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Abstract 

Classifying and mapping vegetation are very important in environmental science or 

natural resource management. However, these tasks are not easy because conventional 

methods such as field survey are highly labor intensive. Automatic identification of the 

objects from visual data is one of the most promising way to reduce the cost for 

vegetation mapping. Although deep learning has become the new solution for image 

recognition and classification recently, in general, detection of ambiguous objects such 

as vegetation still has been considered difficult. In this paper, we investigated the 

potential for adapting the chopped picture method, a recently described protocol of deep 

learning, to detect plant community in Google Earth images. We selected bamboo 

forests as the target. We obtained Google Earth images from 3 regions in Japan using 

Google Earth. Applying deep convolutional neural network, the model successfully 

learned the features of bamboo forests in Google Earth images and the best trained 

model successfully detected 97 % targets. Our results also show that identification 

accuracy is strongly depends on the image resolution and the quality of training data. 

Our results highlight that deep learning and chopped picture method potentially become 

a powerful tool for high accuracy automated detection and mapping of vegetation.  
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Introduction 

Classifying and mapping vegetation are essential for environmental science or natural 

resources management (Franklin, 2009). Traditional methods (e.g. field surveys, 

literature reviews, map interpretation), however, are not effective to acquire vegetation 

data because they are labor intensive and often economically expensive. The technology 

of remote sensing offers a practical and economical means to acquire information on 

vegetation cover, especially over large areas (reviewed by Xie et al., 2008). Because of 

its systematic observations at various scales, remote sensing technology possibly enable 

classification and mapping of vegetation at high temporal resolution. 

Detecting the discriminating visual features are one of the most important 

steps in almost any computer vision problem, including in the remote sensing. Since 

conventional methods such as support vector machine (Hearst et al., 1998) requires 

hand-designed, time-consuming feature extraction, substantial efforts have been 

dedicated to develop the method for automatic extraction of features. Recently, deep 

learning has become the new solution for image recognition and classification because 

the new method does not need manual extraction of features.  

Deep learning (Bengio et al., 2009; Goodfellow et al., 2016) is one of the 

types of machine learning concerned with algorithms inspired by the structure and 

function of the brain called artificial neural networks. Deep learning learn features and 

classifiers at once and it uses training data to categorize image content without a priori 

specification of image features. Among all deep learning-based networks, a specific 

type, called Convolutional (Neural) Networks (Bengio et al., 2009; Goodfellow et al., 

2016), is the most popular for learning visual features in computer vision applications, 

including remote sensing. Recent researches have shown that CNN is effective for 

diverse applications (Karpathy et al., 2014; Yosinski et al., 2014).  

Given its success, deep learning has been intensively used in several distinct 

tasks of different academic and industrial fields, including plant science. Recent 

research show that deep learning technique successfully detect plant disease or correctly 

classify the plant specimens in herbarium (Mohanty et al., 2016; Ramcharan et al., 

2017; Carranza-Rojas et al., 2017). Deep learning is also a promising technology in the 

field of remote sensing because it has a natural ability to effectively encode spectral and 

spatial information (Yue et al., 2015; Nogueira et al., 2017), but application is not 
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sufficient yet because automatic object identification including deep learning tends not 

to work well on ambiguous, amorphous objects. Thus, description of vegetation cover is 

still considered as a challenging task. Recently, Ise et al., (2018) developed a method to 

extract the characteristics from ambiguous and amorphous objects. This method 

dissected the images into numerous small squares and efficiently produces the training 

images. Using this method, Ise et al., (2018) correctly classified 3 moss species and 

“non-moss” objects in test images with accuracy more than 90%.  

In this paper, we investigated the potential for adapting a deep learning model 

and chopped picture method to vegetation detection in Google Earth images, especially 

for bamboo forest. Recent years, bamboo become invasive in Japan. Japanese people 

have mainly introduced and used two exotic bamboos (Poaceae), moso (Phyllostachys 

edulis) and madake (P. bambusoides Siebold ), for a long time but, since 1970s bamboo 

industry in Japan was decline due to cheaper bamboo imports and heavy labor costs 

(Nakashima, 2001). Consequently, many bamboo plantations became unmanaged and 

eventually invading the adjacent native vegetation (Nishikawa et al., 2005; Okutomi et 

al., 1996; Suzuki, 2015).  

We specifically focused on following questions. 1) How the resolution of 

images affects the accuracy of detection? 2) How the chopping sizes of training images 

affects the accuracy of detection? 3) Can a model learned on one geographical location 

work well for different location? 
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Materials and methods 

 

Target area and image acquisition 

In this study, we choose three regions (Sanyo-Onoda, Ide and Isumi) in Japan (Fig.1). 

