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Abstract

Turing patterns (TPs) underlie many fundamental de-
velopmental processes, but they operate over narrow
parameter ranges, raising the conundrum of how evo-
lution can ever discover them. Here we explore TP de-
sign space to address this question and to distill design
rules. We exhaustively analyze 2- and 3-node biologi-
cal candidate Turing systems: crucially, network struc-
ture alone neither determines nor guarantees emer-
gent TPs. A surprisingly large fraction (>60%) of
network design space can produce TPs, but these are
sensitive to even subtle changes in parameters, net-
work structure and regulatory mechanisms. This im-
plies that TP networks are more common than pre-
viously thought, and evolution might regularly en-
counter prototypic solutions. Importantly, we deduce
compositional rules for TP systems that are almost
necessary and sufficient (96% of TP networks contain
them, and 95% of networks implementing them pro-
duce TPs). This comprehensive network atlas provides
the blueprints for identifying natural TPs, and for en-
gineering synthetic systems.

Introduction

Pattern formation is an essential aspect of develop-
ment in biology andwe have awealth of examples how
complex, structured, multi-cellular organisms develop
from single fertilized cells. Many organisms develop
complex spatial features with exquisite precision and
robustness, and this has been the subject of extensive
molecular and theoretical study (Green and Sharpe,
2015; Maini et al., 2012).
Various mechanisms have been proposed to ex-

plain developmental patterning processes, ranging
from maternally inherited cues (Wolpert, 1969), to
mechanical forces (Howard, Grill, and Bois, 2011)
and chemical reaction-diffusion networks or Turing
patterns (TPs) (Gierer and Meinhardt, 1972; Turing,
1952). The latter were first proposed by Alan Turing
in 1952 (Turing, 1952), and were later independently
described by Gierer and Meinhardt (Gierer and Mein-
hardt, 1972). TPs are particularly intriguing because
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they are capable of generating entirely self-organized,
complex, repetitive patterns of gene expression (Fig-
ure 1A, B).

TPs generally alter local concentrations of biochem-
ical components, resulting in self-organized spatial
patterns such as spots, stripes and labyrinths (Kondo
and Miura, 2010). These patterns have unique and
useful biological properties: perturbing them results
in recovery and re-organization of the patterns ("heal-
ing"), as an intrinsic property of the dynamical bio-
chemical interactions. This also implies that if there is
variability in size across individuals, the TPs will au-
tomatically re-scale themselves, simply adding or sub-
tracting pattern segments in response to different field
sizes. This is a valuable property to support changes in
size, both within existing populations and over evolu-
tionary time. In addition, TP networks are extremely
parsimonious, often employing just two or three bio-
chemical species. This implies that they might be an
economical solution for evolution to employ, wherever
repetitive self-organizing patterns are needed.

Given these advantages, it is perhaps not surprising
that TPs are regarded as the driving morphogenetic
patterning mechanisms in many biological systems.
These include bone and tooth formation, hair folli-
cle distribution and the patterns on the skins of ani-
mals, such as fish and zebras (Raspopovic et al., 2014;
Sick et al., 2006; Jung et al., 1998; Nakamasu et al.,
2009; Economou et al., 2012). However, despite sev-
eral experimentally verified examples (Raspopovic et
al., 2014; Sick et al., 2006), the underlying complex-
ity in biological systems has often prevented identifi-
cation of the precise molecular mechanisms governing
the potentially large number of TPs in nature. A sec-
ond key problem is that there is a paradox between
the apparent widespread distribution of natural TPs
and the observation — from mathematical analyses
(Gaffney, Yi, and Lee, 2016; Iron, Wei, and Winter,
2004; Palmer, 2004; Meinhardt and Gierer, 2000;
Gierer and Meinhardt, 1972) — that kinetic param-
eters need to be finely tuned for TPs to arise. This
raises the questions of how evolution could ever dis-
cover such tiny islands in parameter space and, even
if it could, how would the resulting developmental
mechanisms still occur robustly under noisy real con-
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ditions.
One approach to resolve these apparent contradic-

tions is to explore TP systems mathematically. While a
rich mathematical literature on Turing patterns exists,
the vast majority of studies analyze single, idealized
networks with fixed parameters (Gaffney, Yi, and Lee,
2016; Iron, Wei, and Winter, 2004; Liu et al., 2013).
Although these studies have significantly increased
our understanding of patterning mechanisms, they do
not provide general guidelines for either the identifi-
cation of naturally evolved Turing networks in biolog-
ical systems, or for synthetic engineering of TP net-
works (Scholes and Isalan, 2017; Borek, Hasty, and
Tsimring, 2016; Carvalho et al., 2014; Duran-Nebreda
and Solé, 2016; Boehm, Grant, and Haseloff, 2018;
Cachat et al., 2016; Diambra et al., 2015; Cachat et
al., 2016). A recent approach which has proved very
successful in increasing our understanding of biolog-
ical design principles is the "network atlas" approach
(Babtie, Kirk, and Stumpf, 2014; Ma et al., 2009). In
this approach, biological networks that execute a par-
ticular function are modeled exhaustively: for exam-
ple, all 2 and 3-node inducible genetic networks that
achieve switch-like behavior were modeled by MA et
al. (Ma et al., 2009). Similarly, all 3-node networks
that form a central stripe pattern in a developmental
morphogen signaling gradient were modeled by the
group of Sharpe (Cotterell and Sharpe, 2010; Schaerli
et al., 2014). Such approaches allow one to compare
network and parameter design space (Barnes et al.,
2011) with the resulting phenotypic map, resulting in
an atlas or guidebook for the design principles behind
that function. A guidebook of potential mechanisms
and design rules for discovering TP networks would
help towards solving the problem of characterizing
molecular players in natural TP systems. Furthermore,
a comprehensive Atlas of Turing network space might
shed new light on the problem of how evolution could
ever discover and stabilize systems which only ever
function in tiny islands of parameter space.
In terms of progress towards making a TP net-

work atlas, two recent studies have begun to ana-
lyze larger sets of TP network topologies and param-
eters and have made important progress in our global
understanding of Turing systems (Zheng, Shao, and
Ouyang, 2016; Marcon et al., 2016). Zheng et al.
analyze all 2- and 3-node networks for one particu-
lar choice of regulatory function (Zheng, Shao, and
Ouyang, 2016). This study does thus not consider
different regulatory mechanisms, and the number of
identified Turing networks is only a fraction of those
identified here which is easily explained by the differ-
ences in how exhaustively the parameter-spaces are
explored. In a further study Marcon et al. use expo-
nential and sigmoidal regulatory functions and do nei-
ther include a basal production rate nor a degradation
term (Marcon et al., 2016). Moreover, they shift the
regulatory functions such that the stable steady states
are always at zero concentrations. This allows for an-

alytical computations and allows the authors to ana-
lyze all 3-node and 4-node networks. However, these
mathematical simplifications lead to small number of
networks being stable, and only a tiny fraction exhibit-
ing Turing patterns, even compared to (Zheng, Shao,
and Ouyang, 2016). But shifting the stationary states
to zero has been shown to systematically misrepresent
the stability properties of real dynamical systems (Kirk
et al., 2015; Maclean, Kirk, and Stumpf, 2015): as this
procedure destroys the dependencies between stabil-
ity of stationary states and the reaction rate param-
eters (Kirk et al., 2015) which results in high rates
(frequently up to 90% or more) of misclassifying sta-
ble stationary states as unstable.
Therefore, an exhaustive analysis and comparison

of different, biologically relevant regulatory functions,
as well as comprehensive sensitivity/robustness anal-
yses of Turing networks with respect to parameter
variations, still remain difficult to achieve. This is be-
cause there is a combinatorial explosion in the number
of conditions to explore, and this is computationally
nearly prohibitively expensive.
In this study, we develop a new computational

