

eliminated (Fig. 4D). Thus, iCHO2048s can quantify how much non-essential gene knockouts can boost 380 

growth and productivity in CHO cells by freeing energetic and secretory resources. In fact, the ribosome-381 

profiling data from Kallehauge et al. revealed that only 30 secretory proteins in CHO cells account for 382 

more than 50% of the ribosomal load directed towards translation of protein bearing a signal peptide 383 

(Fig. 4E). An analysis of other potential host cell gene knockouts using the method proposed here can be 384 

found in Supp. File 5. 385 

 386 

 387 

Figure 4 - iCHO2048s recapitulates experimental results of neoR knock-down in silico. (A) Ribosome 388 

occupancy was measured with ribosomal profiling during early (left) and late (right) exponential growth 389 

phases19. (B) Time profiles are shown for viable cell density (VCD) and titer in experimental culture. 390 

Shaded boxes indicate the time points corresponding to early (day 3) and late (day 6) growth phases. (C) 391 

Flux balance analysis was used to predict specific productivity (qp) with the iCHO2048s model before and 392 

after in silico knockout of neoR gene. (D) Growth/productivity (𝜇/𝑞𝑝) trade-offs were predicted by 393 

iCHO2048s and demonstrated a potential 18% increase after the neoR in silico knockout. The formula 394 

for calculating the trade-off improvement (𝛥) is shown in the plot. LWT = length of𝜇/𝑞𝑝curve before 395 

knockout, LKO = length of 𝜇/𝑞𝑝curve after knockout. (E) Ribosmal occupancy for all mRNA sequences 396 

bearing a signal peptide sequence were analyzed from the Kallehauge et al. study, and demonstrated 397 

that the top 30 secreted proteins accounted >50% of the ribosomal occupancy of secreted proteins. 398 

 399 
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Table 2 - Experimental data from Kallenhauge et al. used for 
testing predictive capabilities of iCHO2048s 

Experimental value 
description 

Day 3 (early 
exponential 

growth 
phase) 

Day 6 (late 
growth 
phase) 

Growth Rate [1/day] 0.44 0.02 
*Specific Productivity 

[Picograms of IgG/cell/day] 
16 5.5 

**Total IgG ribosomal footprint 
[RPKM] 

40258 13356 

Total neoR ribosomal footprint 
[RPKM] 

36952 25679 

 
  

* Average cell dry weight = 456.3 pg/cell 
 

** Sum of light and heavy chains ribosomal footprints 

 400 

 401 

3.5 CHO cells have suppressed expression of expensive proteins in their secretome 402 

In any cell, the secretory machinery is concurrently processing thousands of secreted and membrane 403 

proteins, which all compete for secretory pathway resources and pose a metabolic burden. To quantify 404 

this burden, we estimated the energetic cost of synthesizing and secreting all 5,641 endogenous 405 

proteins in the CHO secretome and membrane proteome in terms of total number of ATP equivalent 406 

molecules consumed. These protein costs were compared to the cost of the eight recombinant proteins 407 

previously analyzed. To refine estimates, we experimentally measured the number of N-linked glycans in 408 

the CHO proteome and integrated published numbers of O-linked glycans in CHO proteomic data9. 409 

Across the CHO secretome, protein synthesis cost varies substantially, and recombinant products are on 410 

average more expensive (Fig. 5A). For example, F8 is a “difficult-to-express” protein in CHO cells due to 411 

its propensity to aggregate in the ER, which promotes its premature degradation29,30. Our analysis 412 

further highlights that each molecule of F8 requires an excessive amount of ATP for its production (9488 413 

ATP molecules). This imposes a significant burden to the secretory machinery of CHO cells, which 414 

typically expresses much less expensive proteins. With the broad range of biosynthetic costs for 415 

different proteins, we wondered if gene expression in CHO cells has been influenced by the ATP cost of 416 

secreted proteins, by suppressing host cell protein expression to more efficiently allocate nutrients. 417 

