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Abstract 22 

In mammalian cells, >25% of synthesized proteins are exported through the secretory pathway. The 23 
pathway complexity, however, obfuscates its impact on the secretion of different proteins. Unraveling its 24 
impact on diverse proteins is particularly important for biopharmaceutical production. Here we delineate 25 
the core secretory pathway functions and integrate them with genome-scale metabolic reconstructions 26 
of human, mouse, and Chinese hamster cells. The resulting reconstructions enable the computation of 27 
energetic costs and machinery demands of each secreted protein. By integrating additional omics data, 28 
we find that highly secretory cells have adapted to reduce expression and secretion of other expensive 29 
host cell proteins. Furthermore, we predict metabolic costs and maximum productivities of biotherapeutic 30 
proteins and identify protein features that most significantly impact protein secretion. Finally, the model 31 
successfully predicts the increase in secretion of a monoclonal antibody after silencing a highly expressed 32 
selection marker. This work represents a knowledgebase of the mammalian secretory pathway that serves 33 
as a novel tool for systems biotechnology. 34 
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Introduction 38 

To interact with their environment, cells produce numerous signaling proteins, hormones, receptors, 39 

and structural proteins. In mammals, these include at least 2,641 secreted proteins (e.g., enzymes, 40 

hormones, antibodies, extracellular matrix proteins) and >5,500 membrane proteins1, most of which are 41 

synthesized and processed in the secretory pathway.  42 

The secretory pathway consists of a complex series of processes that predominantly take place in the 43 

endoplasmic reticulum (ER), Golgi apparatus, and the endomembrane system. This pathway is particularly 44 

important in biotechnology and the biopharmaceutical industry, since most therapeutic proteins are 45 

produced in mammalian cell lines such as HEK293, PerC6, NS0, and Chinese hamster ovary (CHO) cells, 46 

which are capable of folding and adding the necessary post-translational modifications (PTMs) to the 47 

target product2. For any given biotherapeutic, different machinery in the secretory pathway may be 48 

needed, and each step can exert a non-negligible metabolic demand on the cells. The complexity of this 49 

pathway, however, makes it unclear how the biosynthetic cost and cellular needs vary for different 50 

secreted proteins, each of which exerts different demands for cellular resources. Therefore, a detailed 51 

understanding of the biosynthetic costs of the secretory pathway could guide efforts to engineer host 52 

cells and bioprocesses for any desired product. The energetic and material demands of the mammalian 53 

secretory pathway can be accounted for by substantially extending the scope of metabolic models. 54 

Indeed, recent studies have incorporated portions of the secretory pathway in metabolic models of yeast 55 
3–5. Furthermore, Lund and colleagues reconstructed a genetic interaction network of the mouse secretory 56 

pathway and the unfolded protein response and analyzed it in the context of CHO cells6. However, such a 57 

network does not encompass a stoichiometric reconstruction of the biochemical reactions involved in the 58 

secretory pathway nor it is coupled to existing metabolic networks of mammalian cells. 59 

Here we present the first genome-scale stoichiometric reconstructions and computational models of 60 

mammalian metabolism coupled to protein secretion. Specifically, we constructed these for human, 61 

mouse, and CHO cells, called RECON2.2s, iMM1685s, and iCHO2048s, respectively. We first derive an 62 

expression for computing the energetic cost of synthesizing and secreting a product in terms of molecules 63 

of ATP equivalents per protein molecule. We use this expression and analyze how the energetic burden 64 

of protein secretion has led to an overall suppression of more expensive secreted host cell proteins in 65 

mammalian cells. Given its dominant role in biotherapeutic production, we further focus on the 66 

biosynthetic capabilities of CHO cells. We then demonstrate that product-specific secretory pathway 67 

models can be built to estimate CHO cell growth rates given the specific productivity of the recombinant 68 
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product as a constraint. We identify the features of secreted proteins that have the highest impact on 69 

protein cost and productivity rates. Finally, we use our model to identify proteins that compete for cell 70 

resources, thereby presenting targets for cell engineering. Through this study we demonstrate that a 71 

systems-view of the secretory pathway now enables the analysis of many biomolecular mechanisms 72 

controlling the efficacy and cost of protein expression in mammalian cells. We envision our models as 73 

valuable tools for the study of normal physiological processes and engineering cell bioprocesses in 74 

biotechnology. All models and data used in this study are freely available at 75 

https://github.com/LewisLabUCSD/MammalianSecretoryRecon. 76 

 77 

RESULTS 78 

A stoichiometric expression of protein secretion energetics 79 

In any cell, the secretory machinery is concurrently processing thousands of secreted and membrane 80 

proteins, which all compete for secretory pathway resources and pose a metabolic burden. To quantify 81 

this burden, we estimated the energetic cost of synthesizing and/or secreting 5,641 and 3,538 82 

endogenous proteins in the CHO and human secretome and membrane proteome in terms of total 83 

number of ATP equivalent molecules consumed (see Methods). These protein costs were compared to 84 

the cost of five recombinant proteins commonly produced in CHO cells (Fig. 1a). To refine estimates, we 85 

predicted signal peptides7, GPI anchor attachment signals8, and experimentally measured the number of 86 

N-linked glycans in the CHO proteome and integrated published numbers of O-linked glycans in CHO 87 

proteomic data9. Across the CHO secretome, protein synthesis cost varies substantially, and recombinant 88 

products are on average more expensive (Fig. 1a). For example, Factor 8 (F8) is a difficult-to-express 89 

protein in CHO cells due to its propensity to aggregate in the ER, which promotes its premature 90 

degradation10,11. Our analysis further highlights that each molecule of F8 requires a large amount of ATP 91 

for its production (9,488 ATP molecules). This imposes a significant burden to the secretory machinery of 92 

CHO cells, which typically expresses much less expensive endogenous proteins.  93 

 94 

Recombinant cells suppress expression of expensive proteins  95 

With the broad range of biosynthetic costs for different proteins, we wondered if gene expression in 96 

mammalian cells that are tasked with high levels of protein secretion have been influenced by the ATP 97 

cost of secreted proteins. That is, have these secretory cells suppressed their protein expression to more 98 

efficiently allocate nutrients? To test this, we first looked at CHO cells, which have undergone extensive 99 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 10, 2019. ; https://doi.org/10.1101/351387doi: bioRxiv preprint 

https://doi.org/10.1101/351387
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

selection to obtain cells that secrete recombinant proteins at high titer, and then compared different 100 

human tissues with a range of secretory capacity.  101 

 Unless specific proteins are essential, CHO cells may preferentially suppress energetically 102 

expensive proteins. Thus, we analyzed ribosomal profiling (Ribo-Seq) data from a recombinant CHO cell 103 

line12 and compared translation of each transcript against the ATP cost of the associated secreted protein 104 

(see Methods). Indeed, there was a significant negative correlation of -0.43 (Spearman Rs, p value < 1x10-105 
20) between ribosomal occupancy and ATP cost during early exponential growth phase of culture (Fig. 1b). 106 

