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ABSTRACT 1 

Classifying and mapping vegetation are very important tasks in environmental science 2 

and natural resource management. However, these tasks are not easy because 3 

conventional methods such as field surveys are highly labor intensive. Automatic 4 

identification of target objects from visual data is one of the most promising ways to 5 

reduce the costs for vegetation mapping. Although deep learning has become a new 6 

solution for image recognition and classification recently, in general, detection of 7 

ambiguous objects such as vegetation still is considered difficult. In this paper, we 8 

investigated the potential for adapting the chopped picture method, a recently described 9 

protocol for deep learning, to detect plant communities in Google Earth images. We 10 

selected bamboo forests as the target. We obtained Google Earth images from three 11 

regions in Japan. By applying the deep convolutional neural network, the model 12 

successfully learned the features of bamboo forests in Google Earth images, and the 13 

best trained model correctly detected 97% of the targets. Our results show that 14 

identification accuracy strongly depends on the image resolution and the quality of 15 

training data. Our results also highlight that deep learning and the chopped picture 16 

method can potentially become a powerful tool for high accuracy automated detection 17 

and mapping of vegetation. 18 

 19 
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INTRODUCTION 24 

Classifying and mapping vegetation are essential tasks for environmental science 25 

research and natural resource management1. Traditional methods (e.g., field surveys, 26 

literature reviews, manual interpretation of aerial photographs), however, are not 27 

effective for acquiring vegetation data because they are labor intensive and often 28 

economically expensive. The technology of remote sensing offers a practical and 29 

economical means to acquire information on vegetation cover, especially over large 30 

areas2. Because of its systematic observations at various scales, remote sensing 31 

technology potentially can enable classification and mapping of vegetation at high 32 

temporal resolutions. 33 

Detection of discriminating visual features is one of the most important steps in 34 

almost any computer vision problem, including in the field of remote sensing. Since 35 

conventional methods such as support vector machines3 require hand-designed, time-36 

consuming feature extraction, substantial efforts have been dedicated to development of 37 

methods for the automatic extraction of features. Recently, deep learning has become a 38 

new solution for image recognition and classification because this new method does not 39 

require the manual extraction of features. 40 

Deep learning4,5 is one type of machine learning technique that uses algorithms 41 

inspired by the structure and function of the brain called artificial neural networks. Deep 42 

learning involves the learning of features and classifiers simultaneously, and it uses 43 

training data to categorize image content without a priori specification of image 44 

features. Among all deep learning-based networks, the convolutional neural network 45 

(CNN) is the most popular for learning visual features in computer vision applications 46 

including remote sensing. Recent research has shown that CNN is effective for diverse 47 
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applications4-7. Given its success, deep learning has been used intensively in several 48 

distinct tasks for different academic and industrial fields including plant science. Recent 49 

research has shown that the deep learning technique can successfully detect plant 50 

disease, correctly classify the plant specimens in a herbarium 8-10 51 

Deep learning is a promising technology also in the field of remote sensing 11,12. 52 

Recently, Guirado et al., (2017)13 demonstrated that the deep learning technique 53 

successfully detect plant species of conservation concern and it provides better results 54 

than the conventional object detection methods. However, application of deep learning 55 

to vegetation mapping are not sufficient yet because vegetation in the aerial image often 56 

shows ambiguous and amorphous shape, and automatic object identification including 57 

deep learning tends not to work well on such objects.  58 

Recently, Ise et al., (2018)14 developed a method to extract relevant 59 

characteristics from ambiguous and amorphous objects. This method dissects the 60 

images into numerous small squares and efficiently produces the training images. By 61 

using this method, Ise et al. (2018)14 correctly classified three moss species and “non-62 

moss” objects in test images with an accuracy of more than 90%. 63 

In this paper, we investigated the potential for adapting a deep learning model 64 

and the chopped picture method to automatic vegetation detection in Google Earth 65 

images, and bamboo forests were used as the target. In recent years, bamboo has 66 

become invasive in Japan. The bamboo species moso (Phyllostachys edulis) and 67 

madake (P. bambusoides Siebold ) are the two main types of exotic bamboo. Since the 68 