pipeline capable of analyzing stable solutions for a
wide range of potential TP network structures. Briefly,
we use linear stability analysis to determine the emer-
gence of stable TPs (see Methods) and the correspond-
ing wavelength of the pattern (Figure 1C).
Thus, we generate an extensive analysis of 7757

unique networks with up to three reacting species,
testing them exhaustively for their ability to form TPs
(we analyzed approximately 3×1011 different scenar-
ios - amounting to 8 CPU years computing time). As
summarized in Figure 1D, these are analyzed in terms
of (1) the network topology; (2) the regulatory func-
tion; (3) the kinetic parameters; (4) the diffusion con-
stants of the different species. We consider both com-
petitive and non-competitive regulatory mechanisms
(Figure 1E) and study their quantitative and qualita-
tive differences.
In this way, we are able to systematically explore

what proportion of network topologies are capable of
generating TPs. Moreover, we rank these networks
with respect to their robustness to variations in net-
work topology, kinetic parameters and diffusion rates,
allowing us to determine which kinds of networks are
more robust. Using an unsupervised classifier, we thus
identify a set of irreducible or minimal networks from
which all Turing networks can systematically be con-
structed. This in turn allows us to distill and test com-
positional rules for predicting whether a given net-
work will support TPs.
With these results in hand we can identify the net-

works that are most suitable for downstream synthetic
engineering under different physiological conditions.
There is growing interest in synthetic biology to en-
gineer patterning systems from first principles (Basu
et al., 2005; Schaerli et al., 2014; Borek, Hasty, and
Tsimring, 2016; Carvalho et al., 2014; Duran-Nebreda
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and Solé, 2016; Boehm, Grant, and Haseloff, 2018;
Cachat et al., 2016). Artificial TPs are expected to
have eventual applications in nanotechnology, tissue
engineering and regenerative medicine (Scholes and
Isalan, 2017; Tan et al., 2018). Despite much effort in
this area, engineered TPs remain elusive. Our compre-
hensive Turing network atlas contains the "blueprints"
required for identifying natural TPs, and guiding the
engineering of synthetic systems.

Results

Developing a tractable model to search for TPs

To generate a network atlas for exploring the design
space of TP formation, we need to develop a model-
ing framework that copes with this computationally
demanding task. Our goal is to study the dynamical
behavior of spatially-distributed molecule concentra-
tions, and their capability to form stable spatial pat-
terns, across the complete range of 2- and 3-node
network topologies. Furthermore, we aim to employ
different regulatory functions (competitive and non-
competitive Hill functions), over as wide a range of
parameters as possible (e.g. diffusion, activation, and
repression, etc.) and necessary; we thus forgo mathe-
matical convenience and tackle biologically more real-
istic models using state-of-the-art computationally in-
tensive, but robust methods.
A network’s capability to form patterns is deter-

mined by four factors which can be ordered hierarchi-
cally as shown in Figure 1D. First, a network’s topol-
ogy needs to be defined, that is, the nodes and edges of
the network. Next, the functional form of the interac-
tions fi need to be specified. Subsequently, the param-
eters of these functions need to be specified. Finally,
for a spatial model, we need to describe the molecular
diffusion processes.
The first task is to define the network structure (Fig-

ure 2A). For this, we only consider connected net-
works which cannot be split into non-interacting sub-
networks, since these would comprise redundant in-
dependent sub-networks with smaller node numbers.
We further exclude networks with nodes that have no
incoming edge, since such nodes do not experience
any feedback from the other nodes and will hence
always converge to a spatially homogeneous steady
state. The influence of such nodes on the rest of the
network would thus not have any impact on spatial
patterning. Moreover, we exclude networks that have
nodes with no outgoing edge as these would purely
act as "read-out" modules; they do not feed back to
the dynamics of the rest of the network. Finally, we
reduce the number of networks using symmetry ar-
guments (Ma et al., 2009; Babtie, Kirk, and Stumpf,
2014), where simply relabeling nodes maps one onto
the other. Only one network from such an equivalent
group needs to be considered.
This network pruning amounts a total of 21 and

1934 networks with two and three nodes, respectively.
For 3-node systems, we further have to distinguish
between which nodes diffuse and which ones are as-
sumed to be stationary. For a system with two diffus-
ing entities this results in 5802 networks (see Supple-
mentary Document S1 for a complete list of network
graphs), where A and B denote diffusing nodes and
C is assumed to be stationary. Additionally, 1934 net-
works exist for the case where all three nodes are al-
lowed to diffuse.
Having defined the network topologies, we need to

specify the functions and regulatory mechanisms (Fig-
ure 2B). In this work, we use Hill-type functions for
the regulation as these have been found to fit well with
experimental measurements of gene regulatory net-
works (Estrada et al., 2016; Becskei, Séraphin, and
Serrano, 2001; Rosenfeld, Elowitz, and Alon, 2002;
Burrill and Silver, 2010; Gardner, Cantor, and Collins,
2000; Ferrell and Machleder, 1998; Ferrell, Tsai, and
Yang, 2011; Klumpp, Zhang, and Hwa, 2009). We
employ two different types of regulatory mechanisms:
fully non-competitive and fully competitive interac-
tions (Figure 2B). For gene regulatory networks, the
former corresponds to the situation where all tran-
scription factors independently regulate the corre-
sponding target gene (Figure 1E, left panel). By con-
trast, for the fully competitive case, all transcription
factors compete for their shared or overlapping bind-
ing sites (Figure 1E, right panel). In addition to the
regulatory interactions, we include a basal production
rate and a linear degradation term for each species
(see Methods for a detailed description and Figure 2B
for an example).
Our approach (Figure 2C) allows us to investigate

many different networks and conditions at the appro-
priate resolution to determine whether they can gen-
erate TPs or not. We sample parameters and initial
conditions sufficiently densely and are thus able to de-
termine with a high degree of certainty whether a sys-
tem can exhibit the hallmarks of a TP mechanism: (i)
stability of the non-spatial dynamics; with (ii) simulta-
neous instability of the corresponding spatial dynam-
ics.
Accordingly, to find Turing instabilities, we first

need to identify the stable steady states of a given sys-
tem, and subsequently study their dispersion relation
which is defined as the largest eigenvalue of the lin-
earized system as a function of wavenumber q. (see
Methods for details).
If spatial diffusion is added, it is possible that devia-

tions from the steady state of certain length scales (or,
alternatively, wavelengths) do not decay towards the
homogeneous steady state, but instead become ampli-
fied. This is called a diffusion-driven or Turing insta-
bility. If only an intermediate range of length scales
experiences such an amplification, we speak of a Tur-
ing I instability. In this case, a system typically forms
a pattern of the wavelength for which the amplifica-
tion is maximal (see Figure 1C). Thus, we are able
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Mammalian systems as an example for competitively regulated systems

In eukaryotic systems intercellular communication is highly developed and thus cell-to-cell signaling
molecules exist in abundance. External signals are typically conveyed to the cell by signaling
pathways downstream of membrane-bound receptors. Binding to such receptors by activating or
inhibiting species is often of a competitive nature. Moreover, truncated versions of activating
species frequently form inhibiting counterparts. We therefore explore mammalian systems as a
scenario in which competitive interactions are dominating. We have identified the most robust
competitive Turing networks (Figure XX).

