bioRxiv preprint doi: https://doi.org/10.1101/351767; this version posted June 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Inferring Reaction Networks
using Perturbation Data

Kiri Choi!, Joesph Hellerstein?, H. Steven Wiley®, and Herbert M.
Sauro!

'Department of Bioengineering, William H. Foege Building, Box
355061, Seattle, WA, USA
2eScience Institute, University of Washington, Seattle,
Washington, USA
3Environmental Molecular Sciences Laboratory, Pacific Northwest

National Laboratory, Richland, WA, USA

1 Abstract

In this paper we examine the use of perturbation data to infer the underlying
mechanistic dynamic model. The approach uses an evolutionary strategy to
evolve networks based on a fitness criterion that measures the difference be-
tween the experimentally determined set of perturbation data and proposed
mechanistic models. At present we only deal with reaction networks that use
mass-action kinetics employing uni-uni, bi-uni, uni-bi and bi-bi reactions. The
key to our approach is to split the algorithm into two phases. The first phase
focuses on evolving network topologies that are consistent with the perturbation
data followed by a second phase that evolves the parameter values. This results
in almost an exact match between the evolved network and the original network
from which the perturbation data was generated from. We test the approach on
four models that include linear chain, feed-forward loop, cyclic pathway and a
branched pathway. Currently the algorithm is implemented using Python and
libRoadRunner but could at a later date be rewritten in a compiled language
to improve performance. Future studies will focus on the impact of noise in
the perturbation data on convergence and variability in the evolved parameter
values and topologies. In addition we will investigate the effect of nonlinear rate
laws on generating unique solutions.

https://doi.org/10.1101/351767
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/351767; this version posted June 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Introduction

In [8, 2] we illustrated how it was possible to use an evolutionary approach to
generate biochemical networks that had specific dynamic behaviors. This was
done by defining an objective function and then use a genetic algorithm to evolve
networks that possessed the desired behavior. For example, we demonstrated
how to evolve networks that showed sustained oscillations, could compute square
and cube roots, showed bi-stability, and behaved as low, high and bandpass
filters.

This paper extends our previous work by using an evolutionary approach to infer
a network’s structure and kinetics using perturbation data. Instead of evolving
networks with specific dynamic behaviors we evolve fully mechanistic networks
that are consistent with a given set of perturbation data. Modular response
analysis (MRA) has used perturbation data to infer networks and dynamics
[7, 3]. A recent review describing the development of this technique can be
found in [9]. This method relies on using perturbation data to reconstruct
the Jacobian matrix from which the modular structure of the network can be
inferred. The approach is promising but it can be difficult to use it to reconstruct
a detailed mechanistic model. Instead, the approach we propose can be used to
infer detailed mechanistic models from perturbation data. Moreover, noise in
the perturbation data will lead naturally to the generation of multiple models
that are consistent with the data, something MRA cannot easily do. However,
the effect of noise will be discussed in a later revision.

Consider a biochemical network with n reactions and m species at steady state.
We define a perturbation of the m; species as the change in the steady state
level of m; as a result of a change to the reaction n;. We will define pertur-
bations using logarithmic gains similar to those defined in metabolic control
analysis [6, 11], also known as control coefficients. Metabolic control analysis
(MCA) studies the sensitivity of a chemical reaction network to perturbations
and how the perturbations propagate through the network. A control coefficient
describes how a flux J or a species concentration S is affected by changes to
the concentration of an enzyme F;. Therefore, flux and concentration control
coefficients are often defined using scaled derivative as shown in equations (1).

; _dJ E _dlnJ s, dS;E; dlnS; 0
Ei T 4E, J ~ dnE B: T 4E; J dnE;

In principle it is possible to experimentally estimate flux and concentration
control coefficients for every combination of species and reaction, generating
matrices of control coeflicients [4].

In this paper, we propose a novel approach to infer dynamic mechanistic models
from concentration control coefficients using an evolutionary algorithm. We test
the algorithm with four different types of synthetic networks and demonstrate
that the algorithm can fully reconstruct the network and its dynamics.

https://doi.org/10.1101/351767
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/351767; this version posted June 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Methods

The algorithm is iterative in nature but begins by generating a population of
random chemical reaction networks with a given number of floating species
and reactions. Information on concentration control coefficients is provided to
the algorithm in the form of a matrix where the number of rows and columns
correspond to the number of species and reactions. For the scope of this paper,
we limit our algorithm to inferring networks with Uni-Uni, Uni-Bi, Bi-Uni, and
Bi-Bi reactions using mass-action kinetics '. In future work we will consider
non-linear Michaelis and Hill like rate laws [10].

