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Abstract 13 
Databases of literature-curated protein-protein interactions (PPIs) are often used to interpret high-14 
throughput interactome mapping studies and estimate error rates. These databases combine 15 
interactions across thousands of published studies and experimental techniques. Because the 16 
tendency for two proteins to interact depends on the local conditions, this heterogeneity of conditions 17 
means that only a subset of database PPIs are interacting during any given experiment. A typical use 18 
of these databases as gold standards in interactome mapping projects, however, assumes that PPIs 19 
included in the database are indeed interacting under the experimental conditions of the study. Using 20 
raw data from 20 co-fractionation experiments and six published interactomes, we demonstrate that 21 
this assumption is often false, with up to 55% of purported gold standard interactions showing no 22 
evidence of interaction, on average. We identify a subset of CORUM database complexes that do 23 
show consistent evidence of interaction in co-fractionation studies, and we use this subset as gold 24 
standards to dramatically improve interactome mapping as judged by the number of predicted 25 
interactions at a given error rate. We recommend using this CORUM subset as the gold standard set 26 
in future co-fractionation studies. More generally, we recommend using the subset of literature-27 
curated PPIs that are specific to experimental conditions whenever possible. 28 
 29 
 30 
 31 
Introduction 32 
Proteins perform the majority of cellular functions necessary for life. Nearly all individual proteins are 33 
modular components of larger macromolecular structures, i.e. protein complexes, and the exact role 34 
of a protein within a cell is controlled by its interactions with co-complex members. Uncovering which 35 
proteins interact, i.e. the interactome, is therefore central to understanding the molecular mechanisms 36 
of life. 37 
 38 
This task is complicated by a combinatorial explosion, however: a proteome containing 20000 39 
proteins has nearly 200 million potential pairwise interactions and many more higher order 40 
complexes. High-throughput techniques that analyze thousands of proteins simultaneously with 41 
minimal bias offer a solution to this problem (1). For example, PCP-SILAC (protein correlation 42 
profiling–stable isotope labeling of amino acids in cell culture), a co-fractionation (CF) technique, 43 
separates protein complexes into fractions according to their size (rotational cross-section), and 44 
associates proteins whose amounts are correlated between fractions. As each fraction is analyzed 45 
with mass spectrometry, PCP-SILAC and other CF techniques can detect tens of thousands of 46 
interacting proteins (2–8). In order to separate signal from noise, it is common for high-throughput 47 
protein interactome studies to consult databases of known, unequivocal interactions (“gold 48 
standards”) (2,3,9,10). For example, co-fractionation studies often use gold standard interactions as 49 
training labels in a machine learning classifier (2,3,11). Gold standards are also used to define false 50 
positive/negative and true positive/negative interactions in order to calculate common statistics such 51 
as precision, recall, and sensitivity (5–7,11,12). 52 
 53 
Gold standard databases are assembled from different experiments and techniques, each with a 54 
unique set of biases. Since protein-protein interactions (PPIs) can be conditional and transient, single 55 
datasets, which are typically generated by a single technique, can disagree with gold standards. This 56 
variability partly reflects true biological differences. For example, the majority of in vivo yeast PPIs 57 
were observed to depend on environmental and chemical conditions (13). Some assays also impose 58 
technical biases that limit detectable PPIs, such as a bias of some high-throughput techniques toward 59 
highly expressed or well studied protein pairs, or a bias against PPIs involving transmembrane 60 
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proteins (12). Therefore, gold standard databases that include all interactions that can occur will fail to 61 
describe the subset of interactions that are either not occurring due to current experimental 62 
conditions, or that are unlikely to be detected due to technical limitations. 63 
 64 
Therefore, a distinction should be made between the large, curated compilations of interactions 65 
across many studies, and the gold standard sets used as a reference for a single dataset. Our own 66 