We further explored the generated network atlas in the light of an existing network that was
proposed for engineering purposes: a system using HGF (hepatocyte growth factor) and NK4
(a truncated version of HGF) as activator and inhibitor, respectively [?]. They both mediate a
response via the c-Met receptor signaling pathway that activates or represses a human derived-
MMP-1 promoter construct. In a previous study, this system was analyzed as a classical 2-node
system and the authors suggested that a single promoter construct driving the expression of both
activating and inhibiting species could suffice to create Turing Patterns [?]. This system would,
however, require differential diffusion (10 fold) and a co-operativity factor of >= 2 for feasible
Turing pattern generation. In reality, the network can be seen as a 3-node network in which c-Met
composes the central node and mediates the signals between both HGF and NK4 (see Fig 7 C).
With this model, the network equals the core topology #28 with nodes B and C diffusing. Indeed,
this topology is amongst the top 10 % of the most robust topologies according to our results. Even
so, the classical requirements found for the 2-node system persist HGF and NK4 are more likely to
diffuse at quite similar rates, making this network only implementable if HGF could be modified
to diffuse much more slowly. To decrease the necessity of differential diffusion, and maintain the
original single promoter design, the network atlas reveals that including a positive feedback loop
on top of the receptor would suffice to make equal diffusivity accessible for given network (# 63
BC). This, however, though improving robustness with respect to extracellular parameters does
not improve intracellular robustness significantly and thus in total, robustness is only marginally
improved (1.3 fold). To significantly improve the design (4.6 fold), an additional direct interaction
between HGF and NK4 would have to be engineered (NK4 activating HGF). Overall, this shows
how the network atlas can help decipher engineering options.
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Figure 1: Reaction networks and Turing instabilities
(A) A network graph of the Gierer-Meinhardt model (Gierer and Meinhardt, 1972) as an example for a 2-node Turing net-
work (top), with the corresponding ordinary differential equations below (bottom). Blue and red arrows indicate activating
and inhibiting regulations, respectively. Species A activates both itself and species B, while species B inhibits species A.
(B) The top left panel represents the diffusion profiles for species A (blue, slow activator) and the bottom panel for species
B (red, fast inhibitor). Over time, small deviations in a noisy, non-homogeneous initial condition (Panel 2) can get amplified
by the interplay of reactions and diffusion (Panel 3). For the given system this can lead to the formation of stable patterns
(Panel 4).
(C) An exemplary dispersion relation (real part of the largest eigenvalue of the linearized system as a function of wavenumber
q.) of the system shown in (A). The wavenumber qmax for which the dispersion relation is maximal becomes amplified the
strongest. This leads to the formation of a pattern with wavelength 2π/qmax as shown in the inset.
(D) In this article we analyze four hierarchical factors determining a network’s pattern forming properties: the topology —
the species and types of interactions between them; the regulatory function — the functional form of the interactions; kinetic
parameters — parameters in the regulatory functions; and the diffusion constants of the different species.
(E) Visualization of the two regulatory mechanisms analyzed in this study on a transcriptional level. Non-competitive reg-
ulation describes the case where transcription factors (TF) bind to independent TF sites and thus regulate the recruitment
of RNA polymerase (RNAP) and transcription independently (left panel). In the competitive case, in contrast, TFs directly
compete for the binding site.
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to screen networks and analyze the types of TPs they
form. Figure 2C summarizes the computational pro-
cedure.

Turing topologies are common but sensitive to
regulatory mechanisms

Analyzing all 2-node topologies (21 networks) and 3-
node topologies with two diffusors (5802 networks)
we find that more than 60% can exhibit Turing I In-
stabilities and thus we expect them to be capable of
generating TPs (Figure 3). This large number of po-
tential Turing networks is many fold higher than the
number of networks identified in the literature to date
(≈ 700 topologies) (Zheng, Shao, and Ouyang, 2016;
Marcon et al., 2016).
Importantly, we observe that subtle features beyond

network structure influence a network’s pattern gen-
erating capability. The first difference appears in the
choice of regulatory mechanism. We find that there
are fewer competitive Turing topologies overall among
the 2-node networks (Figure 3A). All five networks are
detected for non-competitive mechanisms, of which
only three are found for competitive interactions (Fig-
ure 3B). However, we find that the rarer competi-
tive interactions are more robust to parameter vari-
ations than non-competitive interactions, which re-
sults in more TP solutions within a given topology.
Network #8 constitutes the classical Turing network,
which was analyzed by Alan Turing in 1952 (Turing,
1952) (Figure 3B-D). The other four 2-node networks
have also been reported elsewhere (Zheng, Shao, and
Ouyang, 2016; Marcon et al., 2016).
For 3-node systems, we similarly find a group of

Turing topologies that is shared by both regulatory
mechanisms (2400 networks, Figure 3A). While a
large fraction of topologies exhibit a Turing I insta-
bility, this is again mainly for non-competitive rather
than competitive interactions. This result stands in
sharp contrast to the existing literature which mainly
highlights the network topology as the important fac-
tor for TP capability (Diego et al., 2017). By contrast,
our results suggest that network structure alone does
not suffice but that the choice of regulatory function
also critically determines a network’s Turing capabil-
ity.

Minimal topologies define key properties such as
pattern phasing

In order to determine key dynamic features of net-
works it has been shown to be advantageous to an-
alyze the minimal topologies necessary to achieve a
particular behavior. For example, such an analysis
revealed that the key motifs to achieve single stripe
patterns mediated by external cues (French Flag pat-
terns) are incoherent feed-forward loops (Ingolia and
Murray, 2004; Schaerli et al., 2014; Cotterell and
Sharpe, 2010).

We perform a similar analysis here to identify min-
imal TP motifs. To this end, we create a network at-
las in which all networks that differ by a single edge
are connected (see atlas for 2-node systems in Fig-
ure 3B,C). Each connection between a network rep-
resents the addition/deletion of a single edge, or a
change of sign of a single edge. Networks are subse-
quently sorted hierarchically according to their com-
plexity (here defined as network size). From all net-
works that can generate TPs, we identify two min-
imal or "core topologies" for 2-node networks: #8
for the competitive case and #8 and #9 for the non-
competitive case. All other Turing networks can be
constructed from these by the addition of one or more
edges.
Turing networks can show patterns in which the

concentration maxima of the different molecular
species are either in phase or out of phase. "In phase"
refers to systems in which the maximal concentrations
of both species coincide, whereas for out of phase
mechanisms, the maximum of one species coincides
with the minimum of the other (see Figure 4D). We
analyzed the 2-node Turing topologies (given in Fig-
ure 3B) with respect to their patterns’ phases, by nu-
merically solving the corresponding PDEs. We find
that all 2-node Turing networks with competitive reg-
ulations give rise to in-phase patterns. In the com-
petitive case, it appears that the networks #15 and
#20 inherit the patterning phase from the core net-
work #8, to which they can be reduced.
For non-competitive regulation, network #8 again

exhibits only in-phase patterning, whereas network
#9, which constitutes the second core network for
non-competitive systems, shows out-of-phase pattern-
ing. One might thus expect network #20 (which can
be reduced to either network #8 or network #9 by
removal of one edge) to give rise to both in and out-
of-phase patterns. Our analysis shows that this is in-
deed the case. Interestingly, here the phase can be
controlled by the diffusion constants: when A dif-
fuses faster than B, in-phase patterning is observed,
whereas if B diffuses faster than A, out-of-phase pat-
terning is seen. In a sense, the choice of which node
contains the "fast" or "slow" species thus becomes a
topology-related system parameter. Overall, key qual-
itative properties of TPs such as phasing appear to be
mediated by the underlying core topologies.

