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Abstract 11 

Bacterial recombinational repair is initiated by RecBCD, which creates a 3′ single-stranded DNA 12 

(ssDNA) tail on each side of a double strand break (DSB). Each tail terminates in a Chi site sequence 13 

that is usually distant from the break. Once an ssDNA-RecA filament forms on a tail, the tail searches 14 

for homologous double-stranded DNA (dsDNA) to use as template for DSB repair. Here we show that 15 

the nucleoprotein filaments rarely trigger sufficient synthesis to form an irreversible repair unless a 16 

long strand exchange product forms at the 3′ end of the filament. Our experimental data and modeling 17 

suggest that terminating both filaments with Chi sites allows recombinational repair to strongly 18 

suppress fatal genomic rearrangements resulting from mistakenly joining different copies of a repeated 19 

sequence after a DSB has occurred within a repeat. Taken together our evidence highlights cellular safe 20 

fail mechanisms that bacteria use to avoid potentially lethal situations. 21 

 22 

Introduction 23 

While eukaryotes use complex strategies (Ryu et al., 2016, Amaral et al., 2017) to avoid 24 

dangerous rearrangements that can result when repeated sequences interfere with double strand break 25 

(DSB) repair (Bao et al., 2015, Ryu et al., 2016, Amaral et al., 2017), bacterial strategies have 26 

remained mysterious. Understanding the mechanisms for rejecting major rearrangements in bacterial 27 

genomes may provide better predictions of possible rearrangements. Furthermore, knowledge of the 28 

role of Chi sites in the DSB repair may influence the efficiency of gene targeting (Dabert and Smith, 29 

1997). 30 

When a DSB occurs in bacteria, it can be repaired using RecA-mediated homologous 31 

recombination following the well-known RecBCD pathway (Figure 1a) (Symington, 2014, Mawer and 32 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 20, 2018. ; https://doi.org/10.1101/351395doi: bioRxiv preprint 

https://doi.org/10.1101/351395
http://creativecommons.org/licenses/by/4.0/


    2   
 

Leach, 2014, Azeroglu et al., 2016, Kowalczykowski, 2015, Smith, 2012, Smith, 1991). RecBCD 33 

degrades or resects each end of the broken double-stranded DNAs (dsDNA) until it recognizes a Chi 34 

site. Chi sites are ~8 bp DNA sequences that alter the function of RecBCD to create two 3′ ssDNA 35 

tails that terminate in Chi sites (Symington, 2014, Mawer and Leach, 2014, Azeroglu et al., 2016, 36 

Kowalczykowski, 2015, Smith, 2012, Smith, 1991) (Figure 1ai, ii). RecA then binds to the ssDNA 37 

tails, creating two ssDNA-RecA filaments with Chi sites at their 3′ ends. Those ssDNA-RecA 38 

filaments then search for homologous regions in the dsDNA.  39 

To determine whether a region of dsDNA is homologous to the initiating strand, ssDNA-RecA 40 

filaments attempt strand exchange. Strand exchange establishes Watson-Crick pairing between the 41 

initiating strand and one of the strands in the dsDNA. The first sequence matching test attempts to 42 

establish base pairing between approximately 8 nt (Howard-Flanders et al., 1984, Danilowicz et al., 43 

2015, Qi et al., 2015, Bazemore et al., 1997, Yang et al., 2015, Hsieh et al., 1992). Evidently, 44 

formation of the 3-strand heteroduplex product is most favorable if the heteroduplex is sequence 45 

matched. If at least 7 of the 8 bp match, RecA promotes formation of a metastable 8 bp heteroduplex 46 

product pairing bases in the initiating strand with bases in the complementary strand (Howard-47 

Flanders et al., 1984, Danilowicz et al., 2015, Qi et al., 2015, Bazemore et al., 1997, Yang et al., 2015, 48 

Hsieh et al., 1992). Strand exchange can then extend the heteroduplex product in a 5′ to 3′ direction 49 

with respect to the initiating ssDNA (Mawer and Leach, 2014, Cox, 2007, Gupta et al., 1998) (Figure 50 

1aiii). The stability of sequence matched strand exchange products increases strongly as the product 51 

length (Lprod) increases from 8 to 20 bp (Hsieh et al., 1992, Danilowicz et al., 2015, Danilowicz et al., 52 

2017, Qi et al., 2015), and in vivo results suggest that DNA repair is extraordinarily rare unless Lprod > 53 

20 bp (Lovett et al., 2002, Watt et al., 1985, Shen and Huang, 1986).  54 

In the presence of ATP hydrolysis, heteroduplex stability in vitro increases only slightly as 55 

Lprod extends from 20 to 75 bp (Danilowicz et al., 2017). If  Lprod > 80 bp the nucleoprotein filament 56 

separates from the recombination complex (van der Heijden et al., 2008); however, even if Lprod > 80 57 

bp, strand exchange products remain reversible (Rosselli and Stasiak, 1990 , Danilowicz et al., 2017) 58 

unless two complete dsDNA strands are formed. In order to form two complete dsDNA strands, the 59 

bases removed by RecBCD (LChi) must be replaced. That replacement is achieved by DNA synthesis 60 

that begins at the terminal 3′ OH on each initiating strand and uses the complementary strand as 61 

template (Figure 1aiv) (Li et al., 2009, Liu et al., 2011).  62 

Figure 1b shows a hypothetical alternate pathway for DSB repair, in which the 3′ ends of the 63 

DSB form the 3′ ends of the searching filaments, and the process is otherwise identical to the RecBCD 64 

pathway (Wilkinson et al., 2016, Singleton et al., 2004, Kowalczykowski, 2000, Dillingham and 65 

Kowalczykowski, 2008) In this work, we will compare the genomic rearrangement that would be 66 

produced by this hypothetical pathway with the outcome of the RecBCD pathway to highlight the 67 

advantages conferred by the following two features: 1. removing LChi bases flanking the DSB, and 2. 68 

ensuring that the searching ssDNA strands have Chi sites at their 3′ ends. We will show that if repair 69 

follows the pathway shown in Figure 1a, these two features combined with the sequence distributions 70 

within bacterial genomes reduce or eliminate genomic rearrangements that would otherwise plague 71 

DSB repair. 72 

 73 
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Results 74 

Long repeats are prevalent in bacterial genomes 75 

Figure 2a, b illustrates that repeated sequences capable of forming a stable heteroduplex (Lprod 76 

> ~20 bp) (Hsieh et al., 1992, Danilowicz et al., 2015, Bazemore et al., 1997, Qi et al., 2015) are 77 

particularly prevalent in the E. coli O157 genome (gray lines in Figure 2a, b). In contrast, such repeats 78 

are rare in sequences consisting of randomly chosen bases (random sequences with the same length as 79 

the E. coli O157 genome, ~5 Mbp), as illustrated by the black lines in Figure 2a, b.  80 

The rarity of long repeats in random sequences of the same length as an E. coli genome is also 81 

illustrated by the dark gray bar clearly seen in the inset of Figure 2c, in which the histogram shows the 82 

number of repeated sequences of Nrepeat (length of a repeated sequence occurring anywhere in the 83 

genome) that are longer than 20 bp and shorter than 1000 bp. The bar represents averages over 100 84 

random sequences with lengths of ~5 Mbp. The green error bar shows the standard deviation. The data 85 

confirm that a homology test of 25-30 bp would be sufficient to prevent genomic rearrangements if 86 

bacterial sequences consisted of randomly selected bases (Vlassakis et al., 2013), since repeats  shorter 87 

than ~25 bp rarely form irreversible products in vivo (Lovett et al., 2002, Watt et al., 1985, Shen and 88 