focus has been on interactome mapping using co-fractionation, so here we quantify the proportion of 67 
gold standard interactions that fail to display any evidence for interaction in 20 co-fractionation 68 
datasets. Using a conservative measure of protein interaction, we find that between 19 and 55% of 69 
gold standard PPIs display no evidence of interacting. Across co-fractionation experiments, there is 70 
evidence that a subset of literature-curated complexes consistently co-fractionates, suggesting this 71 
subset would be a more appropriate gold standard reference set. Indeed, the number of predicted 72 
interactions at a given stringency increases dramatically when using this subset as a gold standard 73 
set. We recommend using this subset as the gold standard reference in future co-fractionation studies 74 
and, more generally, using experiment- and condition-specific gold standards whenever possible. 75 
 76 
 77 
Results 78 
2.1 Discrepancies exist between gold standards and individual datasets 79 
Using the CORUM database of protein complexes (14), we first examined the degree to which 80 
literature-curated PPIs were unsupported by data from single co-fractionation datasets.  Many 81 
database PPIs show clear evidence of interaction, as shown by their tendency to co-fractionate for 82 
the entire chromatogram (Fig 1A) or a portion of the chromatogram (Fig 1B). However, other protein 83 
pairs from within a single CORUM complex show little evidence of interaction in certain experiments. 84 
For example, two chaperone proteins, HSP-90a (UniProt ID P07900) and BiP (P11021) are known to 85 
interact as part of a larger chaperone multiprotein complex (15) (CORUM complex “HCF-1”), yet there 86 
is little evidence that the two proteins co-fractionate in our data (Fig 1C). 87 
 88 
More broadly, across 20 PCP-SILAC co-fractionation datasets, the majority of random protein pairs 89 
do not co-fractionate, as quantified by anti-correlated fractionation profiles, a conservative measure of 90 
which protein pairs are non-interacting (red, Fig 1D). While the majority of gold standard protein pairs 91 
have positively correlated co-fractionation profiles (black), 23% (34442/149477) are negatively 92 
correlated. All 20 datasets include a similar proportion of negatively correlated gold standard pairs (23 93 
+/- 5%, mean +/- st.d.). This pattern is similar when co-fractionation is measured with Euclidean 94 
distance, another standard measure (Fig 1E). 95 
 96 
 97 
Fig 1. Not all CORUM gold standard interactions are supported by co-fractionation data. A. 98 
Example gold standard pair with strong evidence for interaction. Q9NQP4 and E5RGS4, prefoldin 99 
complex. B. Example gold standard pair with evidence for interaction. Q14103 and O75534, PIN1-100 
AUF1 complex. C. Example gold standard protein pair with little data-derived evidence for interaction. 101 
P11021 and P07900, HCF-1 complex. D. Histogram of Pearson correlation coefficients and E. 102 
Euclidean distance between every gold standard interaction in our co-fractionation data (20 datasets, 103 
grey; average, black). All other protein pairs in our data are shown, the vast majority of which are not 104 
interacting (red). Example pairs A, B, C are shown (arrows).  105 
 106 
 107 
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While the full set of CORUM complexes is a widely used gold standard (6,7,9–11), there are many 108 
other literature-curated interaction databases. In addition to CORUM, we examined nine databases of 109 
protein interactions (16–24) and two subsets of CORUM used previously as gold standards (2,3). 110 
These range from databases that include interactions from high-throughput experiments to manually 111 
curated databases composed exclusively of low-throughput experiments. All had anti-correlated 112 
protein pairs in our co-fractionation datasets (Fig 2). As a baseline, 62% of all protein pairs, the large 113 
majority of which can be assumed to be non-interacting, were anti-correlated (Fig 2, red). The 114 
proportion of anti-correlated pairs in gold standard sets ranged from 55% (HPRD) to 19% (CORUM). 115 
Restricting gold standard PPIs to those supported by two or more publications limits but does not 116 
eliminate uncorrelated protein pairs (Supp. Fig 1). Therefore all interaction databases investigated 117 
here contain protein pairs that are not supported by our co-fractionation data, and comparisons to 118 
CORUM give a conservative estimate of the discrepancy between our data and interaction 119 