Wondering if the reduced translation was regulated transcriptionally, we further analyzed RNA-Seq data 107 

from the same recombinant cell line and from another, non-recombinant CHO-K1 cell line13. The RNA 108 

expression also negatively correlated with ATP cost (see Supplementary Figure 2).  109 

To evaluate if this is a general trend seen in mammalian secretory cells, we analyzed RNA-Seq 110 

data from human tissues and immortalized cell lines in the Human Protein Atlas (HPA)1. For all RNA-Seq 111 

datasets in the HPA, there was a negative correlation between mRNA expression levels and ATP cost (Fig. 112 

1D). Interestingly, we found that highly secretory tissues such as liver, pancreas and salivary gland had the 113 

strongest correlations, although none as strong as that of the recombinant CHO cells, which have 114 

undergone selection of high secretion. Feizi and colleagues recently found that these tissues fine-tune the 115 

expression of protein disulfide isomerase genes14, suggesting that a similar regulatory process may take 116 

place in the ER of CHO cells as the secreted monoclonal antibody (mAb) contains a relatively high number 117 

(17) of disulfide bonds. In conclusion, there is a clear preference in CHO and native secretory tissues to 118 

suppress the expression and translation of proteins that are costly to synthesize, fold, and secrete.  119 

 120 

In silico reconstruction of the mammalian secretory pathway 121 

We mapped out the core processes involved in the synthesis of secreted and membrane proteins in 122 

mammalian cells (i.e., human, mouse, and Chinese hamster). This included 261 components (gene 123 

products) in CHO cells and 271 components in both human and mouse. The components are involved in 124 

secretory reactions across 12 subsystems (i.e., functional modules of the secretory pathway; Fig. 2a). 125 

These components represent the core secretory machinery needed in the transition of a target protein 126 

from its immature state in the cytosol (i.e., right after translation) to its final form (i.e., when it contains 127 

all post-translational modifications and is secreted to the extracellular space). Each component in the 128 

reconstruction either catalyzes a chemical modification on the target protein (e.g., N-linked glycosylation 129 

inside ER lumen/Golgi) or participates in a multi-protein complex that promotes protein folding and/or 130 

transport. This distinction between catalytic enzymes and complex-forming components is important for 131 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 10, 2019. ; https://doi.org/10.1101/351387doi: bioRxiv preprint 

https://doi.org/10.1101/351387
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

modeling purposes as a catalytic component consumes or produces metabolites that are directly 132 

connected to the metabolic network (e.g., ATP, sugar nucleotides). Because all components of the core 133 

secretory pathway were conserved across human, mouse and hamster (Fig. 2b), we generated species-134 

specific secretory pathway reconstructions and used them to expand the respective genome-scale 135 

metabolic networks (Recon 2.215, iMM141516, iCHO176617). Following the naming convention of their 136 

metabolic counterparts, we named these new metabolic-secretory reconstructions as follows: iMM1685s, 137 

iCHO2048s, and Recon 2.2s, which account for 1685, 2048, and 1946 genes, respectively. A detailed list of 138 

the components, reactions and the associated genes can be found in the Supplementary Data 1. 139 

 140 

Validation of iCHO2048s growth and productivity predictions 141 

We first validated the accuracy of iCHO2048s predictions using growth and specific productivity rates 142 

of IgG-producing CHO cell lines from two independent studies12,18. For this, we built an IgG-secreting 143 

iCHO2048s model using the information in the PSIM matrix for the therapeutic mAb Rituximab. We then 144 

constrained the model’s Rituximab-specific secretory pathway with the reported productivity value in 145 

each study and used FBA to predict growth (Fig. 3a). Later, to assess the ability of iCHO2048s to predict 146 

growth rates in cases when CHO cells are producing non-antibody proteins, we collected data from two 147 

batch culture experiments using Enbrel- and C1-inhibitor-producing isogenic CHO cell lines. We 148 

constructed two iCHO2048s models for each case and predicted growth rates during the early exponential 149 

growth phase of culture while constraining the protein secretion rate to the measured specific 150 

productivity value (Fig. 3b). The model predictions agreed well with the reported and measured values. 151 

There were cases where iCHO2048s predicted a much higher growth rate than what was measured in the 152 

first days of batch culture (Fig. 3b). Since FBA computes theoretical maximum growth rates given a set of 153 

constraints, these over-prediction cases point at situations where CHO cells do not direct resources 154 

towards biomass production (during very early stages of culture), a discrepancy that is attenuated in later 155 

stages of culture. In conclusion, these results confirm the ability of protein-specific reconstructions to 156 

capture the specific energetic requirements that each recombinant product imposes on CHO cell 157 

metabolism.  158 

 159 

Protein composition impacts predicted productivity 160 

To produce a specific product, CHO cells may utilize different modules of the secretory pathway based 161 

on the protein attributes and post-translational modifications (PTMs). For example, the synthesis of a mAb 162 

requires the use of multiple processes and consumes several different metabolites, such as amino acids 163 
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for protein translation, redox equivalents for forming disulfide bonds, ATP equivalents for vesicular 164 

transport, and sugar nucleotides for protein glycosylation (Fig. 2c). Therefore, we generated eight 165 

product-specific secretory pathway models for biotherapeutics commonly produced in CHO cells (Fig. 4a): 166 

bone morphogenetic proteins 2 and 7 (BMP2, BMP7), erythropoietin (EPO), Enbrel, factor VIII (F8), 167 

interferon beta 1a (IFNB1), Rituximab, and tissue plasminogen activator (tPA). The resulting iCHO2048s 168 

models were used to compute Pareto optimality frontiers between maximum cell growth (μ) and specific 169 

productivity (qP), given the same measured glucose and amino acid uptake rates for each model17 (see 170 

Supplementary Data 3). 171 

We computed the tradeoff between growth rate (hours-1) and specific productivity (picogram of 172 

protein produced per cell per day, or PCD) as a Pareto optimal curve for each protein (Fig. 4b). This curve 173 

defines the frontier of maximum specific productivity and maximum growth rates under the assumption 174 

that CHO cells can utilize all available resources towards production of biomass and recombinant protein 175 

only. The hinges in some of the curves are indicative of a transition between regions that are limited by 176 

distinct protein requirements (e.g., amino acids).  177 

An analysis of the Pareto optimal curves for the eight biotherapeutics demonstrates that under the 178 

measured growth conditions, maximum productivities vary from 20-100 PCD at common growth rates 179 

(Fig. 4b, shaded region) to 70-150 PCD for senescent CHO cells. Neither the molecular weight (MW) nor 180 

product length can explain the 2-fold range differences in maximum productivity for different proteins. 181 

For example, the curves show tPA (MW = 61,917 Da) can express at higher PCD than BMP2 (MW = 44,702 182 

Da) despite being larger, because the N-glycans in BMP2  reduce productivity due to the higher cost of 183 

synthesizing core N-glycans (see Table 1), consistent with previous observations in yeast5. Furthermore, 184 

the degree and directionality of these effects will depend on the nutrient uptake rates (Figure 4c and 185 