The algorithms works iteratively on a population of networks one generation at
a time. For each network in the population, the concentration control coeffi-
cients as well as the flux and steady-state concentrations of the floating species
are determined. The latter two measurements are used to reduce uncertainty in
parameter values. The concentration control coefficient matrices are compared
with that of the experimentally determined control coefficients of the unknown
network. The comparison is done by computing the distance as a Frobenius
norm, which is given by equation (2), where C¥ is the experimentally deter-
mined control coefficient matrix and C* is the simulated control coefficient
matrix. This technique assumes that the number of reactions and species in the
unknown network are known. We will consider variable number of reactions in
a subsequent revision of the paper.

IDecllr = |- 1CE —CJ? (2)

i=1 j=1

The full distance metric, or fitness, is described in equation (3). Here, SS are
the steady-state values and J the steady state flux. Constants kr and kg are
weights. The subscript E refers to the experimental data and F' to the same
data but in the individuals in the population.

D(Fitness) = kr (||DJ||F + || Ds||F) +

3
ks (32 V(SSe = 55577 + /U = Js)?) ?

D is the matrix of concentration control coefficients, D; the matrix of fluxes,
and Dg the vector of species concentrations.

Moving form one generation to the next involves the following sequence of oper-
ations. The fitness of each model is computed using the Frobenius norm (3) [5]
and the population of models in the i*" generation are ranked from best to
worst. Assuming that the maximum population size if N, then a percentage,

1Uni-Uni refers to reactions of the type A — B, Uni-Bi refers to reactions of the type
A — B+ C, Bi-Uni refers to reactions of the type A + B — C, and Bi-Bi refers to reactions
of the type A+ B— C + D.

https://doi.org/10.1101/351767
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/351767; this version posted June 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Initialize with
Random Networks
>

Flux Control Concentration
Coefficient Control Coefficient
Distance Experimental

Repopulation =
G:) Measurement Measurement
[Steady-state] [Flux]

Measurement

Measurement

Random Network Selection and Top Performing
Generation Mutation Models
Output

Figure 1: A work-flow diagram illustrating the algorithm. The loop is continued
for a set number of generations or until a given fitness threshold is met.

ep, of the best individuals in the i*® generation of N individuals is passed to the
next generation, i + 18, A percentage, p,, of models from the i*! generation
are selected using either roulette, tournament selection or fitness proportionate
selection, where the inverse of distance is used as the fitness, and copied to
the i + 1*® generation. The various selection approaches are selectable by the
user. Of the p, models, each is mutated in one of two ways. Mutation can
include a change of either a reaction or a rate constant. For the best models in
the population we only mutate a reaction. This is to ensure that the mutated
output will always be a different structural model compared to one of the best
models. Therefore, instead of aiming for the best fitness overall, we aim for best
competition between different models, where the goal is to move into the top
spot. This effectively minimizes the issue with local minima since our distance
metric is affected by both the topology and rate constants of the model. Once
the best models and mutated models are passed on to the next generation, the
remaining space, r, percent is filled with freshly generated random networks.
Note that the sum e, + p, + r, = 100%. The entire process is repeated for
a predetermined number of generations or until the fitness meets a threshold.
Figure 1 illustrates the general work flow of the algorithm.

All evolution experiments were developed in Python. For simulation we used
libRoadRunner [12]. To improve performance the code could be rewritten in a
compiled language such as C/C++. Note that the libRoadRunner is already
writen in C/C++.

https://doi.org/10.1101/351767
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/351767; this version posted June 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Results

A B

C=Gl=>E)=> =) B= = (s2)=> (S)=> (5] =
I

Cl=CU=Gd=> =) (= ()= (Sa)=> (5= (52)=> (%]
I)

(s2)=>

)

= (%]

[
{
[
g
g
i
5

o’
E3) @\@/

N
B g ES

) (

@ G
TR

J\@<

BNEn

(Sa)=> ()

[
{
[
[
[
¢
]

(

Figure 2: Models used to generate synthetic experimental data and the best
performing output acquired from the algorithm using it. Four models are used,
including (A) coherent type 1 feed-forward loop, (B) linear chain, (C) nested
cycles, and (D) branched pathways. Within each panel, the diagram on the
top represents the original model used to generate the synthetic experimental
data and diagram below is the model identified by the algorithm as the best
performing model. X; and X, represent the boundary species which are fixed
during a simulation.