databases. 120 
 121 
 122 
Fig 2. Protein pairs across many gold standard databases do not co-fractionate, as measured 123 
by anti-correlated co-fractionation profiles (Pearson correlation R<0). Each point is one dataset. 124 
Horizontal lines show medians. Red: all non-gold standard protein pairs. Only non-redundant gold 125 
standard pairs were analyzed. 126 
 127 
 128 
2.2 Discrepancies are consistent within and between high-throughput 129 
techniques 130 
A certain level of discrepancy between raw co-fractionation profiles and interaction databases should 131 
be expected, as all experimental samples undergo some degradation owing to the constraints 132 
imposed by each assay. But do individual datasets differ randomly or systematically from interaction 133 
databases? For certain gold standard complexes we see a strong tendency for co-complex members 134 
to co-fractionate, and, conversely, a strong tendency for other complexes to fail to co-fractionate (Fig 135 
3A). Across 20 co-fractionation datasets, we made 39846 pairwise comparisons between 136 
fractionation profiles of cytoplasmic ribosomal proteins, and 17616 pairwise comparisons of proteins 137 
in the C complex spliceosome. The collection of ribosomal gold standard interactions are significantly 138 
better correlated than chance (R = 0.64, chance R = 0.48, p = 0.005, permutation test; Fig 3B), while 139 
the collection of spliceosome gold standard interactions are significantly worse correlated (R = 0.27, p 140 
< 0.001; Fig 3C). Calculating significance for all 1253 observed CORUM complexes (permutation test, 141 
Benjamini-Hochberg correction), 419/1253 correlate significantly higher than average, while 294/1253 142 
are significantly lower. This suggests that some gold standard complexes are enriched for interacting 143 
protein pairs, while others are enriched for non-interacting protein pairs, where non-interacting pairs 144 
likely represent interactions disrupted by the particular assay. 145 
 146 
Other high-throughput techniques display consistent over- and under-enrichment of specific gold 147 
standard complexes. Figure 3D shows gold standard complexes that were consistently predicted in 148 
one of three high-throughput techniques - CF, affinity purification mass spectrometry (AP-MS), or 149 
yeast two-hybrid (Y2H) - and largely absent from the others. Eighty gold standard complexes were 150 
predicted (≥1 interaction per complex) in 4/6 co-fractionation interactomes, while being predicted in 151 
no more than a single AP-MS or Y2H interactome (chance = 14 complexes, p = 0.005, bootstrap). 152 
Similarly, 61 gold standard complexes are predicted in at least 2/3 Y2H interactomes, while being 153 
predicted in at most one co-fractionation or AP-MS interactome (p < 0.001). Only 22 AP-MS-specific 154 
complexes are selected in this way (p = 0.49) possibly due to the low CORUM coverage of 155 
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interactome AP3 (25). Technique-specific consistency is also seen at the level of pairwise interactions 156 
(Fig 3E). 157 
 158 
 159 
Fig 3. High-throughput techniques consistently recover some gold standard complexes and 160 
consistently fail to recover others. A. Average internal, pairwise correlation for every quantified 161 
gold standard complex. Only gold standard complexes with at least two identified proteins in one of 162 
20 co-fractionation datasets are shown (1253/2652 CORUM complexes). Correlation values are 163 
pooled across the 20 co-fractionation datasets, and the number of internal, pairwise comparisons is 164 
given by marker size. The pattern expected by random chance is shown in red (95% CI). B. 165 
Connection matrix, cytoplasmic ribosome. Pairwise correlation values were averaged over 20 166 
datasets. C. C complex spliceosome. D. Technique-specific gold standard complexes. All gold 167 
standard complexes predicted by at least 2/3 of the published interactomes from a given technique 168 
(CF, AP, Y2H), and no more than 1 interactome from the other techniques. E. Connection matrices 169 
for the Chaperonin Containing TCP-1 complex (CCT), a gold standard complex, taken from the 170 
published interactomes. White: interacting protein pair. Black: non-interacting. 171 
 172 
 173 
In addition to being truly non-interacting, the absence of some gold standard complexes from 174 
published interactomes (Fig 3D) could result from low expression of interacting partners (rendering 175 
them difficult to quantify) or from none of the co-complex members being included as baits. To control 176 