Core topologies also specify phase properties for
3-node networks

We next apply the complexity atlas reduction proce-
dure to the 5802 different 3-node networks where
two species can diffuse (3N2D). As for the 2-node
networks, we reduce 3-node networks to their core
topologies. This leads to a hierarchical graph similar
to the 2-node case shown in Figure 3B, but that can-
not be depicted due to its large size (> 2400 nodes
and > 104 dependencies). Within this atlas, we find
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Mammalian systems as an example for competitively regulated systems

In eukaryotic systems intercellular communication is highly developed and thus cell-to-cell signaling
molecules exist in abundance. External signals are typically conveyed to the cell by signaling
pathways downstream of membrane-bound receptors. Binding to such receptors by activating or
inhibiting species is often of a competitive nature. Moreover, truncated versions of activating
species frequently form inhibiting counterparts. We therefore explore mammalian systems as a
scenario in which competitive interactions are dominating. We have identified the most robust
competitive Turing networks (Figure XX).

We further explored the generated network atlas in the light of an existing network that was
proposed for engineering purposes: a system using HGF (hepatocyte growth factor) and NK4
(a truncated version of HGF) as activator and inhibitor, respectively [?]. They both mediate a
response via the c-Met receptor signaling pathway that activates or represses a human derived-
MMP-1 promoter construct. In a previous study, this system was analyzed as a classical 2-node
system and the authors suggested that a single promoter construct driving the expression of both
activating and inhibiting species could suffice to create Turing Patterns [?]. This system would,
however, require differential diffusion (10 fold) and a co-operativity factor of >= 2 for feasible
Turing pattern generation. In reality, the network can be seen as a 3-node network in which c-Met
composes the central node and mediates the signals between both HGF and NK4 (see Fig 7 C).
With this model, the network equals the core topology #28 with nodes B and C diffusing. Indeed,
this topology is amongst the top 10 % of the most robust topologies according to our results. Even
so, the classical requirements found for the 2-node system persist HGF and NK4 are more likely to
diffuse at quite similar rates, making this network only implementable if HGF could be modified
to diffuse much more slowly. To decrease the necessity of differential diffusion, and maintain the
original single promoter design, the network atlas reveals that including a positive feedback loop
on top of the receptor would suffice to make equal diffusivity accessible for given network (# 63
BC). This, however, though improving robustness with respect to extracellular parameters does
not improve intracellular robustness significantly and thus in total, robustness is only marginally
improved (1.3 fold). To significantly improve the design (4.6 fold), an additional direct interaction
between HGF and NK4 would have to be engineered (NK4 activating HGF). Overall, this shows
how the network atlas can help decipher engineering options.
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Figure 2: Definition and analysis of networks
(A) Definition of network structure. Left: 2- and 3-node networks containing all possible edges. The latter can be specified
as either 0’s (no regulation), 1’s (activation) and -1’s (inhibition). From the set of all possible networks, we identify groups of
networks that are equivalent to each other (redundant) and remove all but one network per group. Furthermore, we exclude
networks containing any unconnected node(s). The resulting networks can be represented as a network graphs or by their
adjacency matrices. The network shown here corresponds to network #8 (see Figure 3A).
(B) Generation of ODEs equations. Each edge in a network corresponds to a Hill term in the ODE equations. The way these
terms get combined depends on the regulatory mechanism. In the equations, V denotes the maximum level of expression
and b the basal production rate. n is the Hill coefficient, indicating the "steepness" of the regulation. We include a linear
degradation term with degradation constant µ for each species.
(C) Workflow for estimating steady states and identifying Turing instabilities. Left panel: for each parameter, a range is
specified and a logarithmic grid generated with three values per parameter, amounting to 531441 parameter combinations
for fully-connected 3-node networks. Middle panel: for each parameter set, the corresponding ODEs are solved numerically
until time t = 1000 for several different initial conditions. We use k-means clustering on the endpoints of the trajectories to
find the steady states of the system. Right panel: the final step of the algorithm calculates the eigenvalues of the Jacobian
for each steady state. For the Jacobian evaluated at zero diffusion, the real parts of all eigenvalues are required to be smaller
than zero, corresponding to a stable steady state. Subsequently, diffusion is taken into account. A Turing instability exists
if the real part of the largest eigenvalues becomes positive for some finite wavenumber q. Depending on the behavior of the
eigenvalue as a function of the wavenumber q, we classify the instability into two types. In this article we only consider Type
I instabilities as only these generate patterns with finite wavelengths.

12 and 20 core topologies for competitive and non-
competitive regulation, respectively, all of which have
four edges (Figure 4A). As in the 2-node case, the com-
petitive core topologies constitute a subset of the non-
competitive systems. We also assess whether these
core topologies give rise to in phase or out-of-phase
patterns, by solving the corresponding PDEs numer-
ically. In phase mechanisms (Figure 4A bottom) are
observed less commonly than out of phase mecha-
nisms (Figure 4A top). One might expect that in phase
mechanisms are rarer with three nodes, since more
species now have to be in phase. In contrast to the
2-node case, however, some competitive systems now
also form out-of-phase patterns. In all core topologies,
we solely observed either out of phase or in-phase pat-
terns, which suggests that these minimal topologies
exhibit unique behaviors.
Analyzing 3-node networks with three diffusing

nodes, we find that all such 3N3D Turing networks are
also a 3N2D Turing network. We further find that the
core topologies for two and three diffusing molecules
coincide. This suggests that networks in which three
molecules diffuse are mere expansions of the Turing
parameter set, but that the instability driving compo-
nent already exists in the two-diffuser systems. There-
fore, in order to understand the core TP mechanisms
for 3-node systems, we have to focus on those with
two diffusing species.

Two core motifs account for more than 95% of
Turing topology space

Analyzing all 3-node core topologies with Turing I in-
stabilities, we identify two frequently occurring core
motifs: a positive feedback on at least one of the dif-
fusing nodes, consisting of one or two edges (Figure
4B), and a diffusion-mediated negative feedback loop
on both diffusing nodes (Figure 4C).

For the first core motif, the positive feedback loop,
three possible configurations exist: a direct positive
feedback (e.g. network #49) or an indirect positive
feedback consisting of either two positive or two nega-
tive edges to another node. The interaction can either
be mediated via the other diffusing node (e.g. net-
work #65) or the non-diffusing node (e.g. network
#131). The second core motif consists of a negative
feedback loop on one of the diffusing nodes that is me-
diated through the other diffusing node. This motif
can be of several different types and some examples
are depicted in Figure 4C.

Having identified the two core motifs from studying
the 3-node core topologies, we re-analyzed all 2-node
networks with respect to these motifs. We find that all
2-node Turing networks do indeed possess both core
motifs, and all networks containing both motifs ex-
hibit Type I instabilities in the non-competitive case
(Figure 3A). For the 3-node networks, we find that
96% of all networks containing both core motifs do ex-
hibit Turing I instabilities. Since we can only sample a
finite number of parameters, we cannot categorically
rule out that the missing 4% might also exhibit a Tur-
ing I instability for certain parameters. To reduce the
probability of missing Turing I instabilities for these
networks, we ran additional simulations for 105 ran-
domly sampled parameter sets per network. Analyz-
ing all networks exhibiting Turing I instabilities, we
observe that 95% possess both core motifs. We con-
firm by simulation that the remaining 5% topologies
do indeed give rise to TPs despite the absence of the
core motifs. Therefore, the two identified core mo-
tifs together constitute an almost necessary and almost
sufficient criterion for Turing I instabilities.
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Figure 3: Results for 2-node networks
(A) Visualization of the sampled network topology space and fractions of Turing pattern generators (Turing topologies) for
2- and 3-node networks with 2 diffusing molecules.
(B) Considered 2-node networks selected according to criteria described in Figure 2A. Blue and red edges indicate activation
and inhibition, respectively. The networks are arranged according to their complexity (that is, the number of edges) with
increasing complexity towards the bottom. Each network is given an ID number (1-21). Lilac boxes indicate the networks
identified as Turing pattern generators. Dark lilac indicates non-competitive regulatory mechanisms, whereas the lighter
shade indicates competitive ones.
(C) Hierarchical graph of 2-node networks. Each node represents a network of a given ID number. Networks are connected
by an edge whenever they can be transformed into each other by addition, deletion or modification (change of sign) of a
single edge. For example network #1 can be transformed into network #4 by addition of a negative self-interaction on node
A, and network #1 into network #2 by changing the sign of one edge from inhibition to activation (see networks in (B)).
The nodes are colored according to the legend shown in (A), with different shades of lilac indicating for which regulatory
mechanism the networks exhibit Turing I instabilities.
(D) Exemplary 2-dimensional patterns for the identified 2-node Turing generating networks. The parameters for which the
patterns were generated are given in Supplementary Document S3.