To demonstrate the capability of the algorithm, we have tested it on a number of
synthetic networks involving a simple feed-forward loop, a linear chain, nested
cycles, and multiple branches as illustrated in Figure 2. For evolution runs, the
population size was set to 200 networks. Within each generation, the top ten
percent of models were passed to the next generation and half of the population
selected and mutated to the next generation. This means that 40% of the next
generation population was populated with random networks.

Figure 2 shows the top performing models after running the algorithm. For mo-
tifs such as feed-forward loop and nested cycles, the algorithm is able to fully
recover the original network topology and dynamics. For linear chains, the order
of species differs from the original network. This is due to a unique character-
istic of linear chains. These alternative models have almost identical flux and
concentration control coefficients. For the type of experimental measurements

https://doi.org/10.1101/351767
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/351767; this version posted June 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

we supply to the algorithm, it is impossible to distinguish these linear chains
with differing orders. Addition of time-course measurements does not solve this
issue either, and the only potential way to distinguish these networks is to use
perturbation studies. Finally, for the branched pathways, the algorithm was
able to accurately recover the original model. Of interest are the non-functional
components of the evolved network. For example, the second and third reaction
in the evolved branched model (D) include the boundary species X; and X,
which were not present in the original model. However, these have no effect
on the network dynamics since the effect of a particular boundary species can
be absorbed into the rate constant for the reaction. Figure 3 shows the change
in the fitness observed in the population over a number of generations. The
number below and on the right side of the x axis shows the approximate time
it took to run the algorithm.

A FFL B Linear Chain

6.0
5.5
$5.0
c
845
Qo
0 4.0
3.5
3.0

2.5
0 20 40 60 80 100 0 20 40 60 80 100
Generations (~9 min) Generations (~25 min)

v o

Distance
w A

N

[

C Nested Cycles D Branched Pathways

14

10
12

Distance
Distance

A U1 O N o ©

N D O @

0 20 40 60 80 100 0 50 100 150 200 250 300
Generations (~17 min) Generations (~175 min)

Figure 3: Convergence curves for four models tested in Figure 1. Lines corre-
spond to the fitness of top performing model. Numbers below and to the right
of each plot represents the time it took to complete the run.

One point of interest is that in many cases, experimentally measuring flux con-
trol coefficients or fluxes are relatively difficult. We report that in our pre-
liminary analysis, using only the Frobenius norm of differences in concentration
control coefficient (||Dg||r) and steady-state measurement is good enough to re-
cover a large part of the original model, although the time it takes to converge

https://doi.org/10.1101/351767
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/351767; this version posted June 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

is much longer.

0.00 0.00{ <=

-0.05 -0.05
5 —0.10 5 —0.10
35 3
D -0.15 2 -0.15
& \ 4

—0.20 | | -0.20

-0.251 |/ -0.25

0304 U -0.30

0 20 40 60 80 100 0 20 40 60 80 100
Time (s) Time (s)

Figure 4: Time-course simulation showing the difference between the best per-
forming model and the original feed-forward loop model. Left is the result of
using steady-state measurements only during the second round of iterations.
Right is the result of using steady-state measurements and fluxes during the
second round of iterations. Blue, orange, and green lines correspond to species
S1, S2, and S3, respectively.

We also tested the ability of the evolved models to match the transient behavior
of the model. For this, we modified our work-flow slightly, starting with only
using control coefficients as the distance metric to recover the stoichiometry,
and then running the best model through another round of iteration only using
the difference in steady-state measurements. This change separates the entire
process into two distinct rounds of iterations, where you first round of iterations
look for the correct stoichiometry and then look for the correct parameterization.
When only the concentration control coefficients and steady-state measurements
are used, the evolved networks were unable to recreate the transient behavior.
However, once we included steady-state solutions as well as fluxes in the second
round of iterations, the process was able to find the correct set of parameters
and the transient behavior was fully recovered, as shown in Figure 4. This may
not be unexpected given that the raw laws are linear. In a subsequent analysis
we will consider non-linear rate laws. In this situation the transients are unlikley
to match and we will consider additional evolutionary curation.