Huang, 1986).   89 

 Figure 2c also suggests that substantial genomic rearrangements are likely to occur if 90 

irreversible recombination products were to form between a 20-30 bp repeats anywhere in the genome. 91 

Though the method that we used to find long repeated sequences only finds exact repeats, long 92 

repeated regions containing some mismatches appear in the graph as several shorter exact repeats. We 93 

find that those exactly repeated shorter regions are almost never separated by more than one single 94 

base.  95 

 In vivo results indicate that the probability of recombining DNA increases exponentially as the 96 

homologous region in the recombining DNA strand extends from N = 20 to N = 75, where N = 75 is 97 

more than 100x more probable than N = 50 (Lovett et al., 2002, Watt et al., 1985). Remarkably, 98 

recombination increases only slightly as N increases from 75 to ~ 300 bp. It has been speculated that 99 

in vivo several parallel sequence-matched interactions with Lprod < 75 bp separated by ~200 bp may 100 

enhance discrimination against Nrepeat <~200-300 bp (Prentiss et al., 2015). Studies in E. coli suggest 101 

that RecA-dependent genomic rearrangements between directly repeated sequences in plasmids is 102 

improbable unless the repeat length is at least~ 300 bp, though RecA independent rearrangements 103 

between shorter repeats do occur (Bi and Liu, 1994). 104 

In vivo results mix the discrimination provided by RecA alone with the discrimination provided 105 

by other factors, and we note that not all in vivo recombination follows the RecBCD pathway.  In the 106 

following, we will demonstrate how the RecBCD pathway reduces the probability that a DSB creates 107 

one searching filament that includes a region of a repeat with 75 < N < 300 bp at its 3ˈ end and 108 

eliminates the possibility that the 3′ ends of both filaments will include more than 20 bases that 109 

originate from the same repeat. 110 

 111 
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Removing LChi bases by RecBCD promotes genomic stability 112 

Without considering the detailed statistical distribution of Chi sites with respect to repeats, 113 

some advantages of the RecBCD pathway can be appreciated by considering a case in which a DSB 114 

occurs in the middle of a long repeated sequence. In the hypothetical DSB repair mechanism 115 

illustrated in Figure 1b, a DSB occurring within a repeated sequence will create two searching 116 

filaments whose 3′ ends terminate in regions of the repeated sequence that flanked the DSB. Genomic 117 

rearrangement will result if the two searching filaments pair with both sides of a different copy of the 118 

repeated sequence flanking the break.  119 

In contrast, Figure 2 indicates that in the RecBCD pathway, which is illustrated in Figure 1a, 120 

the repeated sequence that flanked the DSB is likely to lie within the LChi bases removed by RecBCD. 121 

In particular, Figure 2d indicates that the space between adjacent Chi sites on opposite strands is 122 

typically > 10 kb. Furthermore, Figure 2e indicates that since 30 % Chi site recognition is observed in 123 

vivo (Cockram et al., 2015, Taylor and Smith, 1992) an LChi distribution that peaks at ~ 50 kb would 124 

be created.  125 

Importantly, Figure 2f shows a histogram of the repeats averaged over four E. coli genomes. 126 

The maximum x-axis value in Figure 2f corresponds to the bin width size in Figure 2e. Thus, all of the 127 

repeats in the considered E.coli genomes have lengths that are smaller than 99.6 % of the LChi since the 128 

height of the first bin in Figure 2f is 0.4 %. This simple comparison of the maximum repeat length in 129 

the four E. coli genomes to the distribution of Lchi values makes it plausible that the removal of the 130 

LChi bases surrounding a DSB could strongly suppress genomic rearrangement due to the two 131 

searching filaments pairing with both sides of a different copy of the repeated sequence flanking the 132 

break.  133 

Homology determines whether DNA synthesis stabilizes repairs 134 

Other advantages of the RecBCD pathway emerge from more complex considerations that 135 

include detailed examination of bacterial sequences and experimental studies that determine what 136 

regions of the initiating ssDNA can lead to the DNA synthesis required for irreversible strand 137 

exchange and repair of the DSB. Previous work suggested that extension of the initiating strand by Pol 138 

IV may stabilize D-loops prior to re-establishment of a DNA polymerase III-dependent replication 139 

(Lovett, 2006), and that even in eukaryotic cells, translesion polymerases may aid DSB repair by 140 

stabilizing strand invasion intermediates (Lovett, 2006). This is consistent with new work indicating 141 

that most Pol IV molecules carry out DNA synthesis outside replisomes (Henrikus et al., 2018). 142 

In these experiments, we study DNA synthesis by E. coli DNA Polymerase IV (Pol IV) as well 143 

as by the large fragment of Bacillus subtilis DNA polymerase I (LF-Bsu). These polymerases both 144 

lack 3′-5′ exonuclease activity. LF-Bsu has been modified to remove the exonuclease activity that Pol 145 

IV intrinsically lacks. In the following, we will present experimental results for both proteins 146 

indicating that under conditions relevant in vivo, DNA synthesis initiated by RecA-mediated 147 

homology recognition is highly unlikely unless there is a sequence matched heteroduplex product with 148 

length Lprod > 50 bp that terminates within 8 bp of the 3′ end of the initiating strand. 149 
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We first formed ssDNA-RecA filaments and then allowed these filaments to interact with the 150 

dsDNA. If a sufficiently stable heteroduplex forms, a DNA polymerase can extend the initiating 151 

strand. That extension begins at the terminal 3′ OH of the initiating strand and proceeds in the 5′ to 3′ 152 

direction with respect to the initiating strand. In our in vitro experiments, the synthesis can eventually 153 

reach an end of the dsDNA. We will refer to that end of the dsDNA as the 3p end. We will specify 154 

positions in the dsDNA using D, their separation from the 3p end of the dsDNA. We monitored the 155 

base pairing between the two strands in the dsDNA by measuring the emission due to a fluorescein 156 

label on one of the dsDNA strands (Figure 3a). Initially, the fluorescein emission is quenched by the 157 

nearby rhodamine label on the other strand, but if dsDNA separates, the fluorescence emission will 158 

increase.  159 

 To study effects due to the DNA polymerases, we positioned the dsDNA labels L base pairs 160 

beyond the 3′ end of the filament. L was chosen to be large enough that long strand exchange 161 

products do not produce significant fluorescence increases even if the product extends to the 3′ end of 162 

the filament. In what follows, we will show that under these conditions the presence of a DNA 163 

polymerase lacking 3′-5′ exonuclease activity can produce large fluorescence increases as long as 164 

RecA filaments and dNTPs are present. Importantly, this fluorescence also depends strongly on N, the 165 

number of contiguous bases in the dsDNA that are complementary to the corresponding bases in the 166 

initiating strand.  167 

 In the first set of experiments, the fluorescent labels were located at Dlabel ~10 bp and the 3′ 168 

end of the initiating strand was positioned at Dinit = 15 bp as shown schematically in Figure 3a (bracket 169 

on top of the schematic). The 15 base pairs that extend beyond the 3′ end of the filament are indicated 170 

in yellow. The same 90 bp labeled dsDNA target was used in all of the experiments illustrated in 171 

Figure 3a. We varied the homology between the dsDNA and the ssDNA-RecA filaments by changing 172 

the sequence of the initiating ssDNA. In particular, different 98 nt sequences were designed to be 173 

heterologous to the dsDNA except for N contiguous bases at the 3′ end of the filament that match the 174 

corresponding N bases in the dsDNA (shown by the green brackets in Figure 3a, and encompassing 175 