Differentiating Turing Instabilities - new instabil-
ity types and their patterns

The dispersion relation of a system is typically re-
lated to the resulting pattern: the wavenumber qmax

for which the dispersion relation assumes a global
maximum (that is, the largest eigenvalue of the Jaco-
bian becomes maximal; see Methods) experiences the
largest amplification. We thus expect to see a pattern
with wavelength 2π/qmax (see Figure 1C).
Due to the extent of this analysis in terms of the

number of networks considered, we also observe some
qualitatively novel types of dispersion relations that
had not been reported previously in the literature. We
distinguish four different groups of dispersion rela-
tions. First, the "classical" Turing I instability fulfills
three criteria: for q = 0, the system should be stable
(i.e. Re(λ) < 0); for a finite q we have Re(λ) > 0; and
Re(λ) < 0 for q → ∞. This type of instability is the
most commonly discussed mechanism underlying TPs.
We describe as a Turing II instability the case when the
steady state is stable for q = 0 (i.e. Re(λ) < 0), where
there exists some threshold q∗ such that Re(λ) > 0 for
all q > q∗, and the dispersion relation becomes maxi-
mal for q → ∞. Therefore, for q > q∗, the larger the
mode q the stronger the amplification. Consequently,
arbitrarily large modes and hence short wavelengths
get amplified the most, which does not lead to a stable
pattern with a well-defined wavelength.
The previous cases are referred to as Type Ia and IIa

instabilities. However, other types of dispersion rela-
tions exist for diffusion driven instabilities that do not
fall into either Type Ia or IIa. Figure 4D shows exam-
ples for all four categories that we find. One of these
is similar to Type Ia and capable of producing stable
patterns and we hence term it Type Ib. The other dis-
persion relations does not produce patterns andwe de-
note it by IIb. Type Ib instabilities fulfill both criteria
of a negative real λ for q = 0 and possess a finite qmax

for which the dispersion relation becomes positive and
assumes a global maximum. However, the dispersion
relation does not fulfill the third criteria of Re(λ) < 0

for q → ∞, but remains positive instead. Since the
dispersion relation does possess a global maximum in
qmax and hence a finite wavelength that experiences
the strongest amplification, onemight expect such sys-
tems to lead to patterns anyway. Through numerical
simulations we verify that this is indeed the case. This
result agrees with the conclusion of a recent preprint
(Smith and Dalchau, 2018). An exemplary pattern
plot is visualized below the corresponding dispersion
relation in Figure 4D.
Figure 4D panel 4 shows the Type IIb dispersion re-

lation. Similarly to the Type IIa instability, the disper-
sion relation becomes positive for some finite q1 and
assumes its maximum for q → ∞. However, in con-
trast to the original Type IIa case, the dispersion re-
lation becomes negative again for some intermediate
q2 > q1; but like the Type IIa case the maximum of
this dispersion relation occurs for q →∞ and thus we
cannot get stable patterns since arbitrarily small wave-
lengths experience the strongest amplification. To our
knowledge this type of Turing instability has not been
reported in the literature before.
We would like to note that in the analyses described

in the previous sections we merely distinguished sys-
tems according to their patterning capability and re-
ferred to Ia and Ib jointly as "Type I", and IIa and IIb
jointly as "Type II". Both types of instabilities are im-
portant when considering the analysis of real-life sys-
tems. Ib could be mistaken for a non-patterning sys-
tem as it does not fulfill a classical criterion for a Tur-
ing I instability, which may lead to underestimating
the robustness of a system. Similarly, IIb can be mis-
taken for a Type I instability (if q is sampled over an
insufficient scale) consequently leading to an overes-
timation of Turing robustness.

Turing I instabilities are not a sufficient criteria
for patterning

In development, cell-fate decisions are often governed
by systems in which multiple stable steady states ex-
ist (Harrington et al., 2014; Harrington et al., 2013;
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Figure 4: Core networks and core motifs for 3-node networks
(A) Top: 3-node core topologies that generate out-of-phase patterns (one species’ maximum concentration is shifted by half a
period with respect to the other two). Bottom: 3-node core networks exhibiting in-phase patterns (all concentration maxima
aligned). Colored frames indicate the regulatory mechanism (competitiveness) for which the networks exhibit Turing I
instabilities.
(B) Examples for the first identified core motif: positive feedback loop of length one or two on one of the diffusing nodes.
The figure shows the different possibilities to achieve this. If the path length is two it can be mediated by either the other
diffusing or the stationary node.
(C) Examples for the second identified core motif: diffusion-mediated negative feedback on a diffusing node. One diffusing
node has to have a negative feedback loop whose path includes the other diffusing node. This interaction can consist of two,
three or four edges and the figure shows one example each. The core motifs in (B) and (C) are almost sufficient and almost
necessary for TPs.
(D) Examples of different Turing instabilities and resulting patterns. Note that for Turing IIa and Turing IIb instabilities no
patterns are formed. Note also that in the multistable case 1, no pattern is generated despite the existence of a Turing I
instability. Instead, starting from a perturbation around the stable steady state with Turing I instability (indicated as dashed
lines) this moves to a second homogeneous steady state. This behavior is observed for 4% (non-competitive) and 14 %
(competitive) of multistable network-parameter combinations exhibiting a Turing I instability. The parameters for which the
dispersion relations and patterns were generated are given in Supplementary Document S3.

Moris, Pina, and Martinez Arias, 2016). In mam-
malian stem cells, for example, Nanog, Sox2 and Oct4
form a system possessing two stable steady states.
Here, each steady state corresponds to one specific cell
fate: either a cell remains pluripotent or it differenti-
ates.
We therefore must explore how multi-stability af-

fects TP formation. First, we find that systems with
multiple stable steady states can exhibit Type I in-
stabilities (Ia or Ib), either for a single or for several
steady states. The former has also been reported in a
recent preprint (Smith and Dalchau, 2018). Similarly,
when probing the patterning behavior of Type Ia, Ib,
IIa and IIb instabilities, we simulate the spatial system
numerically for all systems and parameter combina-
tions for which either one or multiple Turing I insta-
bilities are present. Even though most systems indeed
show the expected pattern formation (86% and 96 %,
for competitive and non-competitive systems, respec-
tively), some do not (14% for competitive and 4% for
non-competitive). Rather than observing stable, re-
producible patterns, we find that these systems transi-
tion from a perturbation around the steady state with
a Turing I instability to one of the other stable steady
states. Figure 4D, Panel 5, shows an example of such
behavior. We thus conclude that a Type I Turing insta-
bility is not a sufficient criterion for pattern formation
in multi-stable systems. Again this highlights the need
for a thorough analysis if we want to be able to predict
and validate natural TP generating networks.

Defining quantifiable measures of robustness

In biological systems, parameter values are gener-
ally known only with partial certainty, and sometimes
entire interactions are unknown (Kirk, Babtie, and
Stumpf, 2015). It is therefore crucial not only to iden-
tify networks that exhibit Turing instabilities, but also
to assess their sensitivity with respect to these uncer-
tainties.