All computation was done on a single core of a AMD Ryzen 1700X machine
clocked to 3.4 GHz with 16 GB RAM. All computation was done using li-
bRoadRunner [12] simulator using the Tellurium [1] environment.

Conclusion

In this paper, we present an effective way of generating an ensemble of reaction
network models from perturbation data. We also demonstrate its effectiveness
by testing the algorithm on a set of synthetic networks. Although we have

https://doi.org/10.1101/351767
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/351767; this version posted June 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

only presented the top performing models here, in many cases one will analyze
a number of top performing models, potentially using the models as a whole
as an ensemble for better predictions. The performance of the algorithm is
reasonable, usually converging to a solution on the scale of tens of minutes. For
a larger networks, obviously it will take longer to find a good set of solutions,
but the entire process is easily parallelizable, which should produce a significant
performance boost.

Availability

Scripts used to generate the results are available at https://github.com/
kirichoi/CCR. We recommend installing Tellurium to run the script. Tel-
lurium is available at http://tellurium.analogmachine.org.

Authors contributions

KC designed the algorithm, generated and analyzed the result, and wrote the
code and article; JH read the manuscript and assisted with algorithm develop-
ment; HSW read the manuscript and conceived the idea of measuring pertur-
bations; HMS conceived the idea and wrote the code and article.

Acknowledgements

This work was supported by the National Institute of General Medical Sci-
ences of the National Institutes of Health under awards R01-GMO081070, RO1-
GM123032. The content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institutes of Health or
National Science Foundation.

References

[1] K. Choi, J. K. Medley, C. Cannistra, M. Konig, L. Smith, K. Stocking,
and H. M. Sauro. Tellurium: A python based modeling and reproducibility
platform for systems biology. bioRxiv, 2016.

[2] A. Deckard and H. M. Sauro. Preliminary studies on the in silico evolution
of biochemical networks. ChemBioChem, 5(10):1423-1431, 2004.

[3] M. Dorel, B. Klinger, A. Sieber, A. Prahallad, T. Gross, E. Bosdriesz,
L. Wessels, and N. Bluthgen. Modelling signalling networks from pertur-
bation data. bioRziv, page 243600, 2018.

https://github.com/kirichoi/CCR
https://github.com/kirichoi/CCR
http://tellurium.analogmachine.org
https://doi.org/10.1101/351767
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/351767; this version posted June 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

[4]

aCC-BY-NC-ND 4.0 International license.

M. Ehlde and G. Zacchi. A general formalism for Metabolic Control Anal-
ysis. Chemical Engineering Science, 52:2599-2606(8), 1997.

Frobenius Norm. https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm,
2018.

H. Kacser and J. Burns. The control of flux. In Symp. Soc. Exp. Biol.,
volume 27, pages 65-104, 1973.

B. N. Kholodenko, A. Kiyatkin, F. J. Bruggeman, E. Sontag, H. V. West-
erhoff, and J. B. Hoek. Untangling the wires: a strategy to trace functional
interactions in signaling and gene networks. Proceedings of the National
Academy of Sciences, 99(20):12841-12846, 2002.

S. Paladugu, V. Chickarmane, A. Deckard, J. Frumkin, M. McCormack,
and H. Sauro. In silico evolution of functional modules in biochemical
networks. IEE Proceedings-Systems Biology, 153(4):223-235, 2006.

T. Santra, O. Rukhlenko, V. Zhernovkov, and B. N. Kholodenko. Recon-
structing static and dynamic models of signaling pathways using modular
response analysis. Current Opinion in Systems Biology, 2018.

H. M. Sauro. Enzyme kinetics for systems biology. Ambrosius Publishing,
2 edition, 2012.

H. M. Sauro. Systems Biology: An Introduction to Metabolic Control Anal-
ysis. Ambrosius Publishing, Seattle, Washington, 2018.

E. T. Somogyi, J.-M. Bouteiller, J. A. Glazier, M. Konig, J. K. Medley,
M. H. Swat, and H. M. Sauro. libroadrunner: a high performance sbml
simulation and analysis library. Bioinformatics, 31(20):3315-3321, 2015.

https://doi.org/10.1101/351767
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Abstract