20, 36, 50, and 75 base pairs).  176 

Figure 3b shows graphs of F, the difference between the measured fluorescence as a function 177 

of time and the average initial fluorescence value for a heterologous ssDNA-RecA filament. These 178 

experiments were carried out with DNA Pol IV, ssDNA-RecA filaments, and dNTPs. Figure 3c shows 179 

the analogous results with LF-Bsu. In Figure 3b, c, each of the curves represents results for different N 180 

values. Results obtained without DNA polymerase are shown in Figure 3- figure supplement 1, along 181 

with results obtained with DNA Pol IV and RecA, but without dNTPs. Comparison of Figure 3b, c 182 

with Figure 3- figure supplement 1 suggests that the observed fluorescence increase is dominated by 183 

DNA synthesis rather than dsDNA melting due to either strand exchange alone or DNA Pol IV 184 

binding without synthesis. Thus, those results suggest that in experiments performed with dNTPs, the 185 

fluorescence signals are dominated by DNA synthesis that extends the initiating strand toward the 186 

fluorescent labels.  187 

  If the DNA synthesis that dominates the contribution to that fluorescent signal made 188 

recombination irreversible, the curves for N = 75 and N = 50 in Figure 3 would approach the same 189 

asymptotic value corresponding to 100 % product formation. In contrast, Figure 3b, c shows that the 190 
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results for N = 50 approach a lower asymptotic value than the results for N = 75. The significant but 191 

lower asymptotic value achieved by N = 50 suggests that synthesis that is sufficient to trigger 192 

observable fluorescence does not always create a product in which the initiating and complementary 193 

strands are irreversibly paired. Thus, Figure 3 shows that the complementary strand can return its base 194 

pairing to the outgoing strand even after some synthesis has occurred. 195 

 Additional results for LF-Bsu are shown in Figure 3- figure supplement 2. In those 196 

experiments Dinit is also 15 bp, but the fluorescent labels are positioned at the 3′ end of the filament 197 

(Dlabel=0 and L = 15), whereas in Figure 3 Dlabel = 10 and L = 5. Those results also indicate that the 198 

fluorescence increase due to DNA synthesis is small unless N > ~36 bp. In sum, even though the 199 

intrinsic processivity for DNA Pol IV is different from the processivity of LF-Bsu, the similarity 200 

between Figure 3b, c and Figure 3- figure supplement 2 suggests that the results represent general 201 

features of DNA synthesis triggered by the formation of heteroduplex products, at least for DNA 202 

polymerases that lack 3′ to 5′ exonuclease activity.  203 

Adjacent homoduplex dsDNA decreases product stability 204 

In vivo, the three strand heteroduplex products resulting from the pairing of the initiating and 205 

complementary strands are almost always flanked by homoduplex dsDNA of the complementary and 206 

outgoing strands. Previous work has suggested that this homoduplex dsDNA drives reversal of 207 

adjacent heteroduplex products (Danilowicz et al., 2017). To probe the importance of these molecular 208 

events, we increased Dinit from 15 bp to 66 bp because Dinit is equal to the number of bases that must be 209 

synthesized to traverse the homoduplex dsDNA so it becomes fully separated at the 3ˈ end of the 210 

initiating strand. If strand displacement synthesis by a DNA polymerase is rapid enough to reach the 211 

3p end of the dDNA when Dinit = 15, but not rapid enough to reach the end when Dinit = 66, then 212 

comparison of results from experiments with the two different Dinit values may provide insight into the 213 

influence of homoduplex dsDNA adjacent to the three strand heteroduplex products.  214 

 The same dsDNA with Dlabel = 58 bp was used in all of the experiments illustrated in Figure 215 

4a, and N was controlled by varying the 98-nt sequence of the initiating strands. For this construct, 216 

even for N = 82, we see no increase in fluorescence in the absence of DNA synthesis. The raw 217 

fluorescence curves obtained with dATP-ssDNA-RecA filaments, DNA Pol IV, and dNTPs are shown 218 

in Figure 4- figure supplement 1, and Figure 4b shows the graphic representation of the corresponding 219 

change in fluorescence, F vs time curves, where F is the difference between the observed 220 

fluorescence and the fluorescence for N = 5 at each time. In the figure, the purple, red, and black 221 

curves represent results for N = 82, 50, and 20, respectively. As shown in Figure 4- figure supplement 222 

1, the increase in fluorescence is only statistically significant if N > ~50. Figure 4- figure supplement 2 223 

shows analogous results for ATP-ssDNA-RecA filaments, LF-Bsu, and dNTPs. Comparison of Figure 224 

3b (Dinit = 15, L = 5), Figure 3- figure supplement 2 (Dinit = 15, L = 15), and Figure 4b (Dinit = 66, 225 

L = 8), indicates that adjacent homoduplex regions destabilize heteroduplex products even in systems 226 

that include DNA synthesis.   227 

Synthesis triggered by two filaments stabilizes recombination products 228 
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As illustrated in Figure 1, if each of the filaments triggers DNA synthesis that completes a 229 

double strand, then no unpaired bases will remain. To study synthesis triggered by the initiating 230 

ssDNA formed at both sides of a DSB, we performed the experiments illustrated in Figure 4c. All of 231 

the experiments illustrated in Figure 4c included one filament with N1 = 42 contiguous bases that are 232 

homologous to the corresponding bases in the dsDNA. The sequence of the second filament was 233 

varied so that N2, the number of contiguous bases that are homologous to the corresponding bases in 234 

the other strand of the dsDNA, varied from 0 to 82 bases. The F results shown in Figure 4d, 235 

analogous to results shown in Figure 4b, indicate that the fluorescence change for N2 = 50 is quite 236 

significant, even though no detectable fluorescence change was observed in one-filament experiments 237 

with N = 50 (Figure 4b); therefore, a second filament with N1 = 42 significantly increased the 238 

fluorescence shift observed for filaments with 50 contiguous homologous bp. Thus, comparison of 239 

Figure 4b and 4d indicates that a second initiating ssDNA significantly increases the probability that 240 

the outgoing and complementary strands will be separated in the region between the filaments. This 241 

must be the result of a cooperative interaction between the two filaments because the signal due to 242 

either individually was negligible. 243 

  This cooperative increase in product stability is consistent with both filaments triggering 244 

synthesis within the dsDNA region containing the labels, resulting in both the fluorescein and 245 

rhodamine labels being incorporated in different dsDNA strands. As a result, the restoration of 246 

quenching is less likely than it would be if one of the labeled strands remains unpaired and available to 247 

pair again with its original partner (Rosselli and Stasiak, 1990 , Danilowicz et al., 2017). Figure 4- 248 

figure supplement 2 shows that when synthesis is performed by LF-Bsu, the presence of a second 249 

filament with N1 = 42 significantly enhances F, if N2 is at least 20 bp even though Pol IV required 250 

N2 = 50 bp. The difference in the required N2 values for the two polymerases may reflect the more 251 

efficient strand displacement synthesis provided by LF-Bsu. Furthermore, even for the case where N2 252 

= 82 bp, the results for DNA polymerase Pol IV that are shown in Figure 4d are ~ 4x smaller than the 253 

fluorescent values for LF-Bsu that are shown in Figure 4- figure supplement 2. The much smaller 254 

fluorescent values obtained for DNA polymerase Pol IV suggest that product formation in this case is 255 

low.   256 

As shown in Figure 2e and 2f, if the system followed the RecBCD pathway, the separation 257 

between the 3ˈ ends of the filaments will be much longer than the 16 bp separation used in these 258 

experiments. Thus, in vivo, formation of irreversible products triggered by initiating strands with ~ 40 259 

bp N1 and N2 is probably much smaller than the low product formation shown in Figure 4d because in 260 

vivo the separation between the 3ˈ ends of the two filaments is so much longer than 16 bp; however, 261 

comparison of Figure 4b, d does show that product stability can increase greatly if both initiating 262 

strands trigger synthesis that creates regions in which all of the DNA strands are base paired.  263 