1970s, the bamboo industry in Japan had declined as a result of cheaper bamboo 69 

imports and heavy labor costs15. Consequently, many bamboo plantations were left 70 

unmanaged, which led to the eventual invasion of adjacent native vegetation 16-18. 71 
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In this study, we specifically addressed the following questions: 1) how does the 72 

resolution of images affect the accuracy of detection; 2) how does the chopping size of 73 

training images affect the accuracy of detection; and 3) can a model that learned in one 74 

geographical location work well for a different location? 75 

 76 

MATERIALS AND METHODS 77 

Target area and image acquisition 78 

In this study, we chose three regions (Sanyo-Onoda, Ide, and Isumi) in Japan to conduct 79 

the analyses (Figure 1). We used Google Earth as the source of imagery. From a given 80 

sampling location, we obtained the images at zoom levels of 1/500 (~0.13 m/pixel 81 

spatial resolution), 1/1000 (~0.26 m/pixel spatial resolution), and 1/2500 (~0.65 m/pixel 82 

spatial resolution). 83 
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 84 

FIGURE 1 Target regions of this research. 85 

 86 

Methods and background concepts for the neural networks 87 

In this study, we employed convolutional neural networks (CNN; Figure 2). A CNN is a 88 

special type of feedforward neural network that consists of a convolutional layer and 89 
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pooling layer.90 

 91 

FIGURE 2 Schematic diagram of the convolutional neural networks. 92 

 93 

A feedforward neural network is an artificial neural network wherein 94 

connections between the nodes do not form a cycle. These networks, which conduct 95 

modeling similar to the neuron activity in the brain, are generally presented as systems 96 

of interconnected processing units (artificial neurons) that can compute values from 97 

inputs leading to an output that may be used on further units. Artificial neurons are 98 

basically processing units that compute some operation over several input variables and, 99 

usually, have one output calculated through the activation function. Typically, an 100 

artificial neuron has a weight 𝑤𝑖 that represents the degree of connection between 101 

artificial neurons, some input variables 𝑥𝑖, and a threshold vector 𝑏. Mathematically, 102 

the total input and output of artificial neurons can be described as follows: 103 

 104 

𝑢 = ∑ 𝑤𝑖𝑥𝑖𝑖  (1) 105 

 106 
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𝑧 = 𝑓(𝑢 + 𝑏) = 𝑓(∑ 𝑤𝑖𝑥𝑖𝑖 + 𝑏) (2) 107 

 108 

where 𝑢, 𝑧, 𝑥, 𝑤, and 𝑏 represent the total input, output, input variables, weights, and 109 

bias, respectively. 𝑓(∙) denotes an activation function; a nonlinear function such as a 110 

sigmoid, hyperbolic, or rectified linear function is provided in 𝑓(∙). We employed a 111 

rectified linear function as the activation function, and this function is referred to as the 112 

Rectified Linear Unit (ReLU). The definition of ReLU is shown in the following 113 

equation: 114 

 115 

𝑓(𝑢) = max{0, 𝑢} = {
𝑢 (𝑢 > 0)

0 (𝑢 ≤ 0)
 (3) 116 

 117 

As mentioned above, a CNN is a special type of feedforward neural network that 118 

is usually used in image classification and identification. A CNN consists of a 119 

convolutional layer and pooling layer. The convolutional layer plays a role in capturing 120 

the features from the images. In this process, a fixed-sized window runs over the image 121 

and extracts the patterns of shades of colors in the image. After each convolutional 122 

layer, there are pooling layers that are created in order to reduce the variance of 123 

features, which is accomplished by computing some operation of a particular feature 124 

over a region of the image. 125 

The pooling layer has the function of reducing the position sensitivity of the 126 

feature that is extracted at the convolution layer so that the output amount of the pooling 127 

layer does not change even when the position of the feature amount extracted by the 128 

convolution layer is shifted within the image. Two operations may be realized on the 129 
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pooling layers, namely, max or average operations, in which the maximum or mean 130 

value is selected over the feature region, respectively. This process ensures that the 131 

same results can be obtained, even when image features have small translations or 132 

rotations, and this is very important for object classification and detection. Thus, the 133 

pooling layer is responsible for sampling the output of the convolutional one and 134 

preserving the spatial location of the image, as well as selecting the most useful features 135 

for the next layers. 136 

After several convolutional and pooling layers, there are fully connected ones, 137 

which take all neurons in the previous layer and connect them to every single neuron in 138 

its layer. 139 

Finally, following all of the convolution, pooling, and fully connected layers, a 140 

classifier layer may be used to calculate the class probability of each instance. We 141 

employed the softmax function in this layer. The softmax function calculates the 142 

probabilities of each target class over all possible target classes. The softmax function is 143 

written as follows: 144 

 145 

𝑦𝑘 = softmax𝑘(𝑢1, 𝑢2, ⋯ , 𝑢𝐾) =
𝑒𝑢𝑘

∑ 𝑒
𝑢𝑗𝐾

𝑗=1

 (4) 146 

 147 

where 𝑘 represents the number of the output unit and 𝑢 represents input variables. 148 