To this end, we define four measures of robust-
ness to parameter variation or uncertainty: robust-
ness to intracellular processes, robustness to extra-
cellular processes, topological robustness and total
robustness. As intracellular parameters, we define
all kinetic parameters of the ODE equations (Figure
2B) that describe the chemical interactions between
species within cells, and we define "intracellular ro-
bustness" as the fraction of the analyzed parameter
combinations that is capable of Turing pattern forma-
tion.

In addition to intracellular processes, the speed of
extracellular diffusion of molecules determines if a
network possesses a Turing instability. We accord-
ingly define the "extracellular robustness" as the ro-
bustness of a Turing network to changes in the diffu-
sion constants, given that the intracellular parameters
are fixed to values that can give rise to a Turing insta-
bility (see Figure 5A).

Despite uncertainties in parameter values, it is fre-
quently the case in biological experiments that one
cannot even be certain about the network topology
of a given system (Babtie, Kirk, and Stumpf, 2014).
There might be additional, unknown regulatory in-
teractions between species, or assumed interactions
might not be active. Accordingly we define "topolog-
ical robustness" as follows: for a given network, con-
sider all networks that can be generated by adding,
removing or changing one edge (as exemplified in Fig-
ure 3C for 2-node systems). Then the topological ro-
bustness is defined as the fraction of generated net-
works that are capable of exhibiting Turing I instabil-
ities (Figure 5A).

Finally, we would like a measure for the overall ro-
bustness of a given network taking into account the in-
fluence of all three different sources of uncertainties.
This "total robustness" is the product of the intracel-
lular, extracellular and topological robustness (Figure
5).
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C D
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Figure 5: Quantifying a network’s Turing capability: defining four measures of robustness
(A) Left: definition of intracellular (extracellular) robustness as the fraction of sampled kinetic (diffusion) parameter sets
leading to Turing I instabilities. Right: definition of topological robustness as the fraction of neighboring networks (that is,
networks into which a given network can be transformed by addition, deletion or modification of a single edge) that exhibit
Turing I instabilities. The example shows that two out of six neighbors of network #8 are Turing networks, leading to a
robustness 1/3. The total robustness is defined as the product of intracellular, extracellular and topological robustness.
(B) Mean values for the different robustness measures for competitive (left) and non-competitive systems. 2N (2Nr) denotes
2-node systems for which V and b are varied (restricted to 100 and 0.1, respectively). 3N2D and 3N3D represent 3-node
systems with two and three diffusing nodes, respectively.
(C-F) Histogram plots of the four robustness measures comparing for both regulatory mechanisms. We find that competitive
systems are on average more robust for intracellular processes, whereas non-competitive systems are topologically more
robust. In terms of total robustness, a subset of 3N2D competitive networks constitute the best performing networks.
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Figure 6: Most robust 3-node Turing networks with non-competitive regulation and two diffusing nodes
(A) Robustness map. The figure indicates the total robustness of all analyzed 3-node networks arranged according to com-
plexity. For each complexity class we show the most robust network, together with its ID number.
(B) Ten most robust networks with numbers indicating the corresponding network ID. Total robustness decreases towards
the right and bottom, i.e. #4030 is the most robust network. The absolute robustness values are given in Supplementary
Document S2.
(C) Local neighborhood atlas for the most robust non-competitive Turing network #4030 (center). Colored nodes indicate
the total robustness value according to the colorscale shown in (A).
(D) 2-dimensional pattern for the most robust non-competitive Turing topology #4030. Yellow and blue indicate high and
low species concentrations, respectively, for nodes A, B and C. This is an out-of-phase pattern. The parameters for which the
pattern was generated are given in Supplementary Document S3.

Competitive 3-node systems are the most robust
Turing networks

We compute the intracellular, extracellular, topologi-
cal and total robustness for all 2-node and 3-node net-
works (Figure 5). We find that Turing networks with
competitive interactions are more robust than non-
competitive ones, in particular with respect to intra-
cellular parameters. This is consistent for 2-node sys-
tems (∼ 1.7-fold), as well as 3-node systems with two
(∼ 2.3-fold) and three (∼ 2.1-fold) diffusing species
(see Figure 5B). As the intracellular robustness varies
over about two orders of magnitude more than the
extracellular and topological robustness, competitive
systems are also in total more robust (∼ 1.5− 2-fold).
Our results demonstrate that the choice of regulatory
interactions can have significant influence on a net-
work’s Turing capability: non-competitive topologies
are more likely to be able to generate TPs whereas
competitive systems that do generate TPs are more ro-
bust.

Due to computational cost, the V and b parameters
were restricted for the analysis of 3-node systems (see
Methods). Consequently, to compare like-for-like, we
calculated the robustness for 2-node systems under
the condition that V and b were fixed to the same
values. With this restriction on parameter space, 2-
node systems are on average more robust to intracel-
lular variations than 3-node systems (∼ 2.7-fold for
competitive and ∼ 3-fold for non-competitive regula-
tions). On the other hand, 3-node systems are on av-
erage significantly more robust to extracellular (∼ 2.4
(competitive) and ∼ 1.5-fold (non-competitive) and
topological (∼ 2-fold) variations than 2-node systems.
Even though in total the average robustness of 2 com-
pared to 3-nodes is not significantly different, we do
find that amongst the top (most robust) networks for
either case, 3-node systems are more than 4-fold more
robust in total than the top 2-node systems. It is thus
likely that TP networks in nature will be composed of
at least three interacting species.

Robustness maps of 3N2D topology space to re-
veal the most robust networks and their neigh-
borhoods

Due to the large number of 3-node Turing topolo-
gies we visualize their total robustness in a "robust-
ness map" shown in Figures 6A (non-competitive)
and 7A (competitive). We group networks accord-
ing to their complexity; for each complexity class we
additionally depict the most robust network (right
panel). However, these networks only constitute a
fairly small fraction of the top 10most robust networks
(three and two for competitive and non-competitive,
respectively; Figures 6B and 7B). Overall, networks
with complexity of 5-6 (competitive) and 6-7 (non-
competitive) are the most robust topology groups. We
find no significant correlation between robustness val-
ues and topology complexity. This further suggests
that increasing complexity does not generally lead to a
larger robustness. All robustness measures (intracel-
lular, extracellular, topological and total robustness)
which we derived from this analysis are provided in
Supplementary Document S2; network identifiers cor-
respond to those in the network graphs provided in
Supplementary Document S1.

Due to the large number of topologies, we are not
able to illustrate the full network atlas to show how
these networks are related. Instead, we provide a lo-
cal neighborhood atlas for the single most robust non-
competitive and competitive networks (Figure 6C and
7C) and a corresponding 2D PDE solution (Figure 6D
and 7D). The local neighborhood atlas contains all the
networks that can be generated from the central net-
work by adding, deleting or modifying one edge. Most
edge changes lead to a pronounced drop in Turing ro-
bustness, although it is still possible for evolution to
"walk" from one topology to another while still main-
taining a TP.

Overall, one of the most important conclusions from
this study is that Turing network topologies andmech-
anisms are more common within random networks
than previously thought. Therefore, it is possible that
evolution can move through these less robust — but
relatively common — prototypic solutions, towards
one of the more robust networks.
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Figure 7: Most robust 3-node Turing networks with competitive regulation and two diffusing nodes
(A) Robustness map. The figure indicates the total robustness of all analyzed 3-node networks arranged according to com-
plexity. For each complexity class we show the most robust network, together with its ID number.
(B) Ten most robust networks with numbers indicating the corresponding network ID. Total robustness decreases towards
the right and bottom, i.e. #1291 is the most robust network. The absolute robustness values are given in Supplementary
Document S2.
(C) Local neighborhood atlas for the most robust competitive Turing network #1291 (center). Colored nodes indicate the
total robustness value according to the colorscale shown in (A).
(D) 2-dimensional pattern for the the most robust competitive Turing topology#1291. Yellow and blue indicate high and low
species concentrations, respectively, for nodes A, B and C. This is an in-phase pattern. The parameters for which the pattern
was generated are given in Supplementary Document S3.