We used the Google Earth as the source of imagery. From a given sampling location, 

we obtained the images at a zoom level 1/500 (around 0.13m/pix spatial resolution), 

1/1000 (around 0.26m/pix spatial resolution) and 1/2500 (around 0.65m/pix spatial 

resolution) spatial scale. 

 

Fig.1 Target regions of this research 
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Approach 

The schematic diagram of our approach was shown in Fig. 2. We prepared the training 

data using the chopped picture method (Ise et al., 2018). First, in this method, we collect 

the images that are (1) nearly 100% covered by bamboo and (2) not covered by 

bamboo. Next, we “chopped” this picture into small squares with 50% overlap both 

vertically and horizontally.  

We made a model for image classification from a deep convolutional neural 

network model (CNN) for the bamboo forest detection. As opposed to traditional 

approaches of training classifiers with hand-designed feature extraction, CNN learn 

feature hierarchy from pixels to classifier and train layers jointly. We use the final layer 

of the CNN model for detecting the bamboo coverage from Google Earth images. To 

make a model for object identification, we used the deep learning framework of 

NVIDIA DIGITS (NVIDIA 2016). We used 75% of the obtained images as training 

data and the remaining 25% as the validation data. We used the LeNet network model 

(LeCun et al., 1998). The model parameters implemented in this study included the 

number of training epochs (30), the learning rate (0.01), train batch size (64), and the 

validation batch size (32).  

 

 
Fig.2 Schematic diagram of research approach 
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Model validation 
Evaluation of learning accuracy 

Validation of model in each learning epoch was conducted using accuracy and loss 

function obtained from cross validation images. The accuracy indicates how accurately 

the model can classify the validation images. Loss represents that the inaccuracy of 

prediction of the model. If model learning is successful, loss (val) is low and accuracy is 

high. However, when loss (val) becomes high during learning, it indicates that over 

fitting is occurring. 

 

Evaluation of performance of model 

We obtained 10 new images, which are uniformly covered by a bamboo forest only or 

other than bamboo forest only from each study sites. Next, we re-size the images using 

chopped picture method. Third, we randomly sampled 500 images from re-sized 

images. Finally, we applied the model to sampled images and evaluate the classification 

accuracy. To evaluate the performance of model, we classified the classification results 

into following four categories, true positive (TP ), false positive (FP ), false negative 

(FN ), and true negative (TN ). Next we calculated the classification accuracy, recall rate 

and precision rate using following equation. 

 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)          (1) 

 

	𝑅𝑒𝑐𝑎𝑙𝑙	𝑟𝑎𝑡𝑒 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)                                      (2) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	𝑟𝑎𝑡𝑒 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)                                    (3) 

 

Testing the effects of image resolution on classification accuracy 

To quantify the effects of image resolution on the accuracy of detection, we obtained 

images at a zoom level 1/500 (~0.13m/pixel), 1/1000 (around 0.26m/px spatial 

resolution) and 1/2500 (around 0.65m/px spatial resolution) spatial scale from each 

study site. Next, we applied chopped picture method. To adjust the spatial extent of 

each chopped image, we chopped 56 pix for 1/500, 28 pix for 1/1000 and 14 pix for 
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1/2500 image. After construct the model, we applied the model for new images and 

calculated the classification accuracy, recall rate and precision rate. 

 

Testing the effects of chopping grid size on classification accuracy 

To quantify the effects of spatial extent of chopping grid on the accuracy of detection, 

we chopped 1/500 images of each study site for 3 type pixel size (84, 56, 28). After 

construct the model, we applied the model for new images and calculated the 

classification accuracy, recall rate and precision rate. 

 

Transferability test 

Given the large amount of variation in the visual appearance of bamboo forest across 

different cities, it is of interest to study to what extent a model learned on one 

geographical location can be applied to a different geographical location. As such, we 

perform experiments in which we train a model for one (or more) cities, then apply the 

model to a different set of cities. Performance of the model was evaluated by 

classification accuracy, recall rate and precision rate.  
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Results 

 

Fluctuation of accuracy and loss during the learning epochs. 

The accuracy in classifying the validation data of final layer was ranged from 94% to 

99%. Loss values of validation data was ranged from 0.008 to 0.214 (Fig.3). Values of 

accuracy was increase and loss was decrease following the learning epochs (Fig.3). 