for this, we additionally looked at the subset of gold standard complexes where at least one 177 
interaction could potentially be predicted in each study, as defined by having quantified proteins and 178 
baits (see Methods). The same pattern seen in Figure 3D persisted (Supp. Table 1), indicating that 179 
gold standard complexes seen by one method but not others cannot be explained by lack of co-180 
expression or choice of bait, and therefore likely reflect the fact that the physical association of gold 181 
standard complexes is indeed conditionally dependent. 182 
 183 
 184 
We note that the conditional dependence of gold standard complexes is not limited to the type of 185 
high-throughput experiment (CF, AP-MS, or Y2H). For example, using co-fractionation data where 186 
proteins were fractionated using a variety of techniques (2) (Supp. Table 1), the 60S ribosome gold 187 
standard complex consistently co-fractionated via sucrose fractionation (Supp. Fig 2A) but 188 
consistently failed to co-fractionate via heparin dual ion exchange (Supp. Fig 2B). 189 
 190 
2.3 Universal gold standards improve interactome mapping 191 
If a subset of database PPIs consistently fails to resemble interacting proteins for a given assay, 192 
performance should improve when these PPIs are removed from the gold standard set. We confirmed 193 
this was the case. We generated co-fractionation-specific gold standard subsets by selecting those 194 
complexes that were significantly enriched for interactions in interactomes CF4, CF5, and CF6 (2–4). 195 
Evaluating significance at four p-value thresholds (p < 1, 10-2, 10-6, 10-10) produced four subsets of 196 
CORUM complexes that contain 302, 122, 95, and 80 complexes, respectively (Table 1). To avoid 197 
training and testing on the same data, we defined the co-fractionation-specific gold standard subsets 198 
using interactomes published by other groups (CF4, CF5, CF6), and these gold standard subsets 199 
were then used to predict interactomes using co-fractionation data generated by our group.  200 
 201 
These co-fractionation-specific CORUM subsets correspond significantly to housekeeping protein 202 
complexes. Using the Gini coefficient, a measure of inequality, we calculated consistency of mRNA 203 
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expression (Fig 4A) (26) and protein expression (Fig 4B) (27) across tissues and cell types. As 204 
quantified by lower Gini coefficients, the expression levels of co-fractionation-specific complexes are 205 
significantly more consistent across tissues than other CORUM complexes (mRNA: Gini = 0.28 vs 206 
Gini = 0.40, p = 2.2 x 10-16, Welch two-sample t-test; protein: Gini = 0.40 vs Gini = 0.49, p = 2.2 x 10-207 
10). This agrees with an orthogonal analysis of a mouse co-fractionation dataset collected by our 208 
group, which analyzed protein co-fractionation across seven tissue types. Quantifying co-fractionation 209 
via Pearson correlation, 15 CORUM complexes were found to be housekeeping complexes, as 210 
defined by average pairwise correlation significantly greater than chance in all seven tissues (p < 211 
0.05, permutation test; Fig 4C). Of these 15 complexes, 8 overlap with the 122 co-fractionation-212 
specific CORUM complexes, a significant overlap (p = 7.6 x 10-8, hypergeometric test; overlapping 213 
complexes marked by asterisk * in Figure 4C). 214 
 215 
 216 
Fig 4. Gold standard complexes consistently predicted by co-fractionation correspond to 217 
housekeeping complexes. A. Consistency of mRNA expression levels across tissue types, Gini 218 
coefficient (26). B. Consistency of protein expression levels across tissue and cell types, Gini 219 
coefficient (27). C. Fifteen housekeeping CORUM complexes, defined by significant pairwise 220 
correlation between co-fractionation profiles in all seven tissues. The 8/15 complexes that overlap 221 
with the 122 complex subset of CORUM are marked by asterisks. 222 
 223 
 224 
Using gold standard subsets generated in this way drastically alters the predicted interactomes (Fig 225 
5). Controlling interactome quality via the ratio of true positives (TP) and false positives (FP), 226 
calculated as precision (TP/(TP + FP)), well-chosen gold standard subsets increased the size of the 227 
predicted interactome by up to an order of magnitude over randomly-chosen subsets (Fig 5A-C). 228 
Since FPs are defined as inter-complex protein pairs, they grow with the square of the gold standard 229 
set size. TPs, intra-complex pairs, grow linearly. Therefore there is a tendency for precision estimates 230 