Discussion

Turing’s pattern generating mechanism, later inde-
pendently rediscovered by Gierer andMeinhardt, is an
elegant way in which purely biochemical mechanisms
can give rise to reproducible and self-organizing spa-
tial patterns. Despite initial unease (and sometimes
outright hostility) over them being relevant and ro-
bust mechanisms of patterning, TPs are now widely
accepted and have become an important cornerstone
of modern developmental biology.
Given their provenance, it is perhaps not surprising

that TPs have also received close attention by mathe-
matical modelers interested in biological pattern for-
mation. But these have typically focused on single
models, exploring them in great detail. The large-
scale in silico surveying of potential TP models is a
much more recent phenomenon. There are two po-
tential pitfalls in such analyses: (i) computational cost
may require simplified models or prohibit exhaustive
analysis; (ii) automating any mathematical analysis,
but in particular something as subtle as pattern for-
mation is non-trivial unless we have very precise crite-
ria by which stability, robustness and patterns can be
scored. Our approach addressed these issues explic-
itly and from the outset, and the algorithm employed
here is capable of analyzing a wide range of different
network structures and is independent of functional
choices for regulatory mechanisms and rate functions.
The rewards of a thorough and comprehensive anal-

ysis of 2-node and 3-node candidate Turing network
models are also considerable. This analysis clearly
demonstrates that the structure of the network alone
cannot determine whether a TP exists; this is in line
with a large body of work on network dynamics (In-
gram, Stumpf, and Stark, 2006), but seems to directly
contradict results from other studies on TP mecha-
nisms. These, however, (i) fail to fully assess the de-
pendence of TP on regulatory mechanisms and reac-
tion rate parameters (largely because a mathemati-
cally more convenient model structure was imposed);
and (ii) their models are special cases of the more gen-
eral and more comprehensive treatment here.
Perhaps the most surprising result of this analysis

is how common networks capable of producing TPs
are. Evolution has had many opportunities to ‘stum-

ble’ across a Turing network (more than 60% of net-
works considered here can produce TPs), even though
for most architectures the existence of a TP depends
crucially on parameters. Being common but not very
robust to parametric and structural changes could sug-
gest that many different architectures are used in na-
ture to generate TPs (as was already hinted at in
some of Meinhardt’s work (Meinhardt, 2013)). Once
a structure is in place with suitable regulatory interac-
tions and reaction rate parameters, and the resulting
TP confers an evolutionary advantage, natural selec-
tion is likely to maintain this mechanism.
While network structure by itself neither guaran-

tees nor implies the existence of a TP, the overwhelm-
ing majority of TP generating mechanisms embed the
hallmarks encapsulated by two core motifs: a positive
feedback on at least one of the diffusing nodes and
a diffusion-mediated negative feedback loop on both
diffusing nodes. It is tempting to speculate that larger
systems will also reflect these compositional rules and
have these core motifs embedded; a basic TP gener-
ating motif could thus, for example, be regulated in a
more nuanced manner.
Finally, our exhaustive analysis reveals a spectrum

of Turing-like instabilities, and subtle dependencies
between these and the eventual pattern formation.
These are naturally easily missed when analyzing in-
dividual Turing systems, or applying simplifying mea-
sures in large-scale surveys.
The analysis presented here provides us with a set

of blueprints for TP generating mechanisms that can
guide the search for naturally evolved Turing systems,
as well as the de novo engineering of biosynthetic sys-
tems. For the latter, in particular, competitive net-
works should be a safer bet, due to their increased
(intracellular) parametric robustness. This tension be-
tween commonality and robustness is perhaps one of
the most fascinating (or vexing) features of Turing
mechanisms.

Methods

A Semi-Formal Summary of our TP search

This first section provides an overview of the computational
approach taken here; more technical detail is provided in the
following sections; with this information in hand it should be
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straightforward to implement and repeat our analysis (soft-
ware is made available, below, too).

To identify potential Turing instabilities, we first con-
sider the stability of the non-spatial system. Suppose we
have a system of n interacting molecular species with time-
dependent concentrations xi(t), i = 1, . . . , n. We model the
dynamical behavior of such concentrations in terms of a sys-
tem of ordinary differential equations (ODEs),

d

dt
xi(t) = fi(x(t)), i = 1, . . . , n, (1)

where x(t) = (x1(t), . . . , xn(t)), xi(t) ∈ R is the concen-
tration of the ith species at time t. Equations of the form in
(1) cannot typically be solved exactly for nonlinear functions
fi. However, efficient numerical algorithms exist to solve
such equations approximately, leading to time trajectories of
the system, that is, to solutions xi(t) (see Figure 2C for ex-
amples). f(x(t)) = (f1(x(t)), . . . , fN (x(t))) in equation (1)
encodes the interactions between the different species. If the
xi denote protein concentrations, for example, f(x(t)) may
encode the regulatory mechanisms between the proteins.

Figure 1A shows a network representation of the Gierer-
Meinhardt model, and its governing ODEs (Gierer andMein-
hardt, 1972). The nodes indicate the interacting species and
arrows the direction of interaction. We distinguish between
two possible types of interactions: activating (blue arrows)
and inhibiting (red arrows), which we encode in the corre-
sponding components of f(x(t)), whose functional form is
not specified by the graph (we employ Hill functions in the
reaction equations).

We next include the spatial diffusion of molecules and
extend the model in Equation (1) to a spatial setting. In
this case the molecule concentrations xi(t) become space-
dependent concentration fields xi(r, t), where r denotes the
spatial location. These fields satisfy the set of coupled partial
differential equations (PDEs)

∂

∂t
xi(r, t) = Di∇2xi(r, t) + fi(x(r, t)), i = 1, . . . , N,

(2)

which is obtained from Equation (1) by adding the diffu-
sion termDi∇2xi(r, t), whereDi is the diffusion constant of
the ith species and ∇ the gradient with respect to position
r, and concentration is now a function of space and time,
xi(r, t).

The next step is to screen for the formation of stable
patterns through diffusion-driven instabilities (Maini et al.,
2012). In this case, for any small spatial fluctuations one
may expect the concentrations xi(r, t) to become spatially
constant again for large times. For many systems, this is
indeed the case, but for some systems the interplay of diffu-
sion and reactions can lead to the molecules’ concentrations
forming spatial patterns with certain wavelengths that are
stable and reproducible in time.

In the Turing pattern framework we start with, x∗, which
is the stable steady state concentration of the non-spatial sys-
tem in (1), i.e. fi(x∗) = 0, i = 1, . . . , n in Equation (1): if
the system is in state x∗, it remains there for all times, and
if the system is close to x∗ it will converge towards x∗. If
spatial diffusion of molecules is included into the model, as
described Equation (2), it is possible that deviations from the
steady state of certain length scales do not decay towards the

homogeneous steady state, but are instead amplified. This
is then the diffusion-driven or Turing instability. If only an
intermediate range of length scales experiences such an am-
plification, we speak of a Turing I instability. In this case, a
system typically forms a pattern of the wavelength for which
the amplification is maximal (see Figure 1C).