Supplementary Figure 1), highlighting the need in CHO bioprocessing to tailor culture media in a host cell 186 

and product-specific manner. Thus, while intuitively larger proteins would be expected to exert more 187 

bioenergetic cost on protein secretion, we find that specific compositional attributes of both the 188 

recombinant protein and the culture media significantly impact biosynthetic capacity. An in-depth analysis 189 

of the effects of PTMs on predicted productivities is provided in Jupyter Notebook C. 190 

To further evaluate what functions of the secretory pathway had the greatest impact on the cost of 191 

protein synthesis and secretion, we computed secretion rates for 5,461 proteins in the CHO secretome 192 

(see Methods) using iCHO2048s and its parent metabolic reconstruction iCHO176617. While iCHO2048s 193 

captures all the required steps for protein synthesis, modification and secretion, the secretion reactions 194 

in iCHO1766 only account for the basic synthesis of the target protein in cytoplasm, and the synthesis of 195 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 10, 2019. ; https://doi.org/10.1101/351387doi: bioRxiv preprint 

https://doi.org/10.1101/351387
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

necessary precursors (N-linked glycans, O-linked glycans, and GPI anchors). We found that secretory 196 

pathway had non-negligible costs on most proteins (Supplementary Figure 3b). Furthermore, protein 197 

features associated with secreted proteins that differ in cost by >15% beyond the amino acid and glycan 198 

costs show a statistical enrichment (under the Hypergeometric test) for O-linked glycans (p = 0.0065), GPI 199 

anchors (p = 0.0216), transmembrane domains (p = 0.0326), and proteins destined to the ER lumen 200 

(p=0.0142), the Golgi membrane (p = 0.0065), or the plasma membrane (p = 0.0186, see Supplementary 201 

Figure 3d and Jupyter Notebook E). Thus, these PTMs and transmembrane domains exert additional costs 202 

to their demands.  203 

 204 

iCHO2048s recapitulates results following gene knock-down 205 

In a recent study, Kallehauge et al.12 demonstrated that a CHO-DG44 cell line producing an antiviral 206 

mAb19 also expressed high levels of the neoR selection-marker gene (Fig. 5a-b). Upon neoR knockdown, 207 

the titer and maximum viable cell densities of the CHO-DG44 cell line were increased. To test if iCHO2048s 208 

could replicate these results, we constructed a model for the Kallehauge et al. DG44 cell line and measured 209 

exometabolomics, and dry cell weight to parameterize the model. Since expression of neoR uses resources 210 

that could be used for antibody production, we predicted how much additional antibody could be 211 

synthesized with the elimination of the neoR gene. We simulated antibody production following a 212 

complete knockout of neoR (see Table 2 and Fig. 5b) and predicted that the deletion of neoR could 213 

increase specific productivity by up to 4% and 29% on days 3 (early exponential phase) and 6 (late phase) 214 

of culture, respectively (Fig. 5c). This was qualitatively consistent with the experimentally observed values 215 

of 2% and 14% when neoR mRNA was knocked down by 80-85%. We then computed the Pareto optimality 216 

curves for both the control and the neoR in silico knockout conditions on day 6. We found that the length 217 

of the curve (denoted by 𝛥) increased by 18% when neoR production is eliminated (Fig. 5d). Thus, 218 

iCHO2048s can quantify how much non-essential gene knockouts can boost growth and productivity in 219 

CHO cells by freeing energetic and secretory resources. In fact, the ribosome-profiling data from 220 

Kallehauge et al. revealed that only 30 secretory proteins in CHO cells account for more than 50% of the 221 

ribosomal load directed towards translation of protein bearing a signal peptide (Fig. 4E). Indeed, we 222 

recently found that substantial resources can be liberated and recombinant protein titers can be increased 223 

when 14 high-abundance host cell proteins were knocked out20. An analysis of other potential host cell 224 

gene knockouts using the method proposed here can be found in Supplementary Data 4. 225 

 226 
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Discussion 227 

Mammalian cells synthesize and process thousands of proteins through their secretory pathway. 228 

Many of these proteins, including hormones, enzymes, and receptors, are essential for mediating 229 

mammalian cell interactions with their environment. Therefore, many have therapeutic importance either 230 

as drugs or as targets. The expression and secretion of recombinant proteins represents a significant 231 

anabolic demand that drains several substrates from cellular metabolism (e.g., amino acids, sugar 232 

nucleotides, ATP)21,22. Furthermore, the recombinant proteins demand adequate expression of supporting 233 

proteins involved in their transcription, translation, folding, modification, and secretion. Thus, there has 234 

been an increasing interest in engineering the mammalian secretory pathway to boost protein 235 

production23–26. Despite important advances in the field27, current strategies to engineer the secretory 236 

pathway have remained predominantly empirical28,29. Recent modeling approaches, however, have 237 

enabled the analysis of the metabolic capabilities of important eukaryotic cells under different genetic 238 

and environmental conditions17,30–32. With the development of genome-scale models of protein-producing 239 

cells, such as CHO17, HEK-29333 and hybridomas34,35, it is now possible to gain a systems-level 240 

understanding of the mammalian protein production phenotype36.  241 

 242 

Efforts have been underway to enumerate the machinery needed for protein production. For 243 

example, Lund and colleagues6 recently reconstructed a comprehensive genetic network of the mouse 244 

secretory pathway. By comparing the mouse and CHO-K1 genomes and mapping CHO gene expression 245 

data onto this network, the authors identified potential targets for CHO cell engineering, demonstrating 246 

the potential of systems biology to interrogate and understand protein secretion in animal cells. This 247 

genetic network reconstruction, although useful for contextualizing omics data (e.g., RNA-Seq), is not set 248 

up for simulations of protein production, nor integrated with additional cellular processes such as 249 

metabolism. Therefore, our work is complementary in that it allows one to also to quantify the cost and 250 

cellular capacity for protein production by delineating the mechanisms of all biosynthetic steps and 251 

bioenergetic processes in the cell. 252 

 253 

Here we presented the first genome-scale reconstruction of the secretory pathway in mammalian 254 

cells coupled to metabolism. We connected this to current metabolic networks, yielding models of protein 255 

secretion and metabolism for human, mouse and CHO cells. These models compile decades of research 256 

in biochemistry and cell biology of higher eukaryotes and present it in a mathematical model. Using our 257 

model, we quantitatively estimated the energetic cost of producing several therapeutic proteins and all 258 
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proteins in the CHO cell and human secretomes. We also identified factors limiting the secretion of 259 

individual products and observed that these depend on both the complexity of the product and the 260 

composition of the culture media. Furthermore, by integrating ribosomal profiling data with our model 261 

we found that CHO cells have selectively suppressed the expression of energetically expensive secreted 262 

proteins. Expanding upon this observation, we demonstrated that specific productivities can be 263 

predictably increased following the knock-down of an energetically expensive, non-essential protein. 264 