For the experiments shown in Figures 3b, c, 4b, d, Figure 3- figure supplement 2, and Figure 4- 264 

figure supplement 1 and 2, the N contiguous homologous bases are positioned at the 3′ end of the 265 

filament, but we also wanted to explore cases in which M3ˈ mismatches separated the N sequence 266 

matched bases from the 3′ end of the filament. We performed M3ˈ > 0 experiments to determine 267 

whether pairings between long repeats that are distant from the 3′ end of the filament could trigger 268 
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genomic rearrangement since in vivo heterologous dsDNA always surrounds sequence matched 269 

heteroduplex products formed by joining different copies of long repeats.  270 

Like eukaryotic recombinases, RecA can create strand exchange products that include some 271 

mismatches (Volodin et al., 2009, Sagi et al., 2006). However, there is also evidence indicating that 272 

the efficiency of strand exchange decreases in the presence of mismatches (Danilowicz et al., 2015, Qi 273 

et al., 2015). Thus, extension of the heteroduplex to the 3′ end of the filament may become 274 

increasingly improbable as the number of mismatches at the 3′ end of the filament increases. Since 275 

DNA synthesis triggered by strand exchange extends the initiating strand using the complementary 276 

strand as a template (Pomerantz et al., 2013), the synthesis requires the DNA polymerase to interact 277 

with the heteroduplex and the 3′ OH at the end of the initiating strand. Thus, DNA synthesis is likely 278 

improbable if the heteroduplex product rarely incorporates the mismatched bases at the 3′ end of the 279 

filaments.  280 

Synthesis is blocked by mismatches at the 3′ ends of ssDNA  281 

 282 

To test whether mismatches at the 3′ end of the filament can inhibit the DNA synthesis 283 

required to make recombination irreversible, we designed experiments to study how M3′, the number 284 

of mismatches at the 3′ end of the filament, influences the interaction between the strand exchange 285 

product and the DNA polymerase. The experiments are illustrated schematically in Figure 5a. Figure 286 

5b shows the F curve obtained in the presence of DNA Pol IV and indicates that even M3′ = 3 287 

strongly suppresses the fluorescence increase, suggesting no strand separation due to DNA synthesis. 288 

Furthermore, the result for M3′ = 5 is indistinguishable from the results for heterologous controls. 289 

Analogous results obtained in the presence of LF-Bsu show that even M3′ = 3 (Figure 5c) is 290 

indistinguishable from the heterologous controls (Figure 5- figure supplement 1). Additional 291 

experiments were performed with N = 82 and the construct illustrated in Figure 4a. Figure 5- figure 292 

supplement 2 shows results for experiments with N = 82 and either M3′ = 0 or M3′ = 8. Controls with 293 

M3′ = 0 and either N = 5 or N = 0 are also shown; results for N = 82 and M3′ = 8 are indistinguishable 294 

from the heterologous controls. For that system, lower M3′ values were not tested.   295 

Chi sites rarely occupy the 3′ ends of long repeats  296 

We will refer to the sequence provided by the genome database as the “given” strand. The 297 

other strand in the genome is complementary to the given strand, so we refer to that strand as the 298 

“comp” strand. In the RecBCD pathway, as indicated in Figure 1aiv, one initiating ssDNA will 299 

terminate with a Chi site from the given strand and the other initiating ssDNA will terminate with a 300 

Chi site from the comp strand. 301 

Figure 6 displays graphical information designed to highlight the positions of Chi sites in long 302 

repeats and the decrease in repeat length due to RecBCD. In particular, Figure 6 a, b shows all of the 303 

repeated sequences in E. coli O157 that are longer than 20 bp and include at least one Chi site. The 304 

total height of the bars in Figure 6 a, b represents Nrepeat, the total length of the repeat. No repeat 305 

includes a Chi site on both strands, so we have separated the results according to the strand in which 306 

the Chi sites appear. The upper end of each bar corresponds to the 3′ end of the strand. An expanded 307 

view of these figures is shown in Figure 6- figure supplement 1. 308 
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Each bar is divided into colored regions that represent the relationship between that region and 309 

the 3′ end of Chi sites. The yellow regions indicate portions of the repeats that are on the 3′ side of all 310 

of the Chi sites in the repeat, so the yellow regions do not participate in any homology search. The 311 

separation between the 5' end of the repeat and the 3′ end of the nearest Chi site is shown in dark blue 312 

and red, for the given and comp strands, respectively. These regions would participate in the 313 

homology search if RecBCD recognizes the Chi site nearest the 5' end. Though no comp strand repeat 314 

in this genome contains more than one Chi site, seven repeats in the given strand contain two Chi sites.  315 

The cyan bar shows the separation between the two Chi sites.   316 

Figure 6c shows analogous results averaged over both strands in four E. coli genomes, 317 

restricted to cases where the 5' end of the repeat is separated from the 3′ end of the nearest Chi by > 60 318 

bp. In Figure 6c, the green regions indicate the number of bp on the 3' side of all Chi sites, and the 319 

dark green regions are analogous to the red and dark blue regions in Figure 6 a, b. Light green 320 

indicates regions between two Chi sites in the same repeat. No repeat contained more than two Chi 321 

sites. The figure shows that for repeats with lengths >~1000 bp, the positioning of the Chi sites within 322 

the repeats allows RecBCD to reduce the length of the repeat that participates in the homology search, 323 

which in vivo data suggests reduces rearrangements due to joining different copies of the repeat (Bi 324 

and Liu, 1994). 325 

If Chi sites play a role in avoiding recombination due to interactions between long repeats, then 326 

one would expect that the number of Chi sites positioned in long repeats would be suppressed with 327 

respect to a system in which the Chi sites were randomly positioned in the genome. To test this, we 328 

randomly positioned markers within each strand of real genomes, where the number of markers in 329 

each strand was equal to the number of Chi sites in that strand. The results shown in Figure 6d indicate 330 

that Chi sites positioning in long repeats is strongly suppressed. The detailed data for each genome are 331 

shown in Supplementary Table 1. 332 

In calculating the results in Figure 6, we only considered repeats that included at least 20 bp on 333 

the 5′ side of the Chi site, which would be the interaction if all of the bases in the Chi site were 334 

degraded. We note that the results shown in Figure 6 are not significantly altered if Chi site occupies 335 

the 3′ end of the filament since allowing the Chi site to remain only adds one new repeat pair to the 336 

comp strand and adds one additional occurrence to two 20 bp sequences that were already repeated 337 

twice.  338 

The fraction of DSB creating filaments ending in long repeats 339 

As shown in Figure 1b, in the hypothetical DSB repair mechanism, the sequences at the 3′ ends 340 

of the filaments flank the DSB, so the filament sequences uniquely specify the position of the DSB 341 

that created the filaments. In contrast, as shown in Figure 1a, if the RecBCD pathway is followed, the 342 

same sequences at the 3′ ends of the filaments can result from any DSB positioned between Chi sites 343 

on the 3′ ends of the two filaments (i.e. Lchi). Thus, the effectiveness of the RecBCD pathway in 344 

reducing genomic recombination cannot be determined by simply considering how many Chi sites 345 

have repeated sequences at the 5′ side.  346 

 Additional information can be gained by considering all of the possible DSB positions in the 347 

genome and determine what fraction of them lead to initiating ssDNA with long repeated sequences at 348 
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their 3′ ends. Importantly, no long repeated sequence that appears on the 5′ side of a Chi site appears 349 

elsewhere in the genome without the adjacent 8 bp Chi site. Thus, if even all of the Chi site bases are 350 

degraded before the searching filament is formed, in the RecBCD pathway genomic rearrangement 351 

can only occur by joining long repeats that occupy the 5′ side of a Chi site. For these calculations, we 352 

assumed that DSBs are distributed randomly on the genome and that the function of RecBCD is 353 

changed by the first Chi site it encounters. Given these assumptions, we calculated the fraction of the 354 