In order to evaluate the performance of the network, a loss function needs to be 149 

defined. The loss function evaluates how well the network models the training dataset. 150 

The goal of the training is to minimize the error of the loss function. Eq. (5) presents the 151 

cross entropy of the softmax function that was employed in this study: 152 
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 153 

𝐸 = − ∑ ∑ 𝑡𝑛,𝑘 log 𝑦𝑘
𝐾
𝑘=1

𝑁
𝑛=1  (5) 154 

 155 

where 𝑡 is the vector for the training data, 𝐾 represents the possible class, and 𝑁 156 

represents the total number of instances. 157 

 158 

Approach 159 

A schematic diagram of our approach is shown in Figure 3. We prepared the training 160 

data by using the chopped picture method 14. First, in this method, we collected the 161 

images that were (1) nearly 100% covered by bamboo and (2) not covered by bamboo. 162 

Next, we “chopped” this picture into small squares with 50% overlap both vertically 163 

and horizontally. 164 

 165 

FIGURE 3 Schematic diagram of the research approach. This figure was 166 

generated using data from Google Earth image (Image data: ©2018 167 

CNES/Airbus & Digital Globe). 168 

 169 
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We made a model for image classification from a deep CNN for the bamboo 170 

forest detection. As opposed to traditional approaches of training classifiers with hand-171 

designed feature extraction, the CNN learns the feature hierarchy from pixels to 172 

classifiers and trains layers jointly. We used the final layer of the CNN model for 173 

detecting the bamboo coverage from Google Earth images. To make a model for object 174 

identification, we used the deep learning framework of NVIDIA DIGITS19. We used 175 

75% of the obtained images as training data and the remaining 25% as validation data. 176 

We used the LeNet network model20. The model parameters implemented in this study 177 

included the number of training epochs (30), learning rate (0.01), train batch size (64), 178 

and validation batch size (32). 179 

 180 

Evaluation of the learning accuracy 181 

Validation of the model in each learning epoch was conducted by using the accuracy 182 

and loss function obtained from cross validation images. The accuracy indicates how 183 

accurately the model can classify the validation images. Loss represents the inaccuracy 184 

of the prediction of the model. If model learning is successful, loss (val) is low and 185 

accuracy is high. However, when loss (val) becomes high during learning, this indicates 186 

that over fitting is occurring. 187 

 188 

Evaluation of the model performance 189 

We obtained 10 new images, which were uniformly covered by bamboo forest or 190 

objects other than bamboo forest, from each study site. Next, we re-sized the images by 191 

using the chopped picture method. Third, we randomly sampled 500 images from the 192 
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re-sized images. Finally, we applied the model to the sampled images and evaluated the 193 

classification accuracy. To evaluate the performance of the model, we classified the 194 

classification results into the following four categories: true positive (TP), false positive 195 

(FP), false negative (FN), and true negative (TN). Next, we calculated the classification 196 

accuracy, recall rate, and precision rate by using the following equations: 197 

 198 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) (6) 199 

 200 

 𝑅𝑒𝑐𝑎𝑙𝑙 𝑟𝑎𝑡𝑒 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (7) 201 

 202 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (8) 203 

 204 

Testing the effects of image resolution on the classification accuracy 205 

To quantify the effects of image resolution on the accuracy of detection, we obtained 206 

images at a zoom level of 1/500 (~0.13 m/pixel spatial resolution), 1/1000 (~0.26 207 

m/pixel spatial resolution), and 1/2500 (~0.65 m/pixel spatial resolution) from each 208 

study site. Next, we applied the chopped picture method. To adjust the spatial extent of 209 

each chopped image, we chopped 56 pixels for the 1/500 level, 28 pixels for the 1/1000 210 

level, and 14 pixels for the 1/2500 level. After constructing the model, we applied the 211 

model to the new images and calculated the classification accuracy, recall rate, and 212 

precision rate. 213 

 214 

Testing the effects of chopping grid size on the classification accuracy 215 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 7, 2018. ; https://doi.org/10.1101/351643doi: bioRxiv preprint 

https://doi.org/10.1101/351643


 13 

To quantify the effects of the spatial extent of the chopping grid on the accuracy of 216 

detection, we chopped the 1/500 images at each study site for three types of pixel sizes 217 