Furthermore, consistent with this, we have recently shown more than 50% reductions in total host cell 265 

protein production, along with increases in mAb titer when deleting 14 highly abundant proteins in CHO 266 

cells. Further studies will likely further explore how much of the CHO cell proteome can be deleted to 267 

further enhance recombinant protein secretion20. 268 

 269 

It is important to note that while our models capture major features of secreted proteins, there are 270 

additional PTMs (e.g., phosphorylation, gamma carboxylation), pathway machinery (e.g., chaperones), 271 

and cell processes that could possibly be captured in further expansions of the modeling framework6 (e.g., 272 

the unfolded protein response). These could be included as energetic costs associated with building and 273 

maintaining the secretory machinery (chaperones3, disulfide oxidoreductases37, glycosyltransferases38); 274 

protein stability and turnover rates39; solubility constraints40 and molecular crowding effects41. As these 275 

are captured by the models in a protein product-specific manner, predictions of protein production 276 

capacity will improve, and the models could provide further insights for cell engineering for biotechnology 277 

or to obtain a deeper understanding of mechanisms underlying amyloid diseases. Finally, a simplification 278 

of our secretory model is that it only computes the bioenergetic cost of synthesizing and attaching single 279 

representative N- and O-linked glycans to secreted proteins (i.e., it does not include the 280 

microheterogeneity and diversity of glycan structures of different proteins). Thus, an immediate potential 281 

expansion of our secretory model would involve coupling it to existing computational models of protein 282 

glycosylation42,43. For example, given an N-glycan reaction network that captures the glycoform 283 

complexity of a target protein44, one could build secretory reactions for the specific glycoforms of interest 284 

and compute the metabolic demands associated with each of them to identify potential targets and 285 

nutrient supplementations for glycoengineering.     286 

 287 

In conclusion, the results of our study have important implications regarding the ability to predict 288 

protein expression based on protein specific attributes and energetic requirements. The secretory 289 

pathway models here stand as novel tools to study mammalian cells and the energetic trade-off between 290 
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growth and protein secretion in a product- and cell-specific manner. We presented algorithms that 291 

provide novel insights with our models, and expect that many other methods can be developed to answer 292 

a wide array of questions surrounding the secretory pathway, as seen for metabolism45. To facilitate 293 

further use of these models, we provide our code and detailed instructions on how to construct protein-294 

specific models in the Jupyter Notebooks available at 295 

https://github.com/LewisLabUCSD/MammalianSecretoryRecon. 296 

 297 

Methods 298 

Reconstruction of the mammalian secretory pathway  299 

A list of proteins and enzymes in the mammalian secretory pathway was compiled from literature 300 

curation, UniProt, NCBI Gene, NCBI Protein and CHOgenome.org (see Supplementary Data 1). To facilitate 301 

the reconstruction process, the secretory pathway was divided into twelve subsystems or functional 302 

modules (Fig. 1) to sort the components according to their function. These subsystems correspond to the 303 

major steps required to process and secrete a protein. The components from a prior yeast secretory 304 

pathway reconstruction3 were used as a starting reference. To build species-specific models, orthologs for 305 

human, mouse and the Chinese hamster were identified and used, while yeast components and 306 

subsystems that are not present in the mammalian secretory pathway were removed. Additional 307 

subsystems were added when unique to higher eukaryotes, such as the calnexin-calreticulin cycle in the 308 

ER46. These were constructed de novo and added to the reconstruction. The databases and literature were 309 

then consulted to identify the remaining components involved in each subsystem of the mammalian 310 

secretory pathway. Since most components in the mammalian secretory pathway have been identified in 311 

mouse and human, BLAST was utilized to identify the corresponding Chinese hamster orthologs by setting 312 

human as the reference organism and a cutoff of 60% of sequence identity.  See Supplementary Discussion 313 

for an overview of the mammalian secretory pathway and its comparison with the yeast secretory 314 

pathway. 315 

 316 

Protein Specific Information Matrix (PSIM)  317 

The PSIM (Supplementary Data 2) contains the necessary information to construct a protein-specific 318 

secretory model from the template reactions in our reconstruction. The columns in the PSIM are presence 319 

of a signal peptide (SP), number of disulfide bonds (DSB), presence of Glycosylphosphatidylinositol (GPI) 320 

anchors, number of N-linked (NG) and O-linked (OG) glycans, number of transmembrane domains (TMD), 321 
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subcellular location, protein length, and molecular weight. For most proteins, the information in the PSIM 322 

was obtained from the Uniprot database. When necessary, computational tools were used to predict 323 

signal peptides (PrediSi7) and GPI anchors (GPI-SOM8). Finally, additional information on the number of 324 

O-linked glycosylation sites of certain proteins were obtained from experimental data in previous 325 

studies9,47. The PSIMs of the CHO and human secretomes are a subset of the full PSIM and contains only 326 

the proteins with a signal peptide (predicted or confirmed in Uniprot). The distribution of all PTMs across 327 

the human, mouse and CHO proteomes can be found in Jupyter Notebook D. For analyzing secretomes, a 328 

total of 3378 human proteins were picked based on the presence of a signal peptide in their sequence 329 

according to their annotation in the UniProt database. Similarly, 5,641 CHO proteins were picked based 330 

on the presence of a signal peptide in their sequence and/or for being localized in the cell membrane 331 

according to the UniProt database. 332 

 333 

Detection of N-linked glycosylation sites in CHO proteome  334 

The number of N-linked glycosylation sites in the PSIM was determined computationally and 335 

experimentally as follows. CHO-K1 cells (ATCC) were lysed, denatured, reduced, alkylated and digested by 336 

trypsin. Desalted peptides were incubated with 10 mM sodium periodate in dark for 1 hour before 337 

coupling to 50 μL of (50% slurry) hydrazide resins. After incubation overnight, non-glycosylated peptides 338 

were washed with 1.5 M NaCl and water. The N-glycosylated peptides were released with PNGaseF at 37 339 

°C and desalted by using a C18 SepPak column. Strong cation exchange (SCX) chromatography was used 340 

to separate the sample into 8 fractions. Each fraction was analyzed on an LTQ-Orbitrap Velos (Thermo 341 

Electron, Bremen, Germany) mass spectrometer. During the mass spectrometry data analysis, 342 

carbamidomethylation was set as a fixed modification while oxidation, pyroglutamine and deamidation 343 

were variable modifications. 344 

 345 

Construction of models and constraint-based analysis 346 

We wrote a Jupyter Notebook in Python (see Jupyter Notebook A) that takes a row from the PSIM as 347 

input to produce an expanded iCHO2048s, Recon 2.2s, or iMM1685s metabolic model with the product-348 

specific secretory pathway of the corresponding protein. Flux balance analysis (FBA48) and all other 349 

constraint-based analyses were done using the COBRA toolbox v2.049 in MATLAB R2015b and the Gurobi 350 

solver version 6.0.0. The analyses in Figs. 2, 3, and 4 were done using the constraints in the Supplementary 351 