Results suggest the all models were not overfit to the datasets and successfully learned 

the features of chopped pictures.  

 
Fig.3 Accuracy and loss (val) of model at each learning epoch. 
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Effects of image resolution on classification accuracy  

The classification accuracy was ranged 76% to 97% (Fig.4a). The recall rate and 

precision rate of bamboo forest was ranged 52 % to 96 % and 91 % to 99 %, 

respectively (Fig.4 b d). The recall rate and precision rate of objects other than bamboo 

forest was ranged 92 % to 99 % and 67% to 96%, respectively (Fig.4 c e). The recall 

rate of bamboo forest was decline following the image resolution rate was declined and 

it was dramatically declined when we use 1/2500 (around 0.65m/pix spatial resolution) 

images (Fig.4 a).  

 
Fig.4 Sensitivity of image scale vs test accuracy. 
 

 

Sanyo-Onoda Ide Isumi

(a) Classification accuracy

Site

A
cc

ur
ac

y 
(%

)

0
20

40
60

80
10

0

Sanyo-Onoda Ide Isumi

(b) Bamboo forest

Site

R
ec

al
l r

at
e 

(%
)

0
20

40
60

80
10

0

Sanyo-Onoda Ide Isumi

(c) Objects other than bamboo forest

Site

R
ec

al
l r

at
e 

(%
)

0
20

40
60

80
10

0

Sanyo-Onoda Ide Isumi

(d) Bamboo forest

Site

P
re

ci
si

on
 ra

te
 (%

)

0
20

40
60

80
10

0

Sanyo-Onoda Ide Isumi

(e) Objects other than bamboo forest

Site

P
re

ci
si

on
 ra

te
 (%

)

0
20

40
60

80
10

0

1/500 1/1000 1/2500

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 20, 2018. ; https://doi.org/10.1101/351643doi: bioRxiv preprint 

https://doi.org/10.1101/351643


	 11	

Effects of chopping grid size on classification accuracy 

The classification accuracy was ranged 85 % to 96 % (Fig.5 a). The recall rate and 

precision rate of bamboo forest was ranged 79 % to 99 % and 89 % to 98 %, 

respectively (Fig.5 b d). The recall rate and precision rate of objects other than bamboo 

forest was ranged 88 % to 98 % and 79 % to 99 %, respectively (Fig.5 c e). The 

intermediate size images (56pix) shows highest classification accuracy in all sites (Fig.5 

a). The example of classification image was shown in Fig.6.  

 
Fig.5 Sensitivity of pixel size vs test accuracy. 
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Fig.6 The example of classification image. 
Bamboo forests are highlight by red and objects other than bamboo are 
highlighted by green. 
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Transferability and classification performance 

In general, performance is poor when training on samples from a given city and testing 

on samples from a different city (Fig.7 a). When the model which trained by the images 

of Isumi city applied other cities, the recall rate was worst (Fig.7 b). Contrastingly, the 

model which trained by the images of Sanyo city shows high recall rate (Fig.7 b). We 

notice that a more diverse set (all) yields not better performance when applied at 

different locations than models trained on individual cities (Fig.7).  

 
Fig.7 Transferability of models learned at one location and applied at another. 
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Fig.8 An example of applying the model to the wide area of Ide city.  
The left image is an original google earth image and the right image is a results 
of bamboo forest detection. Bamboo forests are highlight by red and objects 
other than bamboo are highlighted by green. 
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Discussion 

In this paper we demonstrated that the deep learning technique accurately detect 

bamboo forest in the Google Earth image. Although we employed most classical 

network (LeNet), the model can detect the bamboo forest accurately. In general, 

performance of model was good when training on images from a same city. So far, it is 

difficult to detect the ambiguous object such as vegetation but our results show good 

performance to detect bamboo forest from Google Earth image using chopped picture 

method. Our results highlight deep learning and suggests that deep learning would be a 

powerful method for high accuracy automated bamboo forest detection and vegetation 

mapping (see Fig.7).  

 

Effects of image resolution on classification accuracy 

Our result shows image resolution rate strongly affect the identification accuracy 

(Fig.4). As the resolution rate decreased, performance of model also declined (Fig. 4).  

Especially in 1/2500 image, recall rate of bamboo forest of Sanyo-Onoda and Isumi city 

decline to 53 % and 64 % respectively (Fig.4b). Contrastingly, precision rate of bamboo 

forest was increase as the the resolution rate decreased (Fig. 4d). This result means that 

as the resolution decreases, the model overlooks many bamboo forests and indicates that 

when the image resolution rate is low, it is difficult to learn the features of the object. 