(84, 56, 28). After constructing the model, we applied the model to new images and 218 

calculated the classification accuracy, recall rate, and precision rate. 219 

 220 

Transferability test 221 

Given the large amount of variation in the visual appearance of bamboo forest across 222 

different cities, it is of interest to study to what extent a model learned on one 223 

geographical location can be applied to a different geographical location. As such, we 224 

performed experiments in which we trained a model for one (or more) cities, and then, 225 

we applied the model to a different set of cities. Performance of the model was 226 

evaluated by the classification accuracy, recall rate, and precision rate. 227 

 228 

RESULTS 229 

Fluctuation of accuracy and loss during the learning epochs 230 

The accuracy for classifying the validation data of the final layer ranged from 94% to 231 

99%. Loss values for the validation data ranged from 0.008 to 0.214 (Figure 4). Values 232 

of accuracy increased and loss decreased following the learning epochs (Figure 4). 233 

These results suggest the all of the models were not overfit to the datasets and 234 

successfully learned the features of chopped pictures. 235 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 7, 2018. ; https://doi.org/10.1101/351643doi: bioRxiv preprint 

https://doi.org/10.1101/351643


 14 

 236 

FIGURE 4 Accuracy and loss (val) of the model at each learning epoch. 237 

 238 

Effects of image resolution on the classification accuracy 239 

The classification accuracy ranged from 76% to 97% (Figure 5a). The recall rate and 240 

precision rate for bamboo forest ranged 52% to 96% and 91% to 99%, respectively 241 

(Figure 5b, d). The recall rate and precision rate for objects other than bamboo forest 242 

ranged from 92% to 99% and 67% to 96%, respectively (Figure 5c, e). The recall rate 243 

for bamboo forest declined following the decline in the image resolution, and it declined 244 
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dramatically when we used the 1/2500 level (~0.65 m/pixel spatial resolution) (Figure 245 

5a). 246 

 247 

FIGURE 5 Sensitivity of the image scale versus the test accuracy. 248 

 249 

Effects of chopping grid size on the classification accuracy 250 

The classification accuracy ranged from 85% to 96% (Figure 6a). The recall rate and 251 

precision rate for bamboo forest ranged from 79% to 99% and 89% to 98%, respectively 252 

(Figure 6b, d). The recall rate and precision rate for objects other than bamboo forest 253 
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ranged from 88% to 98% and 79% to 99%, respectively (Figure 6c, e). The 254 

intermediate-sized images (56 pixel) showed the highest classification accuracy at all 255 

sites (Figure 6a). An example of a classification image is shown in Figure 7.256 

 257 

FIGURE 6 Sensitivity of the pixel size versus the test accuracy. 258 

 259 

 260 

 261 

 262 
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 263 

FIGURE 7 Example of a classification image. Bamboo forests are highlighted by 264 

red, and objects other than bamboo are highlighted by green. This figure was 265 
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generated using data from Google Earth image (Image data: ©2018 266 

CNES/Airbus & Digital Globe). 267 

 268 

Transferability and classification performance 269 

In general, performance was poor when training on samples from a given city and 270 

testing on samples from a different city (Figure 8a). When the model that was trained by 271 

the images of Isumi city was applied to the other cities, the recall rate was the worst 272 

(Figure 8b). Conversely, the model that was trained by the images of Sanyo city showed 273 

the highest recall rate (Figure 8b). We noticed that a more diverse set (all) did not yield 274 

a better performance when applied at different locations than the models trained on 275 

individual cities (Figure 8). 276 
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277 

FIGURE 8 Transferability of the models learned at one location and applied at 278 

another. 279 

 280 

DISCUSSION 281 

In this paper, we demonstrated that the chopped picture method and CNN could 282 

accurately detect bamboo forest in Google Earth imagery (see Figure 7). Recent 283 

research has shown that the deep learning technique is applicable to plant science 284 

research 8-11, 21,22; however, applications of DA in plant science have been mainly 285 

restricted to photographs taken indoors, and applications to plants in the aerial 286 
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photographs are still limited11. To the best of our knowledge, this is the first study to 287 

successfully identify plant communities automatically from Google Earth imagery. 288 

Classifying vegetation from remote sensing images generally suffers from 289 

several problems, e.g., it can be difficult to establish a specific pattern for each species, 290 

given the high intraclass variance, and also to distinguish between different species, 291 

given the interclass similarity of distinct species12, 23. So far, it is generally been difficult 292 

to detect ambiguous objects such as vegetation, but our results showed good 293 

performance during the detection of bamboo forest from Google Earth images by using 294 

the chopped picture method even though we employed the most classical CNN (LeNet). 295 

Our results highlight that the chopped picture method and CNN would be a powerful 296 

method for high accuracy automated bamboo forest detection and vegetation mapping 297 