DSBs that create initiating strands whose 3′ ends terminate in at least one repeat containing Nrep 3′ > n 355 

bases on a specified initiating strand (DSB1frac(n)) or on both initiating strands (DSB2frac(n)).   356 

Figure 7a shows the results for the RecBCD pathway. To calculate the results, we first 357 

computed DSB1frac(n) for each strand in each of 12 enteric bacteria that have the same Chi site 358 

sequence (5'-GCTGGTGG-3')41.We then averaged the results for each strand over all of the 12 359 

bacteria to get the average probabilities for each strand. The red and blue lines in Figure 7a show 360 

DSB1frac(n) for the given and comp strands, respectively. They represent the probability that a DSB 361 

will lead to the formation of a filament from each strand with Nrep 3′ exceeding the x-axis value. The 362 

black line shows the sum of the two probabilities. The graph indicates that ~ 2 % of all DSB would 363 

create at least one filament with a repeat on its 3′ end that could pass a 300 bp homology test. This 364 

suggests that substantial genomic rearrangement could occur if only one filament was required to pass 365 

the homology test; however, strand exchange products remain reversible (Rosselli and Stasiak, 1990 , 366 

Danilowicz et al., 2017) unless two complete dsDNA strands are formed. Formation of two complete 367 

dsDNA requires that both searching filaments trigger synthesis.  If a DSB forms within a repeat, major 368 

genomic rearrangement will result if both searching filaments pair with another copy of that repeat. 369 

 Thus, we considered DSB2frac(n), and found that no genome contained a repeat that could 370 

create Nrep 3′ > 20 bases on both initiating strands, as indicated by the orange line that lies along the x-371 

axis in Figure 7a-c. For E. coli O157, we also considered the 8 cases in which different copies of a 372 

repeat contained Chi sites on opposite strands; however, in all cases those two Chi sites were separated 373 

by more than 15 Chi sites on either strand, so given the 30 % probability of recognizing a Chi site, it is 374 

enormously unlikely one DSB would produce two filaments terminating in those Chi sites. 375 

Figure 7b, c highlights some advantages of the RecBCD pathway by comparing the results 376 

shown in Figure 7a to the results for the hypothetical DSB ends mechanism. The black and orange 377 

lines in Figure 7b, c are the same as those in Figure 7a, but Figure 7b, c also shows green and magenta 378 

curves representing the analogous results for the hypothetical DSB ends mechanism. The difference 379 

between the green and black curves provides some information about the influence of Chi sites on 380 

genomic rearrangement as a result of suppression of DSB1frac(n), but rearrangement probabilities are 381 

also influenced by the number of times a repeat occurs in the genome and the physical distance 382 

between the repeat at the end of the filament and other copies of the repeat, where that distance may 383 

change with time. 384 

 Fortunately, the difference between the magenta and orange is much easier to interpret 385 

because the orange line indicates that if the RecBCD pathway is followed no DSB would create two 386 

filaments that would include regions of the same repeat.  In contrast, in the DSB ends pathway many 387 

do. Importantly, Figure 6d shows that summing over the results for all 12 genomes yielded > 20 388 

instances in which two Chi sites on the same strand occur in one repeat. That statistic predicts that 389 
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summing over the same genomes should yield  ~ 20 repeats that could create Nrep 3′  > 20 bases on both 390 

initiating strands; however, the actual sum was zero; consequently,  for the RecBCD pathway the 391 

suppression of  DSB2frac(n) is not the result of  the observed reduction of instances in which Chi sites 392 

occupy one strand on a repeat. Thus, the statistical distribution of Chi sites in the genomes of enteric 393 

bacteria suggests that strong suppression of DSB2frac is much more important than preventing Chi sites 394 

from occupying one strand in a repeat. This strong suppression avoids formation of searching filament 395 

pairs that include regions of the same long repeat at their 3′ ends, so the strong statistical suppression 396 

supports our proposal that the placement of Chi sites allows the RecBCD pathway illustrated in Figure 397 

1a to strongly suppress genomic rearrangement; however, it is probable that in rare instances Chi sites 398 

may be associated with increased genomic recombination if the system does not follow the pathway 399 

shown in Figure 1a. 400 

 401 

Discussion 402 

In sum, it has been known for decades that homologous recombination in bacteria frequently 403 

occurs at Chi sites, which are significantly overrepresented (~10x random probability) in bacterial 404 

genomes; however, the benefits conferred by Chi sites had remained elusive. In this work, we have 405 

presented experimental and theoretical evidence for an elegant mechanism that exploits the sequence 406 

distributions near Chi sites to suppress genomic rearrangements that would otherwise be both frequent 407 

and fatal. We note that eukaryotic genomes are longer and contain more long repeated sequences, so a 408 

“Chi site” system that includes only 8 bases might not be effective in longer genomes.  Of course, it is 409 

possible that eukaryotes could use a similar system involving more than 8 bases, or 8 base sequences 410 

might provide some rejection if double strand break repair in eukaryotes was confined to domains that 411 

included only a few Mbp. 412 

 413 

Methods and Materials 414 

FRET measurements 415 

Strand exchange reactions were performed by mixing an aliquot of 0.06 M 98 nt ssDNA/RecA 416 

filament, 0.06 M labeled dsDNA, and 1 M E. coli DNA Polymerase IV (obtained using DinB 417 

overproducer plasmids (Tashjian et al., 2017, Cafarelli et al., 2013) or 5 units Bsu DNA polymerase, 418 

Large fragment (LF-Bsu) (New England Biolabs (NEB), 5000 units/ml) and rapidly transferring the 419 

solution to a quartz cuvette. For DNA Pol IV measurements, the RecA buffer contained 0.1 mg/ml BSA, 420 

2 mM dATP, and 0.4 mM dNTPs. Measurements in the presence of Bsu polymerase were performed in 421 

RecA buffer containing 1 mM ATP and 0.1 mM dNTPs.  422 

The filaments were initially prepared by incubating 0.06 M ssDNA (final concentration ~6 M in 423 

bases) with 2 M RecA (NEB) in the presence of 1 mM cofactor (ATP or dATP), 10 U/ml of pyruvate 424 

kinase, 3 mM phosphoenolpyruvate, and 0.2 M single-stranded binding protein (SSB) in RecA buffer 425 

(70 mM Tris-HCl, 10 mM MgCl2, and 5 mM dithiothreitol, pH 7.6) at 37°C for 10 minutes.  426 

FRET experiments followed the emission of the fluorescein label by using 493-nm excitation during 30 427 

minutes; the emission was read as counts per second (cps) at 518 nm every one second. The integration 428 

was 0.5 s and the band width 2 nm. The sample was kept at all times at 37°C. 429 
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The dsDNA containing 90 bp with internal labels was obtained by heating and cooling down slowly the 430 

corresponding oligonucleotides from 90 to 40°C with 1°C steps equilibrated for 1 minute; the emission 431 

at 518 nm was acquired (excitation at 493 nm) at each temperature step.  432 

The dsDNA containing 180 bp was prepared by initially annealing a 90 nt ssDNA containing an internal 433 

rhodamine label on base 58 from the 5´ end and a 5´-end phosphorylated oligonucleotide (82 bases) 434 

containing an internal fluorescein label (position 57 from the 3´ end). Another dsDNA without labels 435 

was annealed using two oligonucleotides containing 90 and 98 bases; the former was 5´-end 436 

phosphorylated. Finally the two dsDNAs were annealed and ligated overnight at 16°C in the presence of 437 