This result also suggests that in the deep learning model, the misidentification due to 

false negatives was more likely occur than misidentification due to false positive as the 

image resolution rate decline. 

 

Effects of chopping grid size on classification accuracy 

Our result indicates that chopping grid size also affects the performance of model.  

Classification accuracy was highest at medium pixel size (56x56 pixels; Fig. 5a). In 

contrast to the effects of image resolution, recall rate and precision rate of bamboo 

forest was also highest at medium pixel size except recall rate at Ide city (Fig. 5 b, d). 

This result means that if the grid size is inappropriate, both false positives and false 

negatives will increase.  

Increases of the chopping grid size will cause an increase in the number of 

chopped pictures in which objects other than bamboo and bamboo are mixed. In this 
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paper, as we evaluated the performance of model using the picture that is uniformly 

covered by bamboo forest or objects other than bamboo forest, effects of the picture that 

consisted with mixed objects on the classification accuracy could not evaluated. 

Evaluation of classification accuracy of such images is a future task. 

 

  

Transferability among the models 

Results of transferability test show that transferability was generally poor and suggests 

that the spatial extent of acquisition of training data strongly influence the classification 

accuracy (Fig.7). The model trained by Sanyo-Onoda city images showed high recall 

rate for images of any study site but the precision rate was lower than the other models 

(Fig.7b c). It means that the model trained by Sanyo-Onoda city images tend to occur 

false positive mistake. Interestingly, transferability did not relate to the distance among 

the study site (Fig.7). This result indicates that classification accuracy across the model 

reflects the conditions as local scale such as the climate at the timing when the image 

was taken. Additionally, even when we applied a model that learned all traning images 

(all), the performance of model was not as good as when traning data was obtained 

within the same city. The same tendencies are reported in studies that classified land use 

using deep learning (Albert et al., 2017). This may suggest that increasing the number 

of training data may also lead to a decrease in identification accuracy and it is difficult 

to construct an identification model applicable to a broad area. 

 

Conclusions and future directions 

Our results show deep learning model can detect bamboo forest from Google Earth 

images accurately. Our results also suggest that deep learning and chopped picture 

method would be a powerful tool for high accuracy automated vegetation mapping and 

may offer great potential for reducing the effort and cost for vegetation mapping as well 

as improving monitoring of distribution. Recently, bamboo expansion is important 

social problem in Japan due to its invasiveness (Okutomi et al., 1996). Some research 

analyzed bamboo forest distribution probability on a national scale (Someya et al., 

2010; Takano et al., 2016) but monitoring of bamboo expansion still challenging 
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problem due to its labor. Our approach could potentially lead to the creation of a semi, 

or even fully automated system to monitoring of expansion.  

Our result also suggest that identification accuracy depends on the image 

resolution rate and chopping grid size. Especially, resolution rate of training data 

strongly affects model performance. Generally, satellite based remote sensing has been 

widely studied and applied but suffers from insufficient information due to low 

resolution images, inaccurate information due to local weather conditions (Jones and 

Vaughan, 2010). Our result also shows that the performance of the model is greatly 

influenced by the spatial extent of acquisition of training data and the model learned on 

one geographical location is difficult to applied to a different geographical location. It is 

a future task to develop a model that can be applied to wide spatial scale.  

 

Acknowledgements 

This work was supported by JST PRESTO, Japan (Grant No. JPMJPR15O1).  

 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 20, 2018. ; https://doi.org/10.1101/351643doi: bioRxiv preprint 

https://doi.org/10.1101/351643


	 18	

References 

 

Albert, A., Kaur, J., and Gonzalez, M. (2017). Using convolutional networks and 

satellite imagery to identify patterns in urban environments at a large scale. arXiv 

preprint arXiv:1704.02965. 

Bengio, Y. (2009). Learning deep architectures for AI. Found. Trends Mach. Learn. 2, 

1–127. 

Carranza-Rojas, J., Goeau, H., Bonnet, P., Mata-Montero, E., Joly, A. (2017). Going 

deeper in the automated identification of Herbarium specimens. BMC Evolutionary 

Biology. 17:181. 

Franklin, J. (2009). Mapping Species Distributions: Spatial Inference and 

Prediction. New York, NY: Cambridge University Press. 

Goodfellow, I.; Courville, A.; Bengio, Y. Deep Learning. Book in Preparation for MIT 

Press; The MIT Press: Cambridge, MA, USA, 2016. 

Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., and Schölkopf, B. (1998). Support 

vector machines. IEEE Intell. Syst. Appl. 13, 18–28. doi: 10.1109/5254. 708428 

Ise, T., Minagawa, M., and Onishi, M. (2018) Classifying 3 Moss Species by Deep 

Learning, Using the “Chopped Picture” Method. Open Journal of Ecology. 8, 166–

173.  

Jones, H. G., and R. A. Vaughan. (2010). Remote sensing of vegetation: principles 

techniques and applications. Oxford University Press, Oxford, UK. 

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., and Fei-Fei, L. (2014). 

“Large-scale video classification with convolutional neural networks,” in 

Proceedings of the IEEE conference on Computer Vision and Pattern Recognition 

(Columbus), 1725–1732. 

LeCun, Y. L., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning 

applied to document recognition. Proc. IEEE 86, 2278–2324. doi: 10.1109/5.726791 

Mohanty, S. P., Hughes, D. P., and Salathé, M. (2016). Using deep learning for image-

based plant disease detection. Front. Plant Sci. 7:1419. doi: 10.3389/fpls.2016.01419 

Nakashima, A. (2001). The present situation of the bamboo forests management in the 

suburbs: A case study of the bamboo shoot producing districts in the suburbs of 

Kyoto City. Applied Forest Science, 10, 1–7. (in Japanese with English abstract). 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 20, 2018. ; https://doi.org/10.1101/351643doi: bioRxiv preprint 

https://doi.org/10.1101/351643


	 19	

Nishikawa, R., Murakami, T., Yoshida, S., Mitsuda, Y., Nagashima, K., and Mizoue, N. 

(2005). Characteristic of temporal range shifts of bamboo stands according to 

adjacent landcover type. Journal of the Japanese Forestry Society, 87, 402–409. (in 

Japanese with English abstract). 

Nogueira, K., Penatti, O.A.B., and Dos Santos, J.A. (2017). Towards Better Exploiting 

Convolutional Neural Networks for Remote Sensing Scene Classification. Pattern 

Recognit. 61, 539–556. 

NVIDIA, (2016). NVIDIA deep learning gpu training system. 

https://developer.nvidia.com/digits. Accessed: 2018-06-01. 

Okutomi, K., Shinoda, S., and Fukuda, H. (1996). Causal analysis of the invasion of 

broad-leaved forest by bamboo in Japan. Journal of Vegetation Science, 7, 723–728. 

Ramcharan, A., Baranowski, K., McCloskey, P., Ahamed, B., Legg, J., Hughes, D. 

(2017). Deep learning for image-based cassava disease detection. Front. Plant Sci. 8, 

1852.  

Someya, T., Takemura, S., Miyamoto, S., and Kamada, M. (2010). Predictionsof 

bamboo forest distribution and associated environmental factors using natural 

environmental information GIS and digital national land information in Japan. 

Keikanseitaigaku [Landscape Ecology], 15, 41–54. (in Japanese with English 

abstract). 

Suzuki, S. (2015). Chronological location analyses of giant bamboo (Phyllostachys 

pubescens) groves and their invasive expansion in a satoyama landscape area, 

western Japan. Plant Species Biology, 30, 63–71. 

Takano KT, Hibino K, Numata A, Oguro, M., Aiba, M., Shiogama, H., Takayasu, I., and 

Nakashizuka, T. (2017). Detecting latitudinal and altitudinal expansion of invasive 

bamboo Phyllostachys edulis and Phyllostachys bambusoides (Poaceae) in Japan to 

project potential habitats under 1.5°C–4.0°C global warming. Ecol Evol, 7, 9848–

9859. 

Xie, Y., Sha, Z., and Yu, M. (2008). Remote sensing imagery in vegetation mapping: a 

review. J. Plant Ecol. 1, 9–23. doi: 10.1093/jpe/rtm005 

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). “How transferable are 

features in deep neural networks?,” in Advances in Neural Information Processing 

Systems (Montreal), 3320–3328. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 20, 2018. ; https://doi.org/10.1101/351643doi: bioRxiv preprint 

https://doi.org/10.1101/351643


	 20	

Yue, J., Zhao, W., Mao, S., and Liu, H. (2015) Spectral—Spatial classification o 

hyperspectral images using deep convolutional neural networks. Remote Sens. Lett. 

6, 468–477. 

 

 

 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 20, 2018. ; https://doi.org/10.1101/351643doi: bioRxiv preprint 

https://doi.org/10.1101/351643