Mathematically, the stability is determined by the depen-
dence of the real part of the largest eigenvalue of the Jaco-
bian matrix of the system on the wavenumber q (see be-
low for more details). We also call this dependence the
dispersion relation. For zero wavenumber, a spatially con-
stant system, the real part of the largest eigenvalue is neg-
ative, if evaluated at a stable steady state of the non-spatial
system. If, however, the dispersion relation becomes posi-
tive for some wavenumber, these become amplified and the
steady state unstable. For cases where the dispersion rela-
tion has a maximum for a finite value of q, a Turing I insta-
bility is present. If the dispersion relation remains positive
and becomes maximal for large wavenumbers, we speak of
a Turing II instability. In this case deviations on arbitrarily
small length scales become amplified, and no stable pattern
is formed. We thus only search for Turing I instabilities in
the following. See Figure 1A for a visualization of this phe-
nomenon and the sections below for mathematical details.

Therefore, to find Turing instabilities we first need to
identify the stable steady states of a given system, and sub-
sequently study their dispersion relation. Figure 2C summa-
rizes the computational procedure.

For each candidate network we perform this procedure
for a wide range of kinetic and diffusion parameters. We
therefore have to specify the intracellular parameters deter-
mining the regulatory functions fi, as well as the diffusion
constants. The former consist of the parameters k (dissoci-
ation rates), V (scaling factors), b (basal production rates)
and the degradation rate µ (see Equations in Figure 2B),
which we vary across biologically relevant values between
0.1 and 100 (0.01-1 for µ). The extracellular/diffusion pa-
rameters are varied over a range between 10−3 and 103.
Due to computational cost, we vary the V and b parameters
only for 2-node networks, but fix them to 100 and 0.1, re-
spectively, for 3-node networks. In this way we were still
able to screen 3×1011 network-parameter combinations for
TP formation, which we believe is the largest study of its
kind to date.

Definition of networks and ODEs

Networks
To generate all possible n-node networks we first compute
all possible (n × n)−matrices with elements 0, 1 and −1,
where a 0 (1/− 1) represents the absence (presence) of an
activating or inhibiting interaction/edge. The number of
matrices is reduced by considering only connected networks
and accounting for symmetries. We also remove matrices
that correspond to networks including nodes without any
incoming or outgoing edges. Each remaining matrix M
serves as an adjacency matrix for a network, where the
element Mij being 1 (−1) represents a positive (negative)
edge from node i to node j.

System of ODEs
For each adjacencymatrix we then construct the correspond-
ing set of ODEs. Each non-zero entry in the adjacency ma-
trix corresponds to a Hill-type term which are combined in
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either a non-competitive or competitive case. If S+
i (S−i ) de-

notes the set of positive (negative) edges ending in node i,
then in the non-competitive case, the different regulators act
(and saturate) independently of each other, and we have,

fi(x1, ..., xN ) =Vi ·
∏

j∈S+
i

 1

1 +
(

kij

xj

)nij

 (3)

×
∏

j∈S−
i

 1

1 +
(

xj

kij

)nij

+ bi − µixi.

Here, Vi is themaximal induced production rate, bi the
basal production rate, µi the degradation rate, kij the
concentration value at which the regulation of the ith
species by the jth species is half its maximal value, and
nij is the corresponding Hill coefficient determining
the steepness of the response.
In the competitive case the different regulators com-

pete for the binding site which leads to an additive
combination of terms:

fi(x1,..., xN ) = bi − µixi (4)

+ Vi ·

∑

j ∈ S+

(
xj
kij

)nj

1 +
∑

j ∈ S+

(
xj
kij

)nj

+
∑

j ∈ S−

(
xj
kij

)nj
.

Numerical analysis

Steady state estimation
We generated a customized Matlab (R2016a) script to
find steady states numerically. For a given system the
parameters are chosen from a logarithmic grid and for
each set of parameters the system of ODEs is solved
numerically until time t = 1000 using the Matlab ODE
solver ode15s. Whenever the algorithm encounters
numerical problems, the (slower but more robust) al-
gorithm ode23s is invoked.
The resulting trajectory is checked to have con-

verged to a steady state. Next, we solve the system
again for 3n initial conditions (Geest, 2016), where
n is the number of species. The endpoints of each
resulting trajectory are clustered using k-means
clustering assuming that the steady states are given
by the centroids of the resulting clusters. Using the
cluster centroids as an initial condition, the system
of ODEs is solved again to verify that the system has
converged sufficiently. For steady states that are ap-
proached via damped oscillations, we do not solve the
ODEs numerically but instead search for a fixed point
of the ODEs directly using theMatlab function fsolve.

Stability Analysis
The stability of a steady state x∗ of Equation (1) is
assessed by a linear stability analysis. We add a small

perturbation around x∗

x(t) = x∗ + δx̃(t), (5)

with a small constant δ ∈ R, and then linearise Equa-
tion (1), to obtain

∂

∂t
x̃(t) = J x̃(t) +O(δ). (6)

The Jacobian, J , is defined as

Ji,j =
∂fi(x1, . . . , xn)

∂xj
, i, j = 1, . . . , N. (7)

Equation (6) constitutes a linear dynamical system
with steady state x̃ = 0. This steady state is asymptot-
ically stable if and only if the real parts of all eigenval-
ues of the matrix J are negative. This in turn means
that x∗ is a locally asymptotically stable steady state,
in the sense that there exists a neighborhood around
x∗ such that any solution of the ODEs starting from
this neighborhood asymptotically converges to x∗.
Accordingly, it is sufficient to compute the eigenval-

ues of the Jacobian defined in Equation (7) to assess
the local stability of a steady state of Equation (1).
To assess if such a stable steady state can exhibit a

diffusion-driven instability, we need to analyze Equa-
tion (2). Similarly to the case without diffusion, we
perturb the system around x∗ to perform a linear sta-
bility analysis of this steady state, but this time with a
harmonic wave with wave-length q:

x(r, t) = x∗ + δx̃(t)eiqr, (8)

with a small constant δ ∈ R. Inserting this into Equa-
tion (2) and expanding to first order in δ, one obtains
a linear dynamical system similar to the one in (6),
but with a modified Jacobian J̃ given by:

J̃ = J − q2D, (9)

where D = diag(D1, . . . , Dn) is a diagonal matrix
with the diffusion constants Di on the diagonal.
For differential diffusion of the molecular species,
the Jacobian in Equation (8) can have eigenvalues
with positive real part for finite wave vector q; when
this occurs the stable steady state of the system in
Equation (1) becomes unstable with diffusion, and
we speak of an diffusion-driven Turing instability.
Depending on the behavior of the largest eigenvalue
of J̃ for large q we distinguish different types of
Turing instabilities, see Figure 4D.

Workflow
We implement the estimation of stable steady states
of the non-spatial system and identification of Turing
instabilities into an automated workflow. Overall, the
computational analysis consists of the steps:

i) Define a network and its governing ODE equa-
tions.
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ii) Define a grid that covers the full parameter space
of interest.

iii) For each set of parameters:

a) Perform numerical simulation of ODE system
for different initial conditions

b) Cluster endpoints using k-means clustering
to find set of steady states.

c) Confirm steady state guesses by repeated
simulation from each cluster center.

iv) Perform stability analysis for all steady state and
parameter combinations:

a) Calculate Jacobian matrix (without diffu-
sion) and test if all real parts of the eigen-
values are negative to verify stability.

b) Expand Jacobian matrix by diffusion term
and calculate eigenvalues for a set of diffu-
sion values and wavenumbers q.

c) Classify possible Turing instabilities as Type
Ia, Ib, or IIa or IIb (see Figure 2C).

Software package

We provide code for an automated steady state esti-
mation an stability analysis together with documenta-
tion in Supplementary File S4. The code can analyze
systems with arbitrary regulatory functions and node
numbers.
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