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Abstract: The use of metabolomics profiling to understand metabolism under different 20 
physiological states has increased in recent years, which created the need for robust analytical 21 
platforms. Here, we present a validated method for targeted and semi-quantitative analysis of 102 22 
polar metabolites that covers major metabolic pathways from 24 classes in a single 17.5-min assay. 23 
The method has been optimized for a wide range of biological matrices from various organisms, 24 
and involves automated sample preparation, and data processing using in-house developed R 25 
package. To ensure reliability, the method was validated for accuracy, precision, selectivity, 26 
specificity, linearity, recovery, and stability according to European Medicines Agency guidelines. 27 
We demonstrated excellent repeatability of the retention times (CV<4%), calibration curves 28 
(R2≥0.980) in their respective wide dynamic concentration ranges (CV<3%), and concentrations 29 
(CV<25%) of quality control samples interspersed within 25 batches analyzed over a period of one-30 
year. The robustness was demonstrated through high correlation between metabolite 31 
concentrations measured using our method and NIST reference values (R2=0.967), including cross-32 
platform comparability against the BIOCRATES AbsoluteIDQp180 kit (R2=0.975) and NMR analyses 33 
(R2=0.884). We have shown that our method can be successfully applied in many biomedical 34 
research fields and clinical trials, including epidemiological studies for biomarker discovery. In 35 
summary, a thorough validation demonstrated that our method is reproducible, robust, reliable, 36 
and suitable for metabolomics studies.  37 

Keywords: High-throughput; targeted; semi-quantitation; metabolomics; LC-MS; multi-analyte 38 
method; validation; cross-platform comparability; automation; biomarkers. 39 
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1. Introduction 44 

Metabolomics has a great influence on many disciplines, as metabolites are intermediates or end 45 
products of cellular functions. Hence, metabolomics can be used as a powerful tool to generate data 46 
for understanding, diagnosing, and managing different pathophysiological conditions. It is therefore 47 
essential to be able to identify and measure metabolites from different biological matrices [1]. 48 
Although global metabolomics has been widely used in discovery studies for understanding cellular 49 
responses to normal and abnormal biological conditions, targeted metabolomics has more 50 
advantages for addressing biological questions in a more hypothesis-driven manner than global 51 
untargeted metabolomics [2]. Furthermore, targeted metabolomics can quantify metabolites that are 52 
low in abundance, which are difficult to assess using an untargeted approach. 53 

An appropriate sample pretreatment is required to obtain reproducible and high quality 54 
quantitative data in targeted metabolomics. However, metabolites are present in a wide dynamic 55 
range with great diversity in physicochemical properties in the biological matrices [3]. Recent 56 
advancements in extraction techniques and automated approaches for sample preparation have 57 
partially satisfied the demands of targeted metabolomics. However, there are still many outstanding 58 
challenges, such as the matrix effect and laboratory-to-laboratory variation associated with sample 59 
preparation. Hence, standardization of sample preparation is a fundamental requirement in 60 
metabolomics studies [4]. 61 

Secondly, robust analytical methodology is required for accurate quantification of metabolites 62 
with good reproducibility over an extended period of time [5]. Molecular diversity is a major problem 63 
that hinders the separation of all pre-selected metabolites in a single chromatographic run and the 64 
detection of all separated metabolites with minimum technical variation [6]. Tandem mass 65 
spectrometry (MS) is a technique used predominantly due to its high sensitivity and high throughput 66 
for the detection of metabolites. A combination of MS and separation techniques is used to increase 67 
the sensitivity and reliability of analytical methods for the analysis of metabolites from complex 68 
biological matrices [7]. In addition, latest developments in triple quadrupole instrumentation 69 
strengthened the possibilities to develop multi-analyte methods in a single injection that yield reliable 70 
and quantitative data [8]. 71 

Even though liquid chromatography-mass spectrometry (LC-MS) is a method of choice in 72 
targeted metabolomics, obtaining accurate quantification and long-term data reproducibility remains 73 
an analytical challenge. This is due to limitations such as matrix effect, MS performance drift, and LC 74 
column contamination and aging [9]. Finally, although instrument vendor software for data 75 
processing provides some crucial functions such as peak integration (rendering the data from high-76 
throughput metabolomics experiments into numerical values that represent metabolite 77 
concentrations), the lack of automation in downstream data processing and quality control remains 78 
a major bottleneck in high-throughput analyses. Thus, an efficient pipeline is necessary to enable 79 
rapid, accurate, and standardized processing of these data. Such a pipeline should facilitate 80 
automated analyses, while at the same time allowing the user to fine-tune the parameters for accurate 81 
data processing. Taken together, there is a need for development and validation of standardized, 82 
robust, and quantitative methods for large-scale targeted metabolomics studies in a high-throughput 83 
manner to minimize bias associated with sample preparation and the analytical technique used.  84 