T4 DNA ligase in ligase reaction buffer (50 mM Tris, 10 mM MgCl2, 1 mM ATP, and 10 mM 438 

dithiothreitol, pH 7.5, NEB). The 180 bp construct was further purified by running a 3 % agarose gel in 439 

TBE (Tris/Borate/EDTA) buffer for 2 hours (6 V/cm). The 180 bp band was visualized with a midrange 440 

UV trans-illuminator and cut. Finally the dsDNA was extracted from the agarose using a Nucleospin kit 441 

(Machery and Nagel, Bethlehem, PA) and concentrated on a YM-100 centrifugal filter (Millipore). 442 

The sample containing 98 bp dsDNA was prepared by annealing the complementary oligonucleotides 443 

from 90 to 40°C with 1°C steps equilibrated for 1 minute; the emission at 518 nm was acquired 444 

(excitation at 493 nm) at each temperature step.  445 

Oligonucleotides used for dsDNA preparations and filaments 446 

Oligonucleotides for dsDNA 90 bp with internal fluorophores: 5´ CGG AAA TCA C/iRho-T/C CCG 447 

GGT ATA TGA AAG AGA CGA CCA CTG CCA GGG ACG AAA GTG CAA TGC GGC ATA CCT 448 

CAG TGG CGT GGA GTG CAG GTA 3´ and 5´ TAC CTG CAC TCC ACG CCA CTG AGG TAT 449 

GCC GCA TTG CAC TTT CGT CCC TGG CAG TGG TCG TCT CTT TCA TAT ACC CGG GAG 450 

/iFluor-T/GA TTT CCG 3´. 451 

Oligonucleotides for filaments interacting with 90 bp dsDNA. 75 (-15) plus 23 heterologous: 5' GGACA 452 

CTGCTTCATTCCTCTTATTACCTGCACTCCACG CCACTGAGGTATGCCGCATTG CACTTTC 453 

GTCCCTGGCAGTGGTCG TCTCTTTCATATACC 3'; 50 (-15) plus 48 heterologous: 5' GGACGCT 454 

GCCGGAT TCCTGTTGAGTTTATTGCT GCCGTCATTGCTTATATGCCGCAT TGCAC TTTCGT 455 

CCCTGGCAGTGGTCGTCTCTTTCATATACC 3'; 36 (-15) plus 62 heterologous: 5' GGACGCTGCC 456 

GGATTCCTG TTGAGTTTATTGCTGCCGTC ATTGCTTATTATGTTCA TCCCG TTTTCGTCCC 457 

TGGCAGTGGTCGTCTCTTTCATATACC 3'; 20 (-15) plus 78 heterologous: 5' GGACGCT GCCGG 458 

ATTCCTGTTGAGTTTATTGCTGCCGTCATTGCTTATTATGTTCATCCCGTCAACATTCAA 459 

ACGGCCGGTCGTCTCTTTCATATACC 3'; 3 mismatches 3' end: 5' GGACGCTGCCGGATTCCTG 460 

AGTATACCTGCACTCCACGCCACTGAGGTATGC CGCATTGC ACTTTCGTCCCTGGCAGT 461 

GGTCGTCTCTTTCATATTAA -3'; 5 mismatches 3' end: 5' GGACGCTGCCGGATTCCTCTGTATA 462 

CCTGCACTCCACGCCACTGAGGTATGCCGCATTGCACTTTCG TCCCTGGCAGTGGTCGTCT 463 

CTTTCATTCTAA 3' 464 

Oligonucleotides for 180 bp dsDNA 465 

Annealed initially with labels: 82 nt (Flu57): 5'(K) CTCCACGCCACTGAGGTATGCCGCA/iFluorT/ 466 

TGCACTTTCGTCCCTGGCAGTGGTCGTC TCTTTC ATATACCCGGGAGTGATTTCCG 3' and 90 467 

nt (Rho58): 5´ CGGAAATCACTCCCGG GTATATGA AAGAGACGACCACTGCCAGGGACGA 468 

AAGTGCAA/iRhoT/GCGGCATACCTCAG TGGGTGGAGTGCAGGTA 3´. Annealed initially (no 469 

labels): 90 nt: 5' (K)AATCCGGCAGCGTCCGTCGTTGTTGATATTGCTTATGAAGGCTCC 470 
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GGCAGTGGCGACTGGCGTACTGACGGA TTCAT CGTTGGGGTCGGT 3' and 98 nt: 5'ACCGAC 471 

CCCAACGATGAATCCGTCAGTACGCCAG TCGCC ACTGCCGGAGCCTTCATAAG CAATA 472 

TCAACAACGACGGACGCTGCCGGATTTACCTGCA3'.  473 

Oligonucleotides for filaments interacting with 180 bp dsDNA. 82(-8) plus 16 heterologous for N= 82: 474 

5'GACGCTG CCATATT CAAGTCGCCACTGCCGGAGCCTTCATAAGCAATATCAACAACG 475 

ACGGACGCTGCCGGATTTA CCTGCACTCCACGCCACTGAGG 3'; 50(-8) plus 48 heterologous 476 

for N= 50 5'ACGCTGCCATATTCAATCGTTCACTTTATTGCTGGTGTCATTGCTTGCTCA 477 

ACAACGACG GACGCTGCCGGATTTACCTGCACTCCACGCCACTG AGG 3'; 20(-8) plus 78 478 

heterologous for N= 20: 5'GGACGCTGCCTTATTCCTGTTGAGTTTATTGCTGCCGTCATT 479 

GCTTATTATGTTCATCCCGTCA ACATTCAAACTGTTTGCACTCCACGCCACTGAGG 3'; 5(-8) 480 

plus 93 heterologous for N= 5: 5'GGACGCTGCCTTATTCCT GTTGAGTTTATTGCTGCCGT 481 

CATTGCTTATTATGTTCATCCCGTCAACATTCAAACTGTTCAGGGACGAATATGGTGAGG 3'; 482 

8 heterologous 82 homologous plus 8 heterologous: 5'GACATTATAGTACGCCAGTCGCCACTGC 483 

CGGAGCCTTCATAAGCAATATCAACAACGACGG ACGCTG CCGGATTTACCTGCACTCC 484 

ACGCGCTGCCAT 3'; 42(-8) 56 heterologous for N= 42: 5'GGACGCTGCCTTATTCCTGTTGAG 485 

TTTATTGCTGCCGTCATTGCTTATTATGTTCAACT CCCGGGTATATGAAAGAGACGA 486 

CCACTGCCAGGGACGAA 3'; 98 nt Heterologous: 5'CGGAAAAGTGCATATCCAGCAGAA 487 

CATCATGAAAATAATGGGTACTGTAAAAGCGGTGCCAGTCGGCATACTCCGTGGATGACA 488 

TCCCGGCAAGCATG 3'. 489 

Oligonucleotides annealed for 98 bp dsDNA and end labels: 5´/56-TAMN/CGGAAATCACTCCC 490 

GGGTATATGAA AGAGACGACCACTGCCAGGGACGAAAGTGCAATGCGGCATACCT 491 

CAGTGGCGTGGAG TGCAGGTATACAGATT 3´ and 5´AATCTGTATACCTGCACTCCACGCCA 492 

CTGAGGTATGCCGCATTGCACTTTCGTCCCTGGCAGTGGTCGTCTCTTTCATATACCCGG 493 

GAGTGATTTCCG/36-FAM/ 3´. 494 

Oligonucleotides for filaments interacting with 98 bp dsDNA. 83 (-15) plus 15 heterologous: 5' 495 

