Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

A highly predictive signature of cognition and brain atrophy for progression to Alzheimer’s dementia

View ORCID ProfileAngela Tam, Christian Dansereau, Yasser Itturia-Medina, Sebastian Urchs, Pierre Orban, Hanad Sharmarke, John Breitner, Pierre Bellec, for the Alzheimer’s Disease Neuroimaging Initiative
doi: https://doi.org/10.1101/352344
Angela Tam
1Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, CA
2Douglas Hospital Research Centre, McGill University, Montréal, CA
3McGill University, Montréal, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Angela Tam
  • For correspondence: angela.tam@mail.mcgill.ca pierre.bellec@criugm.qc.ca
Christian Dansereau
1Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, CA
4Département d’Informatique et de recherche opérationnelle, Université de Montréal, Montréal, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yasser Itturia-Medina
3McGill University, Montréal, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sebastian Urchs
3McGill University, Montréal, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pierre Orban
1Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, CA
5Centre de Recherche de l’Institut Universitaire en Santé Mentale de Montréal, Montréal, CA
6Département de Psychiatrie, Université de Montréal, Montréal, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hanad Sharmarke
1Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John Breitner
2Douglas Hospital Research Centre, McGill University, Montréal, CA
3McGill University, Montréal, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pierre Bellec
1Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, CA
4Département d’Informatique et de recherche opérationnelle, Université de Montréal, Montréal, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: angela.tam@mail.mcgill.ca pierre.bellec@criugm.qc.ca
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Clinical trials in Alzheimer’s disease need to enroll patients whose cognition will decline over time, if left untreated, in order to demonstrate the efficacy of an intervention. Machine learning models used to screen for patients at risk of progression to dementia should therefore favor specificity (detecting only progressors) over sensitivity (detecting all progressors), especially when the prevalence of progressors is low. Here, we explore whether such high-risk patients can be identified using cognitive assessments and structural neuroimaging, by training machine learning tools in a high specificity regime. A multimodal signature of Alzheimer’s dementia was first extracted from ADNI1. We then validated the predictive value of this signature on ADNI1 patients with mild cognitive impairment (N=235). The signature was optimized to predict progression to dementia over three years with low sensitivity (55.1%) but high specificity (95.6%), resulting in only moderate accuracy (69.3%) but high positive predictive value (80.4%, adjusted for a “typical” 33% prevalence rate of true progressors). These results were replicated in ADNI2 (N=235), with 87.8% adjusted positive predictive value (96.7% specificity, 47.3% sensitivity, 85.1% accuracy). We found that cognitive measures alone could identify high-risk individuals, with structural measurements providing a slight improvement. The signature had comparable receiver operating characteristics to standard machine learning tools, yet a marked improvement in positive predictive value was achieved over the literature by selecting a high specificity operating point. The multimodal signature can be readily applied for the enrichment of clinical trials.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted March 08, 2019.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
A highly predictive signature of cognition and brain atrophy for progression to Alzheimer’s dementia
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A highly predictive signature of cognition and brain atrophy for progression to Alzheimer’s dementia
Angela Tam, Christian Dansereau, Yasser Itturia-Medina, Sebastian Urchs, Pierre Orban, Hanad Sharmarke, John Breitner, Pierre Bellec, for the Alzheimer’s Disease Neuroimaging Initiative
bioRxiv 352344; doi: https://doi.org/10.1101/352344
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
A highly predictive signature of cognition and brain atrophy for progression to Alzheimer’s dementia
Angela Tam, Christian Dansereau, Yasser Itturia-Medina, Sebastian Urchs, Pierre Orban, Hanad Sharmarke, John Breitner, Pierre Bellec, for the Alzheimer’s Disease Neuroimaging Initiative
bioRxiv 352344; doi: https://doi.org/10.1101/352344

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (4230)
  • Biochemistry (9122)
  • Bioengineering (6766)
  • Bioinformatics (23965)
  • Biophysics (12108)
  • Cancer Biology (9509)
  • Cell Biology (13749)
  • Clinical Trials (138)
  • Developmental Biology (7621)
  • Ecology (11674)
  • Epidemiology (2066)
  • Evolutionary Biology (15490)
  • Genetics (10628)
  • Genomics (14310)
  • Immunology (9473)
  • Microbiology (22821)
  • Molecular Biology (9085)
  • Neuroscience (48913)
  • Paleontology (355)
  • Pathology (1480)
  • Pharmacology and Toxicology (2566)
  • Physiology (3839)
  • Plant Biology (8321)
  • Scientific Communication and Education (1468)
  • Synthetic Biology (2295)
  • Systems Biology (6180)
  • Zoology (1299)