Data 3. For the iCHO2048s models secreting human proteins, we set the same constraints in all models 352 

and computed the theoretical maximum productivity (maxqp) while maintaining a growth rate (in units of 353 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 10, 2019. ; https://doi.org/10.1101/351387doi: bioRxiv preprint 

https://doi.org/10.1101/351387
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

inverse hours) of 0.01. Finally, since the exact glycoprofiles of most proteins in CHO are unknown and 354 

some even change over time in culture50, we simplified our models by only adding the core N-linked and 355 

O-linked glycans to the secreted proteins. 356 

 357 

Batch cultivation 358 

Two isogenic CHO-S cell lines (Thermo Fisher Scientific, USA) adapted to grow in suspension, one 359 

producing Enbrel (Etanercept) and the other producing human plasma protease C1 inhibitor (C1INH), 360 

were seeded at 3 x 105 cells per mL in 60 mL CD-CHO medium (Thermo Fisher Scientific, USA) 361 

supplemented with 8 mM L-Glutamine (Lonza) and 1 μL per mL anti-clumping agent (Life Technologies), 362 

in 250 mL Erlenmeyer shake flasks. Cells were incubated in a humidified incubator at 37°C, 5% CO2 at 120 363 

rpm. Viable cell density and viability were monitored every 24 hours for 7 days using the NucleoCounter 364 

NC-200 Cell Counter (ChemoMetec). Daily samples of spent media were taken for extracellular metabolite 365 

concentration and titer measurements by drawing 0.8 mL from each culture, centrifuging it at 1000 g for 366 

10 minutes and collecting the supernatant and discarding the cell pellet. 367 

 368 

Titer determination 369 

To quantify Enbrel and C1INH titers, biolayer interferometry was performed using an Octet RED96 370 

(Pall Corporation, Menlo Park, CA). ProA biosensors (Fortebio 18-5013) were hydrated in PBS and 371 

preconditioned in 10 mM glycine pH 1.7. A calibration curve was prepared using Enbrel (Pfizer) or C1INH 372 

at 200, 100, 50, 25, 12.5, 6.25, 3.13, 1.56, 0.78 μg per ml. Culture spent media samples were collected 373 

after centrifugation and association was performed for 120 s with a shaking speed of 200 rpm at 30 °C. 374 

Octet System Data Analysis 7.1 software was used to calculate binding rates and absolute protein 375 

concentrations. 376 

 377 

Extracellular metabolite concentration measurements 378 

The concentrations of glucose, lactate, ammonium (NH4
+), and glutamine in spent media were 379 

measured using the BioProfile 400 (Nova Biomedical). Amino acid concentrations were determined via 380 

High Performance Liquid Chromatography using the Dionex Ultimate 3000 autosampler at a flow rate of 381 

1mL per minute. Briefly, samples were diluted 10 times using 20 μL of sample, 80 μL MiliQ water, and 100 382 

μL of an internal amino acid standard. Derivatized amino acids were monitored using a fluorescence 383 

detector. OPA-derivatized amino acids were detected at 340ex and 450em nm and FMOC-derivatized 384 

amino acids at 266ex and 305em nm. Quantifications were based on standard curves derived from 385 
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dilutions of a mixed amino acid standard (250 ug per mL). The upper and lower limits of quantification 386 

were 100 and 0.5 ug permL, respectively.  387 

 388 

Estimation of protein secretion cost 389 

We estimated the energetic cost of synthesizing and secreting all 5,641 endogenous CHO cell proteins 390 

and 3,538 endogenous human proteins. These proteins were chosen for containing a signal peptide in 391 

their sequence and/or for being localized in the cell membrane (according to the UniProt database). The 392 

energetic cost (in units of number of ATP equivalents) of secreting each protein (length L) was computed 393 

using the following formulas and assumptions. 394 

Energy cost of translation: For each protein molecule produced, 2L ATP molecules are cleaved to AMP 395 

during charging of the tRNA with a specific amino acid; 1 GTP molecule is consumed during initiation and 396 

1 GTP molecule for termination; L-1 GTP molecules are required for the formation of L-1 peptide bonds; 397 

L-1 GTP molecules are necessary for L-1 ribosomal translocation steps. Thus, the total cost of translation 398 

(assuming no proofreading) is 4L. 399 

Average cost of signal peptide degradation: On average, signal peptides have a length of 22 amino acids. 400 

Thus, the average cost of degrading all peptide bonds in the signal peptide is 22. This average cost was 401 

assigned to all proteins analyzed. 402 

Energetic cost of translocation across the ER membrane: During activation of the translocon, 2 cytosolic 403 

GTP molecules are hydrolyzed. From there, a GTP molecule bound to the folding-assisting chaperone BiP 404 

is hydrolyzed to GDP for every 40 amino acids that pass through the translocon pore46. Thus, the cost of 405 

translocation is (L÷40) + 2. 406 

Energetic cost of vesicular transport and secretion: We used published data51–53 (see Supplementary Data 407 

1) to compute stoichiometric coefficients for reactions involving vesicular transport. That is, the number 408 

of GTP molecules bound to RAB and coat proteins in each type of vesicle (COPII and secretory vesicles). 409 

We found that a total of 192 and 44 GTPs must be hydrolyzed to transport one COPII or secretory (i.e. 410 

clathrin coated) vesicle from the origin membrane to the target membrane, respectively. Since vesicles 411 

do not transport a single protein molecule at a time, we estimated the number of secreted protein 412 

molecules that would fit inside a spherical vesicle (see estimated and assumed diameters in the 413 

Supplementary Data 1). For that, we assumed that the secreted protein is globular and has a volume VP 414 

(nm3) that is directly proportional to its molecular weight MW54: 415 

𝑉# 	= 	𝑀𝑊	 × 0.00121 (1) 416 
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Finally, we assumed that only 70 percent of the vesicular volume can be occupied by the target protein. 417 

Thus, the cost of vesicular transport via COPII vesicles with Volume VCOPII is: 418 

192	𝐺𝑇𝑃𝑠	 ÷ (𝑉56#77 	× 0.7	 ÷ 𝑉) (2) 419 

Similarly, the cost of vesicular secretion is: 420 

44	𝐺𝑇𝑃𝑠	 ÷ :𝑉;<=><?@>A 	× 0.7	 ÷ 𝑉B (3) 421 

 422 

Constraints used in models and Pareto optimality frontiers 423 

All models were constrained using different sets of experimental uptake rates, which can be found in 424 

Supplementary Data 3. To construct Pareto optimality frontiers, we used the robustAnalysis function from 425 

the COBRA Toolbox v2.0 in Matlab 2015b using biomass as the control and secretion of the recombinant 426 

protein as the objective reactions, respectively. 427 

 428 

Analysis of gene expression versus protein cost 429 

Ribosome-profiling data12 were used to quantify the ribosomal occupancy of each transcript in CHO 430 

cells. A cutoff of 1 RPKM was used to remove genes with low expression (10,045 genes removed from day 431 