to increase artificially as the gold standard set shrinks. For this reason we compared all co-231 
fractionation-specific subsets (Fig 5 black) to random subsets of the same size (red). Precision-recall 232 
curves, which visualize the tradeoff between quality and quantity of the interactomes, are also 233 
improved over random for increasingly stringent co-fractionation-specific gold standard subsets (Fig 234 
5D-G). 235 
 236 
 237 
Fig 5. Using technique-specific gold standard subsets increases interactome size and/or 238 
quality. A. The size of interactomes produced by co-elution gold standard subsets of varying 239 
stringency (black) or randomly selected subsets of the same size as the co-elution specific subsets 240 
(red, 95% CI). Interactomes have 50% precision. B. 75% precision. C. 90% precision. D. Precision-241 
recall curve for the interactome predicted using the entire gold standard set of interactions. E. 242 
Precision-recall curve predicted using the gold standard complexes that satisfied the 10-2 threshold. 243 
F. 10-6 threshold. G. 10-10 threshold. Precision-recall curves using random subsets of the same size 244 
are shown in red (95% CI). 245 
 246 
 247 
 248 
Discussion 249 
Here we have estimated the discrepancies between interactome data generated by co-fractionation 250 
and curated gold standard interactions from the CORUM database. Across 20 datasets, 37% 251 
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(54859/149477) of gold standard protein pairs display at most weak evidence for interaction (R < 252 
0.25, Pearson correlation), and 23% (34442/149477) show no evidence of interaction (R < 0) (Fig 1D, 253 
Fig 2). Other databases have a larger proportion of anti-correlated interactions, with up to 55% of 254 
database PPIs showing no evidence for interaction (Fig 2). Protein interaction networks have been 255 
compared elsewhere. For example, comparing the power of five PPI networks to predict cancer 256 
genes (28), benchmarking 21 networks for their ability to predict disease genes (29), and 257 
investigating their impact on recovering novel PPIs from high-throughput data (30). However, to our 258 
knowledge our study is the first to specifically address the conditional nature of PPI entries in these 259 
databases. 260 
 261 
Since CORUM is manually curated from low-throughput experiments, we do not interpret these anti-262 
correlated pairs as errors in the database. Rather, we attribute any discrepancy between our raw data 263 
and the databases to the conditional nature of protein interactions and the fact that databases 264 
compile evidence from many different experiments and conditions. Indeed, under certain conditions, 265 
60S ribosomal proteins, which have been extensively studied and shown to interact, display poor 266 
evidence of interaction (Supp. Fig 1).  267 
 268 
Therefore studies should take care not to conflate interaction databases, which attempt to list all 269 
interactions that can interact, with the subset of interactions that are in fact interacting in a given 270 
experiment. Doing so limits high-throughput interactome mapping studies. First, it artificially raises all 271 
estimates of error rates, since by definition a portion of the reference positive set is indistinguishable 272 
from the negative set. Second, when gold standard interactions are used as training labels in a 273 
classifier (2,3,7,11), classification accuracy will be reduced and fewer interactions and/or more noisy 274 
interactions will be predicted. 275 
 276 
One solution is to use condition- or technique-specific gold standard subsets. We show that subsets 277 
of gold standard databases that have consistent, independent evidence taken from similar conditions 278 
to those under which the raw data was produced can increase the size of interactomes judged at the 279 
same precision level (Fig 4). We include this set of CORUM gold standard complexes and 280 
recommend it for future co-fractionation studies. 281 
 282 
 283 
Methods 284 
4.1 Gold standards databases 285 
We primarily used CORUM core complexes as an LC database of known protein complexes 286 
(Comprehensive Resource of Mammalian protein complexes, released February 2017) (31). CORUM 287 
is based entirely on experimentally verified interactions, all of which must have extensive low-288 
throughput supporting data. To provide a broad sample of databases, we also analyzed interactions 289 
from an additional ten LC interaction databases: HPRD (release 9, last modified April 13, 2010) (16), 290 
MINT (downloaded June 8, 2017) (17), MENTHA (release June 5, 2017) (18), BIND (release 1.0, last 291 