GGACGCTGCCGGA TTAATCTGTATACCTGCACTCCACGCCACTGAGG TATGCCGCATTGCA 496 

CT TTCGTCCCTGGCAGTGGTCGTCTCTTTCATATACC 3'; 75 (-15) plus 23 heterologous: 5' 497 

GGACACTGCTTCATTCCTCTTATTACCTGCACTCCACG CCACTGAGGTAT GCCGCATTG 498 

CACTTTCGTCCCTGGCAGTGGTCGTCTCTTTCATATACC 3'; 50 (-15) plus 48 heterologous: 5' 499 

GGACGCTGCC GGATTCCTGTTGAGTTTATTGCTGC CGTCATTGCTTATATGCCGCATTGCA 500 

CTTTCGTCCCTGGCAGTGGTCGTCTCTTTCATATACC 3'; 36 (-15) plus 62 heterologous: 5' GGA 501 

CGCTGCCGGATTCCTGTTGAGTTTATTGCTGCCGTC ATTGC TTATTATGTTCATC CCGTTT 502 

TCGTCCCTGGCAGTGGTCGTCTCTTTCATATACC 3'; 20 (-15) plus 78 heterologous: 5' GGACGC 503 

TGCCGGATTCCTGTTGAGTTTATTGCTG CCGTCATTGCTTATTATGTTCATCCCGTCAACAT 504 

TCAAACGGCCGGTCGTCTCTTTCATATACC 3' 505 

Analysis of genomes for repeated sequences and Chi sites 506 

Genomes used 507 
Escherichia coli O157, E. coli O157 strain 644-PT8, E. coli strain RR1, E. coli O157:H7 strain 508 

FRIK2533, Salmonella enterica subsp. arizonae serovar 62:z4,z23:- strain RSK2980, Salmonella 509 

enterica subsp. enterica serovar Anatum str. CDC 06-0532 strain USDA-ARS-USMARC-1764, 510 

Shigella boydii strain ATCC 9210, S. flexneri 5 str. 8401, Klebsiella pneumoniae subsp. pneumoniae 511 
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strain TGH8, K. pneumoniae subsp. pneumoniae strain TGH10, Proteus mirabilis BB2000, and Proteus 512 

mirabilis strain AR_005. 513 

For each of the genomes, the given strand is the strand given by the database from which we obtained 514 

the sequence. The sequences for the given strands of DNA for E. coli genomes were acquired from 515 

PATRIC in FASTA format. They were converted to a simple .txt file with A, C, G, and T bases and read 516 

into Matlab as a single continuous string running from 5´ to 3´ called bases. The sequence of the comp 517 

strand is the complement of the given strand; however, if each base in the .txt file for the given strand is 518 

simply replaced by the complementary base, the resulting comp strand sequence runs from the 3´ end to 519 

the 5´ end. To get the comp strand sequence running from 5´ to 3´, the order of the bases in the comp 520 

strand must be reversed. 521 

 522 

Repeated sequences in whole genomes 523 
To find all repeated sequences within the whole genome, 20 bp was established as an important cutoff 524 

length, and all the starting positions in which each consecutive sequence of 20 bp occurred were mapped 525 

within the genome. Sequences and their starting locations that were repeated were selected and placed in 526 

a smaller map “g_rep”. Due to the overlap of these 20 bp keys, repeated sequences longer than 20 bp 527 

would register more than one key within “g_rep”. In order to determine the true starting positions of 528 

repeated sequences, the multiple starting positions associated to a particular 20 bp sequence were 529 

retrieved, but isolated from groupings of starting positions of other 20 bps sequences. A comparison list 530 

“complist” was generated to choose all the comparisons within each group. For a 20 bp sequence with 531 

only two starting positions, there was only one comparison. But for sequences with n starting positions, 532 

there were C(n,2) (n choose 2) comparisons to be made. All comparisons were made against an 533 

arbitrarily large genome section of 10,000-20,000 bp on either side of the starting position for the two 534 

sequences being compared. The first mismatch in either direction was found and its distance to the 535 

starting position as well as its absolute location in “bases” was recorded. If there were conflicts between 536 

two comparisons within the same group, indicating that at least one sequence in the group was a 537 

subsequence of the others, the maximum distance was chosen only for the sequences where the conflict 538 

occurred. Therefore, not all sequences within a particular grouping necessarily have the same distance. 539 

In the resulting array of start and end position pairs, all repeats were discarded, as these are a remnant of 540 

the over-counting from the original selection of positions. The unique start and end positions represent 541 

the starting and ending positions of all sequences >= 20 bp in the whole genome that occur more than 542 

once. From this, the length of homology is easily calculated for each particular sequence, and start, 543 

difference, and end information was succinctly summarized in array “start_difference_end”. 544 

Chi sites 545 
Using MatLab′s built in function to find the location of substrings, the starting indexes of all the Chi 546 

sites (5'-GCTGGTGG-3') (Smith et al., 1981) on the given strand going from 5´ to 3´ were found. 547 

Similarly, positions for the reverse complements of the Chi sites were also found to represent the 548 

position of Chi sites on the complementary strand, which was not read into MatLab and therefore not 549 

directly searched. 550 

Probability mass function for Lchi 551 
For each position in “bases”, the distance to the nearest Chi sites in both directions was calculated using 552 

a “loopindex” function. The distances were summed for each position. Using MatLab′s default 553 

“histogram” function with bin sizes of 5,000 bp, the results were acquired for each E. coli genome. The 554 

bin counts for each were averaged and normalized to represent the case in which the position of the DSB 555 

is assumed to be random and RecBCD is assumed to recognize Chi sites with 100% accuracy. For the 556 

case where RecBCD only has an ~ 30 % chance of recognizing a Chi site, the DSB position was still 557 

assumed to be random, but the number of Chi sites skipped for each break was generated using a first 558 

success distribution in MatLab:  559 

PDF: P(X=k)=p*(1-p)^(k-1) 560 

E(X)=1+(1-p)/p 561 
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where X is the random variable denoting the number of Chi sites up to and including the recognized Chi 562 

site, p is the probability that a particular chi site is recognized, and E(X) is the expectation value for the 563 

random variable with a given p. Adjusted distances for each position were then calculated and a new 564 

histogram with bin size 10,000 was generated for each E. coli genome. The individual bin counts were 565 

averaged for the four genomes and normalized.  566 

Repeats adjacent to Chi sites 567 
A method similar to the one used for Nrepeat was used to find repeats >= 20 bp adjacent to a Chi site that 568 

would remain as part of the searching filament (Nrep 3′). For Chi sites on the given strand, the 20 bp to the 569 

5´ end of the start location of the Chi site in “bases” was selected as the key; for Chi sites on the comp 570 

strand, the complement of the 20 bp to the 3´ end of the comp Chi site on the given strand was selected 571 

as the key. Those are the 20 bp on the 5´ side of the Chi site on the comp strand. For each type of Chi, a 572 

particular sequence key was mapped to the starting position(s) of the associated Chi site(s). We did not 573 

consider interactions between sequences in the given strand and sequences in the complementary strand. 574 