Unless specific proteins are essential, CHO cells may preferentially suppress energetically expensive 418 

proteins. To test this, we analyzed ribosomal profiling (Ribo-seq) data from a mAb-producing CHO cell 419 

line19 and compared translation of each transcript against the ATP cost of the associated secreted 420 

protein (see Methods). Indeed, there was a significant negative correlation of -0.43 and -0.36 (Spearman 421 
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Rs, p value < 1x10-20) between ribosomal occupancy and ATP cost during early and late phases of culture, 422 

respectively (Fig. 5B). Wondering if the reduced translation was regulated transcriptionally, we further 423 

analyzed RNA-seq data from the same mAb-producing cell line and from another, non-producing CHO-424 

K1 cell line31. The RNA expression also negatively correlated with ATP cost (see Supp. Figure 2). Finally, 425 

we analyzed RNA-seq data from human tissues and immortalized cell lines in the Human Protein Atlas 426 

(HPA)1. All RNA-seq datasets in the HPA samples also negatively correlated with ATP cost (Supp. Figure 427 

3). Interestingly, we found that highly secretory tissues such as liver, pancreas and salivary gland had the 428 

strongest correlations, although none as strong as that of the mAb-producing CHO cells (Supp. Figure 429 

3a). Feizi and colleagues recently found that these tissues fine-tune the expression of protein disulfide 430 

isomerase genes32, suggesting that a similar regulatory process may take place in the ER of CHO cells as 431 

the secreted mAb contains a relatively high number (17) of disulfide bonds. In conclusion, there is a 432 

clear preference in CHO cells to suppress the expression and translation of proteins that are costly to 433 

synthesize, fold, and secrete.  434 
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 435 

Figure 5 – CHO cells preferentially suppress more expensive proteins. (A) The bioenergetic cost of each 436 

secreted CHO protein was computed. 28 of the 5641 proteins in CHO secretome had a cost > 10,000 ATP 437 

equivalents and were therefore not included in the histogram for the sake of ease of visualization (these 438 

28 proteins are listed in Supp. Notebook 3). The biosynthetic costs of 5 representative biotherapeutics 439 

are shown for comparison purposes (see Table 1). (B) Scatter plots and Spearman correlation of gene 440 

expression and protein cost (in number of ATP per protein) from Kallehauge et al.19 during early (left) 441 

and late (right) phases of culture. RPKM = reads per kilobase of transcript per million. 442 

 443 

4. Discussion 444 

Mammalian cells synthesize and process thousands of proteins through their secretory pathway. Many 445 

of these proteins, including hormones, enzymes, and receptors, are essential for mediating mammalian 446 

cell interactions with their environment. Therefore, many have therapeutic importance either as drugs 447 
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or as targets. The expression and secretion of recombinant proteins represents a significant anabolic 448 

demand that drains several substrates from cellular metabolism (e.g., amino acids, sugar nucleotides, 449 

ATP)33,34. Furthermore, the recombinant proteins demand adequate expression of proteins involved in 450 

their transcription, translation, folding, modification, and secretion. Thus, there has been an increasing 451 

interest in engineering the mammalian secretory pathway to boost protein production35–38. Despite 452 

important advances in the field24, current strategies to engineer the secretory pathway have remained 453 

predominantly empirical39,40. Recent modeling approaches, however, have enabled the analysis of the 454 

metabolic capabilities of important eukaryotic cells (including CHO) under different genetic and 455 

environmental conditions23,41–43. With the development of genome-scale models of protein-producing 456 

cells, such as the genome-scale model of CHO cell metabolism23, it is now possible to gain a systems-457 

level understanding of the CHO phenotype44.  458 

 459 

Efforts have been underway to enumerate the machinery needed for protein production. For example, 460 

Lund and colleagues45 recently reconstructed the most comprehensive network of the mouse secretory 461 

pathway to date. By comparing the mouse and CHO-K1 genomes and mapping CHO gene expression 462 

data onto this network, the authors identified potential targets for CHO cell engineering, demonstrating 463 

the great potential of systems biology to interrogate and understand protein secretion in animal cells. 464 

This network reconstruction, although useful for contextualizing omics data (e.g., RNA-seq), is not set up 465 

for simulations of protein production, nor integrated with additional cellular processes such as 466 

metabolism. Therefore, to quantify the cost and cellular capacity for protein production, it is important 467 

to delineate the mechanisms of all biosynthetic steps and bioenergetic processes in the cell. 468 