modified May 20, 2014) (19), HIPPIE (release 2.0, last modified June 24, 2016) (20), IID (release 292 
April 2017) (21), BioGrid (release 3.4.149, accessed June 8, 2017) (32), PINA (version 2, last 293 
updated May 21, 2014) (22), HINT (version 4, downloaded June 8, 2017) (23), and DIP (release 294 
February 5, 2017) (24). We analyzed a subset of the full BioGrid database for which interactions were 295 
supported by at least two publications (Nfull = 254886 interactions, Nsubset = 39524). For databases 296 
such as CORUM that list complexes rather than pairwise interactions, gold standard interactions were 297 
defined as all protein pairs that are co-members of at least one gold standard complex. Only non-298 
redundant, i.e. unique protein interactions were analyzed. 299 
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 300 
4.2 Co-fractionation profile datasets and mass spectrometry 301 
The majority of co-fractionation data analyzed in this study was collected by our group and constitutes 302 
a broad sampling of SILAC-labelled co-fractionation datasets. Data was collected for four 303 
independent experiments, each mapping interactome rearrangements to an experimental treatment. 304 
Datasets in this study were separated by condition and replicate, such that an experiment with two 305 
conditions and three replicates would yield six datasets analyzed here. A total of 20 datasets are 306 
included in this study. Three experiments are previously published: two that map the reorganization of 307 
the HeLa interactome in response to stimulation with EGF (5) and Salmonella enterica infection (6), 308 
and one that maps the response of Jurkat T cells to Fas-mediated apoptosis (7). All fractionation was 309 
achieved by size exclusion chromatography except (7) which used blue-native page. Both methods 310 
separate protein complexes by molecular weight. The third co-fractionation dataset is available in this 311 
manuscript (Supp. Table 2). All co-fractionation data was quantified using SILAC ratios over 312 
successive fractions of a separation gradient, i.e. a chromatogram. Only protein chromatograms with 313 
quantification in five or more fractions were analyzed. In order to compare interactions seen by 314 
different fractionation techniques, we also analyzed previously published co-fractionation data 315 
generated by extensive biochemical fractionation (2). All co-fractionation profile datasets are 316 
composed of co-fractionation profiles, which are protein amount measured over successive fractions, 317 
quantified by mass spectrometry. There is one profile per protein or protein group for each 318 
combination of replicate and condition. 319 
 320 
4.3 Published PPI interactomes 321 
In addition to raw co-fractionation data, we analyzed twelve published human protein interactomes: 322 
three derived from co-fractionation data published by our lab (CF1 (7), CF2 (5), CF3 (6)), three 323 
derived from co-fractionation data not published by us (CF4 (3), CF5 (2), CF6 (4)), three AP-MS 324 
derived interactomes (AP1 (9), AP2 (10), AP3 (25)), and three Y2H interactomes (Y2H1 (12), Y2H2 325 
(33), Y2H3 (34)). All interactomes were high-throughput and represent a broad sampling of the full 326 
human interactome. 327 
 328 
4.4 Evaluating gold standard complexes 329 
Raw co-fractionation profiles: To evaluate the degree to which gold standard PPIs are supported by 330 
co-fractionation data, we calculated the Pearson correlation coefficient and Euclidean distance 331 
between each pair of chromatograms in a dataset. For both measures, missing values in the 332 
chromatograms were replaced by zeros. When calculating Euclidean distance, all chromatograms 333 
were normalized to have a minimum value of 0 and a maximum value of 1. High correlation or low 334 
Euclidean distance was taken as evidence that the gold standard interaction was interacting in the 335 
sample. 336 
 337 
Published interactomes: We mapped published pairwise protein-protein interactions to gold standard 338 
CORUM complexes. For each published interactome, we tested whether gold standard complexes 339 
were enriched for published interactions, meaning they contained significantly more pairwise 340 
interactions between complex members than the average rate (hypergeometric test). We took 341 
significant enrichment as evidence that the published interactome supported the gold standard 342 
complex. To standardize interactomes with each other and CORUM, all isoform tags were removed 343 
from protein IDs. 344 
 345 
To control for expression and different baits, we also defined the subset of gold standard complexes 346 