Thus, the four possible interactions xgiven_pos, xgiven_rep, xcomp_pos, and xcomp_rep mapped unique 575 

and repeated sequences to their associated Chi sites for each Chi type. 576 

The actual lengths of the repeats were found in a way similar to the lengths of repeats found in the entire 577 

genome. The result was a table of starting positions of Chi sites with Nrep 3′ >= 20 bp and the actual 578 

length of homology to either side of the starting position of the Chi site. 579 

Distances between repeat adjacent and nearest Chi sites 580 
For each Chi site whose Nrep 3′ >= 20, the distance to the nearest Chi site of the same type in the 581 

direction of strand exchange progression was found. The next Chi site in the sorted list was selected, and 582 

its difference was calculated. This distance represents the number of positions where, if a DSB were to 583 

occur, that Chi site would be first encountered by RecBCD in the RecBCD pathway. Dividing this 584 

number by the number of bp in the genome gives the fraction of the genome that would result in that 585 

particular searcher if DSB occurred randomly and RecBCD was 100 % accurate in identifying a Chi 586 

site.  587 

Fraction of genome that gives Chi and WG searcher 588 
Selecting for repeat length greater than or equal to N = [0,100,200...16000], the fractions were found 589 

and summed over all Chi sites of one type as well as overall. The results were displayed using MatLab′s 590 

plot function. Similar fractions were calculated for whole genome (WG) repeats where one or both sides 591 

of the remaining sequence are required to be N. Sequences of at least N were found. Subtracting each by 592 

N, multiplying by 2, and summing together gave the raw number of positions that resulted in at least one 593 

side having the requisite number of homology. Taking the same sequence of at least N, subtracting 2*N 594 

from each (choosing the max of the result or 0), and summing over all gives the raw number of positions 595 

that results in both sides. Dividing the raw number by the number of bases gives the fraction. 596 

 597 

 598 

 599 

   600 
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Abbreviation Meaning 
3p end The end of the dsDNA that would be reached by synthesis initiated by RecA 

mediated recombination at the 3ˈend of the initiating ssDNA  
F The change in fluorescence with time 

F The difference between F for the positive and the F for a control with 
N=20 

L The separation between the fluorescent labels and the 3ˈend of the initiating 
ssDNA 

Dlabel The separation between the fluorescent labels and the 3p end of the dsDNA 

Dinit The separation between the 3ˈend of the initiating ssDNA and the 3p end of 
the dsDNA 

DSB1frac(n)  The fraction of the DSBs that creates initiating strands with Nrep 3′ > n on a 
specified initiating strand.   

DSB2frac(n)  The fraction of the DSBs that creates initiating strands with Nrep 3′ > n on both  
initiating strands  

LChi  The number of bases surrounding the DSB that are not incorporated in the 
searching filaments because they are removed by RecBCD. 

Lprod The length of a heteroduplex product joining the initiating and 
complementary strands 

M3′ The number of contiguous mismatched bp at the  3ˈend of the initiating 
ssDNA 

N The number of contiguous bp in the dsDNA that are sequence matched to 
bases in the initiating ssDNA in experiments with only one initiating ssDNA 

N1 The number of contiguous bp in the dsDNA that are sequence-matched to 
bases in one of the  initiating ssDNA in experiments with two initiating 
ssDNAs  

N2 The number of contiguous bp in the dsDNA that are sequence matched to 
bases in the other of the  initiating ssDNA in experiments with two initiating 
ssDNA  

Nrepeat The length of a repeated sequence occurring anywhere in the genome 

Nrep 3′  The length of a repeated sequence that is positioned on the 5ˈside of a Chi 
site. In the RecBCD pathway, these repeats would occur at the 3ˈ end of 
searching filaments. 
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 957 

 958 

Supplementary Table 1 Comparison between occurrences of Chi sites within repeats longer than 959 

20 bp and analogous occurrences for an equal number of randomly positioned markers. Separate 960 

results are shown for each of 12 enteric bacteria. 961 

 962 

ecoli_MP ecoli1 ecoli2
random st dev actual random st dev actual random st dev actual

# given strand hits 40.55 6.93 23 59.39 7.74 32 16.41 3.81 6

# comp strand hits 39.75 5.65 27 61.26 7.92 35 16.65 3.86 3

# >=2 given same repeat 3.45 1.70 5 6.54 1.87 3 1.76 0.93 1

# >=2 comp same repeat 3.58 1.64 3 6.97 1.89 5 1.74 0.85 1

# of repeats containing hits 

on each strand.No Chi site 

pair is correctly positioned 

to create filament pair that 

includes the same repeat. 

Incorrectly positioned Chi 

site  pairs are highlighted in 

yellow 4.71 1.94 0 9.61 2.16 0 1.67 1.16 0

Number of Chi sites in comp strand 551 595 506

Number of Chi sites in given strand 571 581 493

ecoli5 salmonella1 salmonella2
random st dev actual random st dev actual random st dev actual

# given strand hits 52.56 6.99 28 9.58 3.37 7 8.50 2.88 3

# comp strand hits 52.21 6.98 28 8.64 2.83 2 8.42 3.25 10

# >=2 given same repeat 5.94 2.20 5 1.33 0.72 1 1.30 0.55 1

# >=2 comp same repeat 5.85 2.00 3 1.22 0.43 1 1.34 0.58 2

# of repeats containing hits 

on each strand.No Chi site 

pair is correctly positioned 

to create filament pair that 

includes the same repeat. 

Incorrectly positioned Chi 

site  pairs are highlighted in 

yellow 8.47 2.58 0 0.77 0.77 2 0.86 1.00 2

Number of Chi sites in comp strand 572 307 414

Number of Chi sites in given strand 578 349 415
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 963 

 964 

Supplementary Table 1 continuation 965 

 966 

shigella1 shigella2 klebsiella1

random st dev actual random st dev actual random st dev actual

# given strand hits 53.47 6.83 11 41.25 6.06 8 21.24 4.28 16

# comp strand hits 52.33 6.34 2 44.29 5.65 11 20.24 4.61 12

# >=2 given same repeat 4.89 2.03 3 3.66 1.62 3 2.35 1.08 1

# >=2 comp same repeat 4.63 1.78 1 3.95 1.54 3 2.26 1.00 1

# of repeats containing hits 

on each strand.No Chi site 

pair is correctly positioned 

to create filament pair that 

includes the same repeat. 

Incorrectly positioned Chi 

site  pairs are highlighted in 

yellow 7.15 2.60 0 5.20 2.43 0 2.86 1.38 0

Number of Chi sites in comp strand 463 499 924

Number of Chi sites in given strand 466 469 942

klebsiella2 proteus1 proteus2

random st dev actual random st dev actual random st dev actual

# given strand hits 21.64 4.25 16 3.66 2.09 1 6.59 2.38 2

# comp strand hits 21.44 4.70 12 3.98 1.97 1 6.23 2.58 3

# >=2 given same repeat 2.27 1.19 1 0.91 0.40 0 1.23 0.49 1

# >=2 comp same repeat 2.27 1.05 1 0.93 0.28 0 1.17 0.52 1

# of repeats containing hits 

on each strand.No Chi site 

pair is correctly positioned 

to create filament pair that 

includes the same repeat. 

Incorrectly positioned Chi 

site  pairs are highlighted in 

yellow 2.53 1.48 0 0.09 0.31 0 1.01 0.91 2

Number of Chi sites in comp strand 927 159 144

Number of Chi sites in given strand 941 146 161
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 967 

 968 

Supplementary Table 1 continuation 969 

 970 

 971 

 972 

Sum over all Genomes
random st dev actual

# given strand hits 334.84 17.91 153

# comp strand hits 335.44 17.40 146

# both in same repeat 

correctly oriented  22.47 2.99 0

# >=2 given same repeat 35.63 4.76 25

# >=2 comp same repea 35.91 4.41 22

Number of Chi sites in comp strand 6061

Number of Chi sites in given strand 6112
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