 469 

Here we have presented the first genome-scale reconstruction of the secretory pathway in mammalian 470 

cells. We connected this to current metabolic networks, yielding models of protein secretion and 471 

metabolism for human, mouse and CHO cells. These models compile decades of research in 472 

biochemistry and cell biology of higher eukaryotes and present it in a mathematical model. Using our 473 

model, we quantitatively estimated the energetic cost of producing several therapeutic proteins and all 474 

proteins in the CHO cell and human secretomes. We also identified factors limiting the secretion of 475 

individual products and observed that these depend on both the complexity of the product and the 476 

composition of the culture media. Furthermore, by integrating ribosomal profiling data with our model 477 

we found that CHO cells have selectively suppressed the expression of energetically expensive secreted 478 
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proteins. Expanding upon this observation, we demonstrated that specific productivities can be 479 

predictably increased following the knock-down of an energetically expensive, non-essential protein. 480 

 481 

It is important to note that while our models capture major features of secreted proteins, there are 482 

additional PTMs (e.g., phosphorylation, gamma carboxylation), pathway machinery (e.g., chaperones), 483 

and cell processes that could possibly be captured in further expansions of the modeling framework45 484 

(e.g, the unfolded protein response). These could be included as energetic costs associated with building 485 

and maintaining the secretory machinery (chaperones3, glycosyltransferases46); protein stability and 486 

turnover rates47; solubility constraints48 and molecular crowding effects49. As these are captured by the 487 

models in a protein product-specific manner, predictions of protein production capacity will improve, 488 

and the models could provide further insights for cell engineering for biotechnology or to obtain a 489 

deeper understanding of mechanisms underlying amyloid diseases. Finally, a simplification of our 490 

secretory model is that it only computes the bioenergetic cost of synthesizing and attaching single 491 

representative N- and O-linked glycans to secreted proteins (i.e., it does not include the 492 

microheterogeneity and diversity of glycan structures of different proteins). Thus, an immediate 493 

potential expansion of our secretory model would involve coupling it to existing computational models 494 

of protein glycosylation (recently reviewed by Spahn and Lewis50). For example, given an N-glycan 495 

reaction network that captures the glycoform complexity of a target protein51, one could build secretory 496 

reactions for the specific glycoforms of interest and compute the metabolic demands associated with 497 

each of them as to identify potential targets and nutrient supplementations for glycoengineering.     498 

 499 

In conclusion, the results of our study have important implications regarding the ability to predict 500 

protein expression based on protein specific attributes and energetic requirements. The secretory 501 

pathway models here stand as novel tools to study mammalian cells and the energetic trade-off 502 

between growth and protein secretion in a product- and cell-specific manner. We presented algorithms 503 

that provide novel insights with our models, and expect that many other methods can be developed to 504 

answer a wide array of questions surrounding the secretory pathway, as seen for metabolism52. To 505 

facilitate further use of these models, we provide our code and detailed instructions on how to 506 

construct protein-specific models in the Supp. Jupyter Notebooks available at 507 

https://github.com/LewisLabUCSD. 508 

 509 
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 639 

Supp. Figure 1 - Factors affecting iCHO2048s-predicted productivity with two different media 640 

compositions. The specific consumption rates are listed in Supp. File 3 as Kallehauge19 (left panel) and 641 

Martinez53 (right panel). 642 

 643 

 644 

Supp. Figure 2 – Spearman correlation between ATP cost and gene expression levels in non-producing 645 

CHO-K1 and CHO-DG44 mAb-producing cells. Gene transcription levels from (a) van Wijk et al.31 and (b) 646 

Kallehauge et al.19 were compared against the ATP cost of producing the translated proteins. 647 
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 649 

Supp. Figure 3 – Spearman correlations between ATP cost and gene expression levels across human 650 

tissues. Gene transcription levels from the Human Protein Atlas1were analyzed against the ATP cost of 651 

producing the translated proteins. The average of all Spearman correlations across samples in indicated 652 

by the black dashed line while the red dashed line indicates the correlation found using RNA-seq data in 653 

Kallehauge et al19. The number of genes used to compute the correlations in each sample is indicated 654 

next to the bars. All p-values associated to each correlation are less than 1x10-20 655 
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