We have previously developed a robust, reproducible, and high-throughput targeted method 85 
for measuring 102 polar metabolites from various biological classes semi-quantitatively in a single 86 
injection [10,11]. The metabolites were selected according to the following criteria: have important 87 
roles in many biological processes, are known biomarkers in several diseases and technical feasibility 88 
for developing an analytical method that covers all the metabolites in a single assay. The selected 89 
metabolites come from 24 different classes (Table 1), covering a wide range of metabolic pathways. 90 
We created an in-house metabolite database by manually curating all the available information (i.e., 91 
names, HMDB, PUBCHEM, KEGG Ids, chemical properties, reported normal and abnormal 92 
concentration ranges, links to their structures) from the Human Metabolome Database (HMDB).  93 

The selected metabolites were separated by using Hydrophilic Interaction Liquid 94 
Chromatography (HILIC) and measured using triple quadrupole mass spectrometry (MS). Briefly, 95 
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after addition of an internal standards working solution, biofluid samples were extracted with 1% 96 
formic acid in 99% acetonitrile. Tissue samples were extracted using homogenization in two steps. 97 
Extraction was first performed with 1% formic acid in 99% acetonitrile; the second extraction used 98 
80/20% ACN/H2O+1% formic acid by protein precipitation followed by filtration through Ostro 99 
plates. After this step, 5 μL of filtered sample extract was injected into an Acquity UPLC system 100 
coupled to a Xevo® TQ-S triple quadrupole mass spectrometer (Waters Corporation, Milford, MA, 101 
USA), which was operated in both positive and negative polarities with a polarity switching time of 102 
20 msec for metabolite separation and quantification. Multiple Reaction Monitoring (MRM) 103 
acquisition mode was selected for metabolite quantification. A detailed method description and 104 
instrument parameters are provided elsewhere [10,11]. Our method involves automated sample 105 
preparation for biofluid samples and minimal manual steps for non-biofluid samples. This reduces 106 
the analysis time and inter-batch variation and minimizes human error. Semi-quantification of the 107 
metabolites was performed using external calibration curves (R2≥0.980) in their respective wide 108 
dynamic concentration ranges and 12 labeled internal standards were used for most of the 109 
metabolites to minimize matrix effects. 110 

Several analytical methods have also been developed for semi-quantitative measurement of 111 
large number of metabolites in a single run [12-16]. Li et al [12] measured 610 metabolites from 60 112 
biochemical pathways. However, their method requires approximately 40 minutes to separate all the 113 
metabolites (with poor resolution for some metabolites). Furthermore, their method was not 114 
applicable to all biological matrices. Similarly, Wei et al [15] detected approximately 200 metabolites 115 
in 10 minutes from plasma. However, their method lacks information on validation and for other 116 
biological matrices. Yuan et al [16] also provided a protocol for detection of approximately 250 117 
metabolites in a single method. However, they did not use an automated platform and a drying step 118 
in their method increases the analysis time of the method overall. Our method has clear advantages 119 
compared to other published methods, including shorter analysis time, high throughput, automation, 120 
and semi-quantitation using individual external 11-point calibration curves along with 12 labeled 121 
internal standards. Furthermore, the method has been used in many biomedical and clinical studies 122 
for biomarker discovery [10,11,17-37].  123 

The primary objective of this work is to show the robustness of our method through a thorough 124 
validation of our previously developed analytical method according to European Medicines Agency 125 
(EMA) guidelines. We also demonstrate automation of tedious and manual data processing tasks in 126 
high-throughput metabolomics analyses using an in-house developed R package. The R package 127 
automates various corrections and normalization steps to convert the raw peak area data to molecular 128 
concentrations for each compound in each sample and also provides quality evaluation of the data 129 
and reduces the manual work load significantly. 130 

 131 

2. Materials and Methods 132 

2.1. Chemicals and reagents 133 

All metabolite standards were purchased from Sigma-Aldrich (St. Louis, MO, USA). Internal 134 
standards were ordered from Cambridge Isotope Laboratory. Inc. (Tewksbury, MA, USA). LC-MS-135 
grade solvents, 2-proponol, acetonitrile, and methanol (HiPerSolv) were obtained from VWR 136 
International (Helsinki, Finland). Analytical-grade chemicals (formic acid, ammonium formate, and 137 
ammonium hydroxide) were obtained from Sigma-Aldrich. Deionized water (18 MΩ.cm at 25°C) 138 
used for solution preparation was made using a Milli-Q water purification system (Bamstead 139 
EASYpure RoDi ultrapure water purification system, Thermo scientific, Ohio, USA). Mouse tissues, 140 
including heart, liver, brain, spleen, and muscles were obtained from Innovative Research Laboratory 141 
(Novi, MI, USA). Whole blood was obtained from the Finnish Red Cross blood service (Helsinki, 142 
Finland), from which serum was prepared during method optimization and validation. Cell samples 143 
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were provided by our research collaborators. NIST Standard reference material (SRM) 1950 plasma 144 
was purchased from Sigma-Aldrich (Gillingham, UK). 145 

 146 

2.2. Metabolite extraction protocol and instrumentation 147 

All metabolites were extracted, separated with HILIC chromatography (Acquity BEH amide, 2.1 148 
X 100 mm, 1.7µ), and analyzed with a Waters Xevo TQ-S mass spectrometer using our previously 149 
published protocol [11]. The protocol for tissues and adherent cells was optimized for better recovery 150 
and chromatography and to cover a wide range of tissue and cell types with a single protocol. For 151 
tissue sample extractions, 90/10% ACN/H2O + 1% formic acid was used instead of 80/20% ACN/H2O 152 
+ 1% formic acid during the second step of extraction. Additionally, during cell pellet sample 153 
extraction, 80/20% ACN/H2O+1% formic acid was replaced with 90/10% ACN/H2O + 1% formic acid. 154 
After optimization, we used the tissues protocol for analysis of various biological matrices, such as 155 
heart, liver, placenta, brain, muscles, spleen, C. elegans, Drosophila larvae, dental carries, dried blood 156 
spots, and fecal samples. The cell pellet protocol was used for all types of adherent cells and E. coli 157 
and S. cerevisiae samples. The biofluid protocol was used for all types of biofluids, such as blood, 158 
plasma, serum, cell culture supernatant, CSF, and urine. 159 

 160 

2.3. Method Validation 161 

Validation of the method was performed to verify various parameters and the reliability of the 162 
developed method for analysis of a large number of samples. The method was validated according 163 
to EMA guidelines for bioanalytical method validation in terms of selectivity, specificity, linearity, 164 
accuracy, precision, extraction recovery, matrix effect, and stability [38]. In addition, we used pooled 165 
healthy human serum samples as internal quality control (QC) samples in all studies to correct signal 166 
drift during sample runs and to improve confidence in the statistical data. QC samples at high, 167 
medium and low (for serum) or high and low concentration levels (for tissues) were prepared by 168 
spiking a mixed standard solution in their respective homogenized biological matrices to perform all 169 
the method validation experiments. We performed validation for commonly used biological samples 170 
in metabolomics analyses, such as biofluid (serum), tissue (liver, brain and spleen), and cell samples. 171 
An aqueous calibration curve was used to calculate the concentration values during the method 172 
validation. The instrument performance for response reproducibility and sensitivity was always 173 
verified by six consecutive injections of medium concentration solution at the start of any experiment. 174 

2.3.1. Selectivity and specificity 175 

The selectivity and specificity for each metabolite were investigated using serum-spiked samples 176 
(N=6) with known amount of standard. Chromatographic interferences from other endogenous 177 
compounds of the biological matrix at the retention time of the target analyte for a particular 178 
metabolite were verified. The chromatographic peaks from spiked samples were compared with the 179 
standards by the retention times and if required from their respective MRM spectra. 180 

2.3.2. Linearity, accuracy, and precision 181 

To assess the linearity, accuracy, and precision, six replicates of spiked QC samples at high, 182 
medium, and low concentrations along with calibration curve were injected on three separate days. 183 
Calibration curve standards of 11 points were prepared via serial dilution. The curve was plotted by 184 
using the peak area response ratios (standard/labeled standard) versus the concentrations of the 185 
individual metabolites. The calibration curve was constructed using the regression equations (linear 186 
and quadratic) by applying appropriate weighing factor and by transforming the axis (both 187 
instrument response and theoretical concentration) into logarithmic or square root function. The 188 
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accuracy was calculated as measured value divided by the nominal value at each concentration level 189 
of the calibration curve standards in all three batches. Inter- and intra-batch variability was calculated 190 
by measuring coefficient of variation (%CV) at each QC concentration level. 191 

2.3.3. Recovery and matrix effect 192 

The recovery efficiencies for each analyzed metabolite was determined by comparing analytical 193 
results from QC samples spiked with standards mixture before and after extraction using different 194 
concentrations. The spike concentrations covered the calibration range. The matrix effect (percentage 195 
of ion suppression or enhancement of the MS signal) was determined by comparing the analytical 196 
response of QC samples that were spiked after extraction with the analytical response of aqueous 197 
spiked samples (diluent spiked with respective concentrations of QCs). Since there were endogenous 198 
metabolites, we subtracted the endogenous concentrations from the samples that were spiked. This 199 
experiment was performed using six QC replicates. 200 

2.3.4. Stability of the metabolites 201 

Wet extract, freeze-thaw, and stock solution stability for all metabolites were determined to 202 
check the integrity of the analytes in solvents and in QC samples at different conditions. To determine 203 
the wet extract stability, six replicates of extracted QC samples were kept in the auto-sampler at 5°C. 204 
The same samples in the same sequence were reinjected with freshly extracted QC samples and the 205 
results were compared.  206 

Freeze-thaw stability was evaluated up to three cycles by freezing and thawing the spiked QC 207 
samples stored at -80°C and comparing the concentrations against the freshly thawed and spiked QC 208 
samples. 209 

Long-term stock solution stability for metabolite stock solutions and intermediate solutions were 210 
checked by comparing the mean peak area of freshly prepared solutions with stored solutions at 4°C. 211 
All stability experiments were performed with six replicates of QCs. 212 

2.3.5. Sample carry-over 213 

Sample carry-over was evaluated by injecting the highest standard concentration (ULOQ) of the 214 
metabolites in the calibration curve followed by a series of blank injections and lowest standard 215 
concentration (LLOQ). The blank samples were evaluated for any signal at the retention time of 216 
particular metabolites and signal intensities of the blank samples were compared with the LLOQ 217 
samples. The acceptance criteria for carry-over was set at 20% of the peak area corresponding to the 218 
LLOQ level as per the EMA guidelines for bioanalysis. 219 

2.3.6. Quality control samples 220 

 Internal QC samples were prepared after separating serum from pooled healthy human 221 
blood samples. A volume of 350 µL of serum was aliquoted and stored at -80oC after providing a lot 222 
number and QC number. The concentration of QC samples that were incorporated in batches during 223 
the metabolomics studies were calculated for all the metabolites along with the experimental 224 
samples. Average concentrations (μmol/L) and %CV of the QC samples were calculated for each 225 
metabolite. The data were saved along with QC lot numbers, batch name, and run date. The QC data 226 
were collected from six different lots for a period of 5.5 years (N=539 replicates). An internal QC 227 
database has been maintained and used for quality checks.  228 

2.3.7. Comparison with reference material  229 

To evaluate the performance of our semi-quantitative method, commercially available standard 230 
reference plasma (NIST SRM 1950) [39] was analyzed using our method (N=8 replicates). The 231 
concentration values from the matched 17 metabolites were compared with the given standard 232 
reference values. 233 

 234 
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2.3.8. Cross-platform comparison 235 

To further evaluate the robustness and performance of our method, we performed a cross-236 
platform comparison using two completely different analytical platforms: (1) the commercially 237 
available AbsoluteIDQ p180 targeted metabolomics assay kit using LC-MS/MS and (2) a nuclear 238 
magnetic resonance (NMR) platform. We sent our internal QC samples to the BIOCRATES Life 239 
Sciences AG (Innsbruck, Austria) (N=3 replicates) and to the NMR Metabolomics Laboratory, School 240 
of Pharmacy, University of Eastern Finland (Kuopio, Finland) (N=3 replicates). Our QC samples were 241 
extracted and analyzed as described previously for the AbsoluteIDQ p180 kit [40] and for the NMR 242 
analysis of small molecules [41]. We compared these results with the results obtained from our 243 
method (N=4-5 replicates). 244 

 245 
 246 
2.4. Statistical analyses 247 

To estimate the median concentration values (μmol/L) of the metabolites from QC samples (N=539), 248 
we fitted a linear mixed model with the MCMCglmm R package [42] using an expanded parameter 249 
formulation and default settings. Observed data was assumed to be log-normally distributed and 250 
corrected for the six different QC lots. Credibility intervals (95%) of median concentration values 251 
were computed from 20 000 samples of the posterior distribution. Error bars shown in the scatter 252 
plots are 95% confidence intervals, while the coefficient of determination R2 refers to the simple linear 253 
regression between the two plotted variables. Coefficient of variation (CV) percentages were 254 
calculated as a measure of variability. To automate the downstream processing of the data produced 255 
by the instrument vendor software (TargetLynx), we built a data processing package called “Unlynx” 256 
in R statistical programming language. 257 

 258 

2.5. Automated data processing 259 

The “Unlynx” package parses the output of TargetLynx software (i.e., raw data containing the 260 
concentration values in PPB units) and produces a processed dataset in an Excel spreadsheet after 261 
performing a series of preprocessing operations.  262 
The preprocessing steps included the following:  263 
(i) Molecular weight normalization, in which the ppb values are normalized by the molecular 264 

weight of each compound, thereby converting the data from ppb units to µmoles. 265 
(ii) Process efficiency correction for the semi-quantification of metabolites without internal 266 

standards. 267 
(iii) Normalization using dilution factor for specific sample type if dilution was needed. 268 
(iv) Cell number normalization (for cell samples) to convert the concentration values per million 269 

cells. 270 
(v) Calculation of mean, standard deviation, and relative standard deviation (RSD) of molecular 271 

concentrations (resulting from the previous steps) for each phenotypic group. 272 
(vi) Outlier detection in each phenotypic group; if the concentration value of a compound in a 273 

sample is more than one or two standard deviation (SD) away from the mean of the 274 
phenotypic group, then it is marked as an outlier in the Excel data set in two different colors. 275 

(vii) QC check by comparing the RSD of QC samples in the current dataset against the internal 276 
database of QC sample RSDs (based on inter-day RSDs recorded over one year).  277 

 278 

 279 

 280 
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3. Results and Discussions 281 

3.1. Extraction method optimization 282 

The primary objective of this work was to optimize and validate our previously published 283 
protocol for different types of biological matrices. For tissue samples (placenta, liver, heart, brain, 284 
spleen, and muscles), the sample volumes of the tissues and extraction solvent volumes were 285 
optimized to fit the concentrations of most of the metabolites within the linearity of calibration curve 286 
for reliable results. We observed that most of the metabolites can be semi-quantified within the 287 
calibration curve range with 20±5mg of sample weight.  288 

Furthermore, we optimized the protocol with extraction solvent for tissues and adherent cells. 289 
Some of the metabolites (in particular inositol, GABA, asymmetric dimethylarginine, symmetric 290 
dimethylarginine, spermidine, ribose-5-phosphate, and orotic acid) had poor separation and 291 
irreproducible chromatography. Interference of isobaric compounds with other metabolites was also 292 
observed due to poor separation. Thus, different compositions of the extraction solvent were assessed 293 
to achieve the acceptable chromatography. We observed that modification of acetonitrile content 294 
from 80% to 90% and applying longer equilibration time for the HILIC column yielded acceptable 295 
chromatography and also good separation for most of the metabolites.  296 

We also optimized the extraction protocol for different sample types from various organisms, 297 
such as tissue types (adipose, endometrium, testicles, lung), fecal samples, dried blood samples, 298 
dental carries, biofilm, extracellular vesicles, mitochondrial isolates, drosophila, C. elegans, E. coli, and 299 
S. cerevesiae samples (Figure 1). 300 

 301 

 302 

Figure 1. Illustration of different sample types from various organisms that have been used for extraction 303 
method optimization.  304 

 305 

 306 

 307 

 308 
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3.2. Method Validation 309 

3.2.1. Selectivity and specificity 310 

There were no significant interference peaks from the matrix components in their respective 311 
retention time windows, indicating the selectivity of the metabolites in our method. We repeated the 312 
injections for five times from all different serum samples and confirmed that the peak eluted was 313 
only from the target analyte, indicating that they are specific to their corresponding MRM transitions 314 
(Figure 2). 315 

 

 

Figure 2. Representative chromatographic peaks of selected metabolites at their respective retention times 316 
in the QC serum sample. 317 

3.2.2. Linearity, accuracy, and precision 318 

To cover a broad concentration range, the linear or quadratic models were used and the variables 319 
from X and Y axes were logarithm or squareroot transformed to fit the calibration data [43]. The 320 
coefficient of determination (R2) value for each metabolite was greater than 0.980 at their respective 321 
concentration range, except for some metabolites such as aspartate, uracil, 2-deoxyuridine sucrose, 322 
and chenodeoxycholic acid (likely due to their broad peak shapes and poor recovery at lower 323 
concentration, Table S1).  324 

Concentration precision for QC samples was calculated by measuring %CV at high, medium, 325 
and low concentration level of QCs (N=6 replicates). In general, intra- and inter-day precision (CV) 326 
values were within 15% for most of the metabolites except acetoacetic acid, folic acid, sucrose, 327 
homoserine, 2-deoxyuridine, and cholic acid (Figure 3). However, at low concentrations, more than 328 
20% CV were observed for NAD and myo-inositol. This might be due to the low recoveries of these 329 
compounds. 330 

 331 
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Figure 3. Inter-batch variation of high concentrations of spiked QC serum samples (N=6) analyzed on 332 
3 different days. Data not shown for g-glutamylcysteine and orotic acid (CV>30%). 333 

3.2.3. Recovery and matrix effect 334 

For most of the metabolites, recoveries were found to be between 50% to 120% with good 335 
repeatability at all three concentrations levels (low, medium, and high) in both biofluid (serum) and 336 
tissues (brain, liver, and spleen). However, compounds such as UDP-glucose, IMP, cGMP, D-ribose 337 
5-phosphate, NAD, AMP, homocysteine, carnosine, and glutathione had recoveries less than 30% in 338 
serum. However, CV of recoveries at low, medium, and high concentration levels were within 25% 339 
except for cGMP in serum. Metabolites such as 1-methylhistamine, aspartate, glutamine, adenosine, 340 
and glutathione had recoveries over 120%. Histidine, ornithine, cystathionine, 3-OH-DL-kynurenine, 341 
carnosine, AMP, NAD, cGMP, IMP, and UDP-glucose had less than 30% recovery in some tissues 342 
types, indicating matrix effect or degradation (Figure 4). However, CV of repeatability at all 343 
concentration levels were within 15% except for 1-methylhistamine, aspartate, glutamine, 344 
glutathione, NAD, and UDP-glucose in some tissues.  345 

The matrix effect values were observed to be within the range of 0.6 to 1.8 (below 1 indicates ion 346 
suppression and above 1 indicates ion enhancement) for the metabolites in serum and tissues. The 347 
challenge of the matrix effect can be overcome by having individual isotope-labeled internal 348 
standards for each individual compound for true quantification. However, this is not practically 349 
possible for high-throughput metabolomics analyses, where usually the aim is relative comparison 350 
of cases vs controls. This is due to high costs and also because not all internal standards are 351 
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commercially available. In our method, we selected 12 labeled internal standards (Table S1), which 352 
represent chemically similar classes for optimal correction. This is because the matrix effect was 353 
expected to be the same for an analyte and its labeled isotope analogue. The process efficiency 354 
percentages were calculated for the metabolites without internal standards. The analyte 355 
concentrations determined through the external calibration were divided with the total process 356 
efficiency values to correct the concentration values of the analyte in the given biological sample. 357 
Also, the repeatability of matrix effect in terms of CV was less than 25% for most of the compounds. 358 
Reliable measurements are accordingly possible.  359 
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Figure 4. Percentage mean recoveries for all metabolites at low, medium, and high concentration 360 
levels of QCs (N=6 at each level) spiked in serum, brain, spleen, liver, and adherent cells. Data not 361 
shown for metabolites with poor chromatography and irreproducible results at different 362 
concentration levels. 363 

 364 
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3.2.4. Stability  365 

Endogenous metabolites are not stable due to degradation or conversion reactions. Hence, the 366 
stabilities of all metabolites were assessed under different conditions. For wet extract stability, 367 
approximately 90% of the metabolites were stable (stabilities range between 85% and 115%) for 35 368 
hours at 5oC in the auto-sampler (Figure 5A).  369 

For freeze and thaw cycle stability, most of the metabolites were stable even after three freeze 370 
and thaw cycles, with the exception of cGMP, succinate, glutathione, and homocysteine (stability 371 
below 30%, Figure 5B). This information is particularly important for clinical studies, where samples 372 
are often thawed once or twice.  373 

To determine the stability of working solutions, we started evaluating the stability from 374 
intermediate solutions for all the metabolites. Most of the metabolites were stable for 245 days at 375 
intermediate concentration when stored at 4oC. However, 16 metabolites had low stability at 376 
intermediate concentration; stabilities were thus determined at stock-level concentration for these 377 
compounds. We observed that the stock solutions were stable for 56 days except taurocholic acid, 378 
sucrose, UDP-glucose, and glutamine (Figure 6). Hence, these stock solutions were freshly prepared 379 
during the analysis. The stability of internal standards solutions was also assessed and they were 380 
stable for one year. 381 
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Figure 5. Percentage mean stability was calculated for three different concentrations (low, medium, 382 
and high) spiked in QC serum (N=6 at each level) during (A) wet extract and (B) freeze-thaw stability 383 
for all the metabolites.  384 
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Figure 6. Bar graph representing stability of stock solutions and intermediate solutions of metabolites 385 
that were used to freshly prepare calibration curve standards during the analysis. 386 

3.2.5. Sample carryover 387 

In general, for majority of the analyte MRM channels neither peak nor any interference in the 388 
blank samples was detected after injection of metabolite standard with high concentration. For 389 
compounds such as spermidine, succinate, AMP, and IMP, carryover eluted constantly even after 390 
washing but was not significantly high. Other than these compounds, we can conclude that the 391 
column, needle, syringe, and seal washes were sufficient to avoid any inter-sample carryover. 392 

3.2.6. Reproducibility 393 

To ensure good quality of the data, internal QC samples were incorporated to a batch of samples 394 
and run after every tenth experimental sample. QC data were collected from 25 different batches that 395 
were performed during various metabolomics studies over a period of 1 year. Mean concentrations 396 
and %CV values of QC replicates within each batch were calculated for all the 25 batches. We 397 
observed that approximately 80% to 85% of the metabolites were always present within 25% of CV 398 
values (Figure 7). The higher %CV values for the remaining metabolites could be partially explained 399 
by low abundance in human serum, low recovery, or poor chromatography; these were consistently 400 
found to be below LLOQ within the 25 batches.  401 

In addition, %CV values for retention times and R2 values of calibration curves for each 402 
metabolite in all the 25 batches were calculated to verify the reproducibility. Based on these results, 403 
the repeatability was excellent except for a few compounds over a period of 1 year. No drifting effect 404 
for the retention times (CV<4%) was observed, and excellent reproducibility was observed for R2 405 
values of calibration curves (CV<3%) (Figure 8). On the basis of these results, our method can be 406 
considered accurate, reliable, and reproducible. 407 

 408 
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 409 
Figure 7. Percentage of metabolites with less than 25% CV values of QC concentrations in 25 different batches 410 
analyzed over a period of 1 year. 411 
 412 
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 413 

Figure 8. Reproducibility of (A) retention time of respective chromatographic peaks and (B) regression 414 
coefficient values (R2) from external calibration curve standards for each metabolite analyzed in 25 different 415 
batches over a period of 1 year. 416 
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3.2.7. Quality management 417 

To obtain reproducible and accurate data, we set up a strict quality management and electronic 418 
lab notebook system. To reduce the bias from sample analysis, we always double-randomized the 419 
samples (i.e., one before the sample extraction step and one before injecting into the LCMS system 420 
across different phenotypes of the samples). For stabilization of response and retention time, we 421 
always verified a few runs of highest calibration level 11 before injecting the experimental samples. 422 
During the stabilization process, we also verified the chromatography including peak shape, 423 
retention time, and response of all the metabolites. Any significant changes in the intensity, peak 424 
shape, retention time, and system pressure were thoroughly investigated and corrected by resolving 425 
the problems before injection of experimental samples.  426 

To ensure the integrity of LCMS runs, QC samples were run at every tenth experimental sample 427 
and a blank sample at every fifth run during all the metabolomics studies within a batch. 428 
Furthermore, chromatography and response of QC samples (including chromatography of some 429 
metabolites and IS response variation) and blank runs were always verified after completion of the 430 
runs and before starting data processing. In case of any abnormality observed for particular samples, 431 
those samples were reinjected or reanalyzed. Only after passing these quality checks we proceed 432 
further to process the data. This included verifying the accuracy of calibration curve standards, 433 
chromatography peak integrations, IS response variation, and verifying LLOQ and ULOQ for each 434 
sample for all metabolites within a batch. The high-throughput targeted metabolomics workflow is 435 
shown in Figure 9. 436 

 437 

 438 

Figure 9. A typical workflow for high-throughput targeted metabolomics analysis.  439 
 440 

 441 

We collected concentration values (μmol/L) for our QC samples within metabolomics studies 442 

conducted over a period of 5.5 years from six different lots (N=539 replicates). The median values of 443 

each metabolite together with a 95% credibility interval are presented in Table 1. These represent a 444 

reference level for a population of healthy adult individuals. 445 
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Table 1. Median concentration levels (μmol/L) measured in pooled healthy adult serum samples. 446 

  Population median (µmol/L) 

   95% credibility interval 

Class and Metabolite Name HMDB Id Estimate Lower Upper 

1. Alpha amino acids and derivatives         

2-Aminoisobutyrate HMDB0001906 1.128 0.809 1.509 

4-L-Hydroxyproline HMDB0000725 15.895 11.300 21.184 

5-Hydroxytryptophan HMDB0000472 0.043 0.031 0.058 

ADMA HMDB0001539 0.963 0.248 2.230 

Alanine HMDB0000161 477.946 339.667 635.383 

Aminoadipate HMDB0000510 2.121 1.502 2.818 

Arginine HMDB0000517 84.902 60.795 113.172 

Asparagine HMDB0000168 47.204 33.635 62.727 

Aspartate HMDB0000191 26.932 18.786 35.424 

Betaine HMDB0000043 100.045 72.251 134.758 

Citrulline HMDB0000904 27.815 19.812 36.972 

Creatine HMDB0000064 61.180 44.481 82.161 

Creatinine HMDB0000562 66.085 47.095 88.066 

Cystathionine HMDB0000099 0.131 0.093 0.174 

Dimethylglycine HMDB0000092 3.541 2.521 4.733 

GABA HMDB0000112 0.195 0.138 0.259 

G-Glutamylcysteine HMDB0001049 2.966 2.116 3.946 

Glutamate HMDB0000148 53.446 37.691 70.613 

Glutamine HMDB0000641 791.142 560.999 1050.605 

Glutathione HMDB0000125 0.021 0.015 0.028 

Glycine HMDB0000123 243.717 172.929 325.417 

Guanidoacetate HMDB0000128 2.635 1.880 3.498 

Histidine HMDB0000177 88.616 62.718 117.848 

Homocysteine HMDB0000742 0.480 0.124 1.153 

Homoserine HMDB0000719 0.337 0.240 0.448 

Hydroxykynurenine HMDB0000732 0.096 0.068 0.128 

Isoleucine HMDB0000172 83.316 58.352 110.232 

Kynurenine HMDB0000684 1.146 0.813 1.520 

Leucine HMDB0000687 126.072 90.139 167.353 

Lysine HMDB0000182 176.519 127.474 236.393 

Methionine HMDB0000696 29.201 21.081 39.249 

Ornithine HMDB0000214 90.177 65.043 120.796 

Phenylalanine HMDB0000159 88.326 63.916 117.977 

Proline HMDB0000162 251.689 180.529 335.079 

SDMA HMDB0003334 2.862 2.060 3.834 

Serine HMDB0000187 148.482 107.012 198.507 

Threonine HMDB0000167 152.013 108.810 203.651 

Tryptophan HMDB0000929 33.961 24.104 45.261 
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Tyrosine HMDB0000158 65.558 45.778 86.262 

Valine HMDB0000883 394.932 282.460 526.776 

2. Benzoic acids and derivatives         

3-Hydroxanthranilate HMDB0001476 0.188 0.134 0.251 

Hippurate HMDB0000714 6.101 4.362 8.124 

3. Beta amino acids and derivatives         

Carnosine HMDB0000033 0.014 0.010 0.019 

Pantothenate HMDB0000210 0.310 0.220 0.411 

4. Bile acids, alcohols and derivatives         

Chenodeoxycholate HMDB0000518 53.661 38.588 71.987 

Cholate HMDB0000619 0.676 0.483 0.900 

Glycocholate HMDB0000138 0.373 0.267 0.498 

Taurochenodesoxycholate HMDB0000951 0.507 0.359 0.673 

5. Carbohydrates and carbohydrate 

conjugates 
        

D-Ribose-5-P HMDB0001548 1.273 0.919 1.710 

Glyceraldehyde HMDB0001051 239.946 172.630 322.782 

Sucrose HMDB0000258 1.417 1.015 1.886 

6. Dialkylamines         

Spermidine HMDB0001257 33.601 23.958 44.759 

7. Dicarboxylic acids and derivatives         

Succinate HMDB0000254 7.912 5.597 10.491 

8. Fatty Acyls         

Acetylcarnitine HMDB0000201 9.709 2.323 22.264 

Decanoylcarnitine HMDB0000651 0.305 0.087 0.720 

Hexanoylcarnitine HMDB0000705 0.055 0.015 0.129 

Isobutyrylcarnitine HMDB0000736 0.248 0.061 0.578 

Isovalerylcarnitine HMDB0000688 0.102 0.027 0.240 

Octanoylcarnitine HMDB0000791 0.297 0.076 0.691 

Propionylcarnitine HMDB0000824 0.423 0.119 0.998 

9. Folates         

Folate HMDB0000121 0.011 0.003 0.027 

10. Glucuronic acid and derivatives         

Glucuronate HMDB0000127 1.960 1.404 2.627 

11. Imidazoles         

1-Methylhistamine HMDB0000898 0.006 0.004 0.008 

Allantoin HMDB0000462 2.447 1.741 3.254 

12. Indoles and derivatives         

5-Hydroxyindoleacetate HMDB0000763 0.074 0.053 0.099 

13. Keto acids and derivatives         

Acetoacetate HMDB0000060 6.713 4.798 8.988 

14. Organic phosphoric acids and 

derivatives 
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Phosphoethanolamine HMDB0000224 3.316 2.356 4.420 

15. Organosulfonic acids         

Taurine HMDB0000251 221.359 156.971 294.936 

Taurocholate HMDB0000036 0.083 0.060 0.112 

16. Oxides         

Trimethylamine N-oxide HMDB0000925 1.477 1.055 1.973 

17. Phenols         

Homogentisate HMDB0000130 0.115 0.082 0.153 

Normetanephrine HMDB0000819 0.0010 0.0007 0.0014 

18. Pteridines and derivatives         

Neopterin HMDB0000845 0.005 0.004 0.007 

19. Purines and derivatives         

Adenine HMDB0000034 0.007 0.005 0.009 

Adenosine HMDB0000050 0.008 0.006 0.011 

AMP HMDB0000045 0.106 0.075 0.140 

cAMP HMDB0000058 0.005 0.003 0.006 

cGMP HMDB0001314 0.009 0.002 0.026 

Guanosine HMDB0000133 0.445 0.315 0.593 

Hypoxanthine HMDB0000157 58.838 41.908 78.087 

IMP HMDB0000175 0.212 0.151 0.282 

Inosine HMDB0000195 36.061 25.798 48.008 

Xanthine HMDB0000292 3.926 2.790 5.211 

Xanthosine HMDB0000299 0.352 0.249 0.466 

20. Pyridines and derivatives         

4-Pyridoxate HMDB0000017 0.057 0.042 0.077 

Cotinine HMDB0001046 0.531 0.382 0.710 

NAD HMDB0000902 0.015 0.011 0.020 

Niacinamide HMDB0001406 0.395 0.279 0.524 

Nicotinate HMDB0001488 0.012 0.009 0.017 

Pyridoxine HMDB0000239 0.0007 0.0005 0.0009 

21. Pyrimidines and derivatives         

Cytidine HMDB0000089 0.003 0.002 0.004 

Cytosine HMDB0000630 0.080 0.056 0.106 

Deoxycytidine HMDB0000014 0.871 0.440 1.461 

Deoxyuridine HMDB0000012 0.543 0.391 0.726 

Orotate HMDB0000226 0.036 0.006 0.096 

UDP Glucose HMDB0000286 0.232 0.165 0.308 

Uracil HMDB0000300 0.058 0.042 0.078 

22. Quaternary ammonium salts         

Carnitine HMDB0000062 85.669 61.210 114.060 

Choline HMDB0000097 95.170 67.565 126.279 

23. Quinolines and derivatives         

Kynurenate HMDB0000715 0.044 0.031 0.058 
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24. Sugar alcohols         

Myo-inositol HMDB0000211 16.989 12.075 22.606 

Sorbitol HMDB0000247 3.692 2.617 4.904 

3.2.8. Robustness and cross-platform comparison 447 

   To verify the performance of our method, we analyzed the NIST standard reference material SRM 448 
1950 plasma. The correlation coefficient for 17 matched metabolites between the given reference 449 
values and from our semi-quantitative method was 0.967, indicating the high performance of our 450 
method (Figure 10A). 451 

Furthermore, we verified cross-platform comparability. This was achieved by comparing 452 
metabolite concentrations analyzed using our method against two completely different analytical 453 
platforms (BIOCRATES AbsoluteIDQ p180 kit and NMR) in our QC samples. We obtained a high 454 
correlation coefficient for matched 38 metabolites measured using BIOCRATES AbsoluteIDQ p180 455 
kit and our method (R2=0.975) (Figure 10B) and for matched 22 metabolites measured using NMR 456 
and our method (R2=0.884) (Figure 10C). These results demonstrate the robustness of our method. 457 

 458 

 459 

 460 

 461 

 462 
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 463 
  464 
Figure 10. (A) Comparison of metabolite concentration reference values given in the NIST SRM 1950 plasma 465 
against our method. Comparison of metabolite concentrations in our QC samples measured between our method 466 
and (B) BIOCRATES AbsoluteIDQ p180 kit, and (C) NMR analyses.