(see Figure 9). 298 
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 299 

FIGURE 9 Example of applying the model to the wide area of Ide city. The left 300 

image is the original Google Earth image, and the right image shows the results 301 

of bamboo forest detection. Bamboo forests are highlighted by red, and objects 302 

other than bamboo are highlighted by green. This figure was generated using 303 

data from Google Earth image (Image data: ©2018 CNES/Airbus & Digital 304 

Globe). 305 
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 306 

 307 

Effects of image resolution on the classification accuracy 308 

Our results indicate that the image resolution strongly affects the identification accuracy 309 

(Figure 4). As the resolution rate decreased, performance of the model also declined 310 

(Figure 4). 311 

Especially in the 1/2500 imagery, the recall rate for bamboo forest of Sanyo-312 

Onoda and Isumi city declined to 53% and 64%, respectively (Figure 4b). In contrast, 313 

the precision rate for bamboo forest increased as the resolution decreased (Figure 4d). 314 

This result means that as the resolution decreases, the model overlooks many bamboo 315 

forests; thus, when the image resolution is low, it is difficult to learn the features of the 316 

object. This result also suggests that in the deep learning model, misidentification due to 317 

false negatives is more likely to occur than misidentification due to false positive as the 318 

image resolution declines. 319 

 320 

Effects of chopping grid size on the classification accuracy 321 

Our results indicate that the chopping grid size also affects the performance of the 322 

model. The classification accuracy was the highest at the medium pixel size (56 × 56 323 

pixels; Figure 5a). In contrast to the effects of image resolution, the recall rate and 324 

precision rate for bamboo forest was also the highest at the medium pixel size except for 325 

the recall rate at Ide city (Figure 5b, d). 326 

This result means that if the grid size is inappropriate, both false positives and false 327 

negatives will increase. 328 
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Increases of the chopping grid size will cause an increase in the number of 329 

chopped pictures in which objects other than bamboo and bamboo are mixed. In this 330 

paper, because we evaluated the performance of the model by using images that were 331 

uniformly covered by bamboo forest or objects other than bamboo forest, the effects of 332 

imagery consisting of mixed objects on the classification accuracy could not be 333 

evaluated. Evaluation of the classification accuracy for such images will take place in 334 

future research. 335 

 336 

Transferability among the models 337 

Results for the transferability tests showed that transferability was generally poor and 338 

suggest that the spatial extent of acquisition of training data strongly influences the 339 

classification accuracy (Figure 8). The model trained by Sanyo-Onoda city images 340 

yielded high recall rates for the images taken at all of the study sites, but the precision 341 

rate was lower than that of the other models (Figure 8b, c). This means that the model 342 

trained by Sanyo-Onoda city images tends to make false positive mistakes. 343 

Interestingly, transferability was not found to be related to the distance among the study 344 

sites (Figure 8). This result indicates that classification accuracy across the model 345 

reflects the conditions at the local scale such as the climate at the time when the image 346 

was taken. Additionally, even when we applied a model that learned from all training 347 

images (all), the performance of the model was not as good as when the training data 348 

were obtained within the same city. The same tendencies have been reported in studies 349 

that classified land use by using deep learning 24. This may suggest that increasing the 350 

number of training data may also lead to a decrease in the identification accuracy, and it 351 

may be difficult to construct an identification model applicable to a broad area. 352 
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 353 

Conclusions and future directions 354 

Our results show that the deep learning model presented here can detect bamboo forest 355 

from Google Earth images accurately. Our results also suggest that deep learning and 356 

the chopped picture method would be a powerful tool for high accuracy automated 357 

vegetation mapping and may offer great potential for reducing the effort and costs 358 

required for vegetation mapping as well as improving the current status of monitoring 359 

the distribution of bamboo. Recently, bamboo expansion has become an important 360 

problem in Japan because of its invasiveness17. While some research has analyzed the 361 

bamboo forest distribution probability on a national scale25, 26, monitoring of bamboo 362 

expansion is still a challenging problem because of labor requirements. Our approach 363 

could potentially lead to the creation of a semi or even fully automated system for the 364 

monitoring of bamboo expansion. 365 

Our results also suggest that the identification accuracy depends on the image 366 

resolution and chopping grid size. Especially, the spatial resolution of training data 367 

strongly affects the model performance. Generally, satellite-based remote sensing has 368 

been widely studied and applied but suffers from insufficient information due to low 369 

resolution images or inaccurate information due to local weather conditions27. Our 370 

results also show that the performance of the model can be greatly influenced by the 371 

spatial extent of the acquired training data and a model learned on one geographical 372 

location is difficult to apply to a different geographical location. It remains a future task 373 

to develop a model that can be applied over a wide spatial scale. 374 
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