in each study in which at least one interaction could be predicted. For CF interactomes this was 347 
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defined as a complex in which at least two co-complex members are present in the raw data (raw 348 
data for (3) downloaded here http://metazoa.med.utoronto.ca/; (4) and (2) raw data taken from 349 
publication). For AP-MS interactomes we assumed the matrix model, meaning that a bait protein 350 
need not be present in a gold standard complex for an interaction to be predicted in the gold standard 351 
complex, as long as a gold standard complex member is associated with a bait protein. Therefore if at 352 
least two members of the gold standard complex were present in the AP-MS interactome, we defined 353 
that gold standard complex as a complex that could be predicted by the study. Finally, for Y2H 354 
interactomes we defined a gold standard complex as able to be predicted if at least one complex 355 
member was a bait protein. 356 
 357 
4.5 Co-fractionation-specific gold standard subsets 358 
In this study, we used subsets of the gold standard complexes that are consistently supported by co-359 
fractionation interactomes. For these co-fractionation subsets, we used all CORUM complexes that 360 
were significantly enriched for interactions (hypergeometric test) in CF4, CF5, and CF6.  Significance 361 
was assessed at a range of p-value thresholds: 1, 10-2, 10-6 and 10-10. A threshold of p = 1 produced 362 
the subset of CORUM complexes with at least one interaction in CF4, CF5, and CF6. The number of 363 
CORUM complexes (interactions) in each subset were 302 (33378), 122 (10953), 95 (6326) and 80 364 
(4861), respectively. 365 
 366 
To control for the effects of simply reducing the size of the gold standards, we generated random 367 
subsets of gold standard PPIs with the same size as the selected subsets. Of the full 46413 unique 368 
PPIs in the core CORUM complexes, we randomly sampled 33378, 10953, 6326, and 4861 PPIs 369 
without replacement. Random sampling was repeated 100 times for each of the subset sizes, and 370 
interactomes were predicted using each random subset with the PrInCE software package. 371 
 372 
4.6 Interactome prediction 373 
For this study, interactomes were predicted using the PrInCE software (Predicting Interactomes via 374 
Co-Elution), a software package developed by our lab for the analysis of co-fractionation datasets 375 
(11). PrInCE measures the similarity between every pair of co-fractionation profiles using a variety of 376 
similarity measures, such as Pearson correlation and Euclidean distance. Gold standard interactions 377 
are used as true positive labels (TP) in a Naive Bayes classifier. False positive interactions (FP) are 378 
defined as interactions between a pair of proteins that both occur in the gold standard database, but 379 
are not members of the same gold standard complex, e.g. an interaction between a ribosomal protein 380 
and a proteasomal protein. PrInCE assesses the quality of the predicted interactome using precision, 381 
where precision = TP/(TP + FP). 382 
 383 
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 469 
Supporting information 470 
 471 
S1 Fig. Restricting gold standard PPIs to those supported by two or more publications does 472 
not eliminate uncorrelated protein pairs, as measured by Pearson correlation R<0. Each point 473 
is one dataset. Horizontal lines show medians. Red: all non-gold standard protein pairs. Black: non-474 
redundant gold standard pairs. “All pairs” and “BioGrid” correspond to Figure 1. 475 
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 476 
S2 Fig. 60S ribosome co-fractionates via sucrose fractionation (A) but not via heparin dual ion 477 
exchange (B). Pearson R. Plots show replicates. Missing (black) are protein pairs where neither 478 
protein was detected. 479 
 480 
S1 Table. Some CORUM complexes are predicted by a single high-throughput technique, as 481 
measured by average complex coverage. Complex coverage = number of pairwise interactions in a 482 
published interactome / total pairwise connections within a complex. Parentheses show number of 483 
complexes averaged. CF-specific complexes correspond to numbers 1-80 in Figure 3D, AP/MS-484 
specific to 81-102, and Y2H-specific to 103-163. To control for expression and bait selection, only 485 
complexes that could be be predicted in each interactome are included (see Methods). 486 
 487 
S2 Table. Third co-fractionation dataset. 488 
 489 
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