3 analysis and 10,411 from day 6 analysis). We used Spearman correlation to assess the variation of 432 

expression levels with respect to protein ATP cost. 433 

 434 

CHO-DG44 model and prediction of neoR knock-out effect 435 

Ribosome-profiling data, specific productivity, product sequence, and growth rates of an IgG-436 

producing CHO-DG44 cell line were obtained from a previous publication12. From the same cultures, we 437 

obtained further cell dry weight and metabolomic data from spent culture medium for this study. The 438 

mCADRE algorithm55,56 was used to construct a DG44 cell line-specific iCHO2048s model. The specific 439 

productivity and the RPKM values of the secreted IgG were used to estimate the translation rate for the 440 

neoR selection marker gene. We assumed that the flux (in units of mmol per gram dry weight per hour) 441 

through the neoR translation reaction (vneoR) should be proportional to that of the IgG translation rate 442 

(vIgG, calculated from the measured specific productivity) and related to their expression ratios (i.e. the 443 

RPKM values of their genes in the ribosome-profiling data). 444 

𝑣E<@F =
𝑅𝑃𝐾𝑀E<@F

2:𝑅𝑃𝐾𝑀IJKL? + 𝑅𝑃𝐾𝑀L<NOAB
𝑣7KP (4) 445 
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Finally, a reaction of neoR peptide translation (which is expressed in cytosol and is not processed in 446 

the secretory pathway) was added to construct a neoR-specific iCHO2048s model. Uptake and secretion 447 

rates of relevant metabolites on days 3 and 6 of cell culture were used to constrain our model. Because 448 

recombinant proteins represent 20% of total cell protein57, we scaled the coefficients of all 20 amino acids 449 

in the model’s biomass reaction accordingly (i.e. each coefficient was multiplied by 0.8). We then used 450 

FBA to predict the specific productivity of IgG with or without neoR.  451 

 452 

Cell dry weight measurements 453 

For cell dry weight measurements, 6 tubes containing 2 mL of culture samples of known viable cell 454 

density and viability were freeze dried, weighed, washed in PBS, and weighed again. The difference in 455 

weight was used to calculate the mass per cell. The procedure resulted in an average cell dry weight of 456 

456 pg per cell. As a simplification, we assumed that cell dry weight does not significantly differ from this 457 

average measured value during culture and thus was used when computing flux distributions in all 458 

simulations. 459 

 460 

Calculation of growth and productivity rates 461 

Supplementary Data 3 contains the experimental uptake and secretion rates used to constrain the 462 

iCHO2048s models12,22,23. When rates were not explicitly stated in the studies we consulted, we used a 463 

method we developed previously27. Briefly, appropriate viable cell density, titer, and metabolite 464 

concentration plots were digitized using WebPlot Digitizer software and we computed the corresponding 465 

rates as follows: 466 

Growth rate (in units of inverse hours): 467 

𝜇 =
1

𝑉𝐶𝐷
𝑑
𝑑𝑡
𝑉𝐶𝐷 (5) 468 

Where VCD is the viable cell density (in units of cells per milliliter) 469 

Specific productivity (in units of picograms per cell per hour): 470 

𝑞X =
1

𝑉𝐶𝐷
𝑑
𝑑𝑡
𝑇𝑖𝑡𝑒𝑟 (6) 471 

Consumption or production rate vx of metabolite x (in units of millimoles per gram dry weight per hour): 472 

𝑣] =
1

𝑉𝐶𝐷
𝑑[𝑥]
𝑑𝑡

(7) 473 

 474 
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Data Availability 475 

All data that support the findings of this study, including the models, tables, and Jupyter Notebooks, 476 

are available at https://github.com/LewisLabUCSD/MammalianSecretoryRecon as well as in the 477 

Supplementary Data and Source Data files. The Ribo-seq and RNA-seq data from the study by Kallehauge 478 

et al.12 is available on the Gene Expression Omnibus with GEO Accession Number GSE79512 479 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE79512). The RNA sequencing data for human 480 

tissue is freely available at the Human Protein Atlas website 481 

(https://www.proteinatlas.org/about/download). 482 

 483 

Code Availability 484 

All code used to generate the results of this study , including  Jupyter Notebooks, MATLAB, and Python 485 

scripts, are freely accessible at https://github.com/LewisLabUCSD/MammalianSecretoryRecon 486 
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FIGURE LEGENDS 639 

 640 

Figure 1 – Mammalian secretory cells preferentially suppress more expensive proteins. The bioenergetic 641 

cost of each secreted CHO (a) and human (c) protein was computed. The bioenergetic costs of five 642 

representative biotherapeutics produced in CHO cells are shown for comparison purposes (see Table 1). 643 

(b) Scatter plot and Spearman correlation of gene expression measured by ribosomal profiling and protein 644 

cost (in number of ATP per protein) in CHO cells from Kallehauge et al.12 during the early exponential 645 

growth phase of culture. (d) Spearman correlations between ATP cost and gene expression levels 646 

(measured by RNA-seq) across human tissues1, 58. Gene transcription levels from the Human Protein Atlas 647 

were analyzed against the ATP cost of producing the translated proteins. All p-values associated to each 648 

correlation are <1x10-20. Highly secretory tissues show the strongest negative correlation of secreted 649 

protein cost vs. mRNA expression levels. RPKM = reads per kilobase of transcript per million. Source data 650 

are provided as a Source Data file. 651 

 652 

Figure 2 - Components in the reconstruction of the secretory pathway in mammalian cells. (a) The 653 

reconstruction comprises 261 proteins in CHO cells and 271 proteins in human and mouse that are 654 

distributed across 12 subsystems. The different component numbers arise from the fact that the Chinese 655 

hamster proteome annotation only contains one alpha and one beta proteasome subunits, whereas the 656 

human and mouse contain 12 subunits of different subtypes. (b) High similarities were seen for proteins 657 

in CHO and human, with a high mean percentage identity in each subsystem (calculated with the sequence 658 

alignment tool BLAST). (c) Simplified schematic of reactions and subsystems involved in the secretion of a 659 

monoclonal antibody (mAb). A total of eight subsystems are necessary to translate, fold, transport, 660 

glycosylate, and secrete a mAb. The color of the subsystem names indicates if the reactions occur in the 661 

cytoplasm (orange), the ER lumen (red) or the Golgi apparatus (blue). The detailed description of all 662 

components can be found in Supplementary Data 1. GPI = Glycosylphosphatidylinositol, ER = Endoplasmic 663 

Reticulum, ERAD = ER associated degradation. 664 

 665 

Figure 3 – Recombinant-protein-producing models of iCHO2048s predict measured growth rates. (a) 666 

Growth rates were computed using an IgG-specific iCHO2048s model and compared to experimentally 667 

measured growth rates from six datasets from two previous studies using IgG-producing cell lines12,18. NT 668 

and TK specify the initials of the first author of the two studies (Neil Templeton, Thomas Kallehauge). (b) 669 

Additional growth, productivity, and metabolomic data were obtained from Enbrel and C1INH-producing 670 
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CHO cells, and models were constructed. The model-predicted growth rates during exponential growth 671 

phase were consistent with experimental growth rates of Enbrel-producing CHO cells and C1INH-672 

producing CHO cells at almost all time points. In all cases, the iCHO2048s models were constrained to 673 

produce the recombinant protein at the measured specific productivity rate. The values used to constrain 674 

each of the iCHO2048s models are reported in Supplementary Data 3. Error bars represent the standard 675 

deviation of three biological replicates. Source data are provided as a Source Data file. 676 

 677 

Figure 4 - Construction of product-specific iCHO2048s models. (a) Eight product-specific iCHO2048s 678 

models were constructed for biotherapeutics commonly produced in CHO cells. (b) Pareto optimality 679 

frontiers of growth-productivity trade-off curves were computed for the eight iCHO2048s models using 680 

the same constraints and experimental data from Supplementary Data 3. The shaded region corresponds 681 

to range of maximum productivity at commonly observed growth rates in CHO cell cultures. The molecular 682 

weight (in Daltons) of each biotherapeutic is shown in the legend. (c) All protein features (PTMs, 683 

transmembrane domains, and amino acid compositions) were used to fit a multivariate linear regression 684 

to predict specific productivity. The model coefficients (b) quantify their contribution to the explained 685 

variation in specific productivity. Error bars represent the standard error of the fitted coefficients. Source 686 

data are provided as a Source Data file. 687 

 688 

Figure 5 - iCHO2048s recapitulates experimental results of neoR knock-down in silico. (a) Ribosome 689 

occupancy was measured with ribosomal profiling during early (left) and late (right) exponential growth 690 

phases12. (b) Time profiles are shown for viable cell density (VCD) and titer in experimental culture. Shaded 691 

boxes indicate the time points corresponding to early (day 3) and late (day 6) growth phases. (c) Flux 692 

balance analysis was used to predict specific productivity (qp) with the iCHO2048s model before and after 693 

in silico knockout of neoR gene. (d) Growth-productivity trade-offs were predicted by iCHO2048s and 694 

demonstrated a potential 18% increase after the neoR in silico knockout. The formula for calculating the 695 

trade-off improvement (𝛥) is shown in the plot. LWT = length of trade-off curve before knockout, LKO = 696 

length of trade-off curve after knockout. (e) Ribosomal occupancy for all mRNA sequences bearing a signal 697 

peptide sequence were analyzed from the Kallehauge et al.12 study and demonstrated that the top 30 698 

secreted proteins accounted >50% of the ribosomal occupancy of secreted proteins. Error bars represent 699 

the standard deviation of three biological replicates. Source data are provided as a Source Data file. 700 

 701 

 702 
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TABLES 703 

 704 

Table 1. Protein specific information matrix of biotherapeutics secreted in eight iCHO2048s models 705 

Protein Name Length [AA] Weight [Da] Disulfide 
bonds N-glycans O-glycans ATP cost 

IFNB1 187 22294 1 1 0 777 
EPO 193 21037 2 3 1 801 

BMP2 396 44702 4 5 0 1618 
BMP7 431 49313 4 4 0 1759 
tPA 562 61917 17 3 1 2286 

Etanercept* 934 102470 7 6 26 3784 
Rituximab** 1328 143860 17 2 0 5370 

F8 2351 267009 8 22 0 9488 

       
* =  Etanercept is a dimer      
**= Rituximab is a tetramer (2 light and 2 heavy chains)    

 706 

 707 

Table 2 - Experimental data used for validation of iCHO2048s predictive capabilities 708 

Measurement [Units] Early growth 
phase Late growth phase 

Growth Rate [1 per day] 0.44 0.02 

Specific Productivity [Picograms of 
IgG per cell perday]* 16 5.5 

Total IgG ribosomal footprint 
[RPKM]** 40258 13356 

Total neoR ribosomal footprint 
[RPKM] 36952 25679 

 
  

* Average cell dry weight = 456.3 pg per cell  

** Sum of light and heavy chains ribosomal footprints  

 709 

 710 
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Supplementary Figure 1 – Factors a�ecting iCHO2048s-predicted productivity with two di�erent media compositions. Linear regression coe�cients (β) 
to quantify the contribution of PTMs to the explained variation in speci�c productivity using uptake rates di�erent from those used in Figure 4c. The speci�c 
consumption rates are listed in Supplementary Table 3 as Kallehauge12 (left panel) and Martinez59 (right panel). Error bars represent the standard error of the 
�tted coe�cients. Source data are provided as a Source Data �le.
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Supplementary Figure 2 – Spearman correlation between ATP cost and gene expression levels in non-producing CHO-K1 and CHO-DG44 mAb-
producing cells. Gene transcription levels from (a) van Wijk et al.13 and (b) Kallehauge et al.12 were compared against the ATP cost of producing the trans-
lated proteins. Source data are available as a Source Data �le.
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Supplementary Figure 3 – Comparison of secretion rates predicted by iCHO2048s and iCHO1766. Kernel Density Plots of (a) secretion rates for 5641 proteins in the CHO secre-
tome, as computed with iCHO2048s (blue) and iCHO1766 (red), (b) the percentage di�erence between predictions with iCHO2048s and iCHO1766, and (c) the protein lengths (in units 
of amino acids in sequence) of proteins showing a secretion rate di�erence in both models (blue) or not (red). iCHO2048s predicts di�erent �uxes for proteins with a speci�c post-
translational modi�cation pro�le, size, and localization. For about 8% of the target secretome, secretion rates predicted with iCHO2048s are at least 15% di�erent from their iCHO1766 
counterparts. Interestingly, this 8% corresponds to short (less than 350 amino acids) secreted proteins with O-linked glycans, GPI anchors or transmembrane domains whose �nal loca-
tion is the extracellular space, the ER lumen, the Golgi membrane, or the plasma membrane, as summarized in (d). Thus, for a proportion of the secretome, there are non-negligible 
energetic and synthetic costs associated with vesicular transport, protein folding, and membrane anchoring only accounted for when iCHO2048s couples to metabolism. A detailed 
description of the results, as well as the source data, can be found in Jupyter Notebook E (https://github.com/LewisLabUCSD/MammalianSecretoryRecon/JUPYTER_NOTEBOOKS).
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Supplementary Discussion   

Overview of the Secretory Pathway in animal cells 

Historically, most of the knowledge on the secretory pathway was obtained by studying protein transport 

processes and secretion in Saccharomyces cerevisiae1. Albeit quite similar in core functions, the secretory 

pathways of mammalian cells and fungi differ significantly in some of the steps which have been evolved 

based on species-specific secretion phenotypes2. The following paragraphs briefly overview the 

mammalian secretory pathway and highlights pathways exclusive to animals not present in fungi. The last 

section provides an in-depth comparison of the yeast and animal secretory pathways while highlighting 

the most important differences between both. 

 

Translocation and processing in endoplasmic reticulum 

Proteins destined to the secretory pathway generally bear a signal peptide at the amino-terminus which 

targets the proteins to the endoplasmic reticulum (ER) where the initial post-translational modifications 

(PTMs) take place. This transport requires translocating the target protein across the ER membrane 

through two general pathways: co-translational translocation (GTP dependent) and post-translational 

translocation (ATP dependent)3. An additional pathway for tail-anchored (TA) proteins into the ER 

membrane has also been discussed in the literature and included in our iCHO1921s reconstruction4,5. 

Once inside the ER lumen, the target proteins are folded by the action of several transmembrane ER 

proteins, including calnexin, calreticulin, and other luminal chaperones6–8. In the event of protein 

misfolding, a target protein may go through a “quality control” system (exclusive in the mammalian 

secretory pathway) that attempts to correct for folding errors9,10. However, if the misfolded state of the 

protein is sustained for too long, the protein then enters the ER associated degradation pathway, or 

ERAD, which involves retrotranslocation of the misfolded protein back to the cytosol, ubiquitination and 

proteasomal degradation11–13. 

 

Besides folding, a target protein may acquire additional PTMs while inside the ER such as attachment of 

a glycosylphosphatidylinositol (GPI) anchor14,15, formation of disulfide bonds16, and N-linked 

glycosylation17–20. After these PTMs are successfully completed , the target proteins are transported to the 

Golgi apparatus via COPII-coated vesicles that bud from the ER21,22 whereas misfolded proteins are retro-

translocated to the cytoplasm23,24 for proteasomal degradation via  the ER-associated degradation pathway 

(ERAD)25,26. In the Golgi apparatus, N-glycans are processed into branched and complex glycoforms and 
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proteins are further glycosylated with O-linked glycans27–29 and then sorted to their final destination (e.g. 

lysosome, extracellular medium) via clathrin-coated secretory vesicles30–33. 

 

A note on translocation pathways 

In co-translational translocation, proteins destined to the secretory pathway bear a hydrophobic signal 

sequence at the amino-terminus that promotes the targeting of ribosome-nascent chain (RNC) complexes 

to the ER via binding to the signal recognition particle (SRP). The SRP recognizes the signal peptide as 

soon as it emerges from the ribosome during translation. Then, the newly formed SRP-RNC complex is 

recognized by the SRP receptor on the ER membrane where translocation is initiated by interaction with 

the Sec61 complex (Sec61C) and assisted by the chaperone BiP to increase the efficiency and ensure the 

unidirectionality of this process30. 

 

Post-translational translocation, in contrast to co-translational translocation, occurs independently of SRP 

and its receptor34. Furthermore, this process does not rely too heavily on the Sec61C to translocate the 

target protein and instead utilizes the protein Sec62 as a safe route that guarantees the efficient 

translocation of small proteins (<160 amino acids in length)35. 

 

Finally, the pathway for inserting TA proteins into the ER membrane also occurs post-translationally due 

to the fact that the ER targeting signal of TA proteins is located very close to the carboxy-terminus, which 

allows the ribosome to release the protein before it is recognized and localized to the ER36. This pathway 

depends on ATP and one of the main players in the process is a transmembrane recognition complex 

known as TRC40 or Asna137. 

 

Important differences between the yeast and animal secretory pathways 

As mentioned above, core functions of the secretory pathway are conserved between mammalian and 

yeast cells. These core functions (see Table SD.2) are: 

 

• Translocation through endoplasmic reticulum 

• Primary glycosylation in ER (N-linked glycans) and Golgi (N-linked and O-linked glycans) 

• Protein folding and quality control in ER 

• Anterograde and retrograde vesicular transport between ER and Golgi via COPII and COPI 

vesicles, respectively. 

• Dolichol pathway for N-linked core glycan translocation through the ER membrane 
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• Endoplasmic reticulum associated degradation (ERAD) 

• GPI biosynthesis 

• Unfolded protein response (UPR) 

 

Nevertheless, minor and major differences exist between the yeast and mammalian secretory pathways. 

Some of these differences have been thoroughly reviewed before in an excellent review by Delic and 

colleagues2 and are summarized in Table SD.1 below. Here, we highlight the major differences between 

both secretory pathways that are relevant for modeling purposes using the secretory reconstructions. 

 

Table SD.1 – Summary of differences between mammalian and yeast secretory pathways as 

described by Delic et al.2 

Description of 
difference 

Mammalian 
secretory pathway 

Yeast secretory 
pathway 

Importance for 
modeling 
purposes 

Chaperones 
involved in 

translocation 

The main chaperone 
is BiP 

The main 
chaperone is Kar2 Minor 

Presence of heat-
shock proteins 

(HSPs) in ER 

Mainly presence of 
proteins in the 
Hsp90 family 

Not found in yeast Minor 

Enzymes for 
detoxification of 
reactive oxygen 

species in ER 

Contains several 
enzymes such as 

Ero1 and 
glutathione 
peroxidases 

Not found in yeast Major 

Oxidation state of 
Protein disulfide 
isomerase (PDI) 

PDI is mainly 
reduced 

PDI is mainly 
oxidized Minor 

Components of 
calnexin-

calreticulin cycle 

Includes an enzyme 
coded by the UGGT 

gene to transfer 
glucose residues to 

core N-linked 
glycans in misfolded 

proteins 

Lacks UGGT and 
instead directs 

misfolded proteins 
to ER exit 

Major 
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ERAD pathway 
branches for 

degrading 
misfolded proteins 

Capable of directing 
misfolded proteins 
towards the ERAD 

pathway by 
trimming N-linked 
glycan residues in 

the A, B and C 
branches 

Capable of directing 
misfolded proteins 
towards the ERAD 

pathway by 
trimming N-linked 

glycan residues only 
in B and C branches 

Major 

Components of 
COPII vesicles 

Contains four 
isoforms of Sec24 

Expresses Sec24 
with three cargo 

binding sites as well 
as Sec24 homologs 

Sfb2-3 

Minor 

 

Finally, the table below summarizes the differences between the mammalian and the fungal secretory 

pathway reconstructions in terms of components, reactions, and subsystems. 

 

Table SD.2 – Overview of main differences between the mammalian and yeast secretory pathway 

reconstructions 

Secretory 
pathway 

reconstruction 

Number of 
components 

Number 
of 

reactions 

Number of 
Subsystems 

Core subsystems (in both 
mammalian and yeast 
secretory pathways) 

Unique 
subsystems 

Mammalian 271 144 12 A total of 9 core 
subsystems: COPI, COPII, 
Dolichol pathway, ER 
glycosylation, ERAD, Golgi 
processing, GPI 
biosynthesis, Protein 
folding, and Translocation 

Clathrin 
vesicles, GPI 
transfer 

Yeast 165 137 16 ALP pathway, 
CPY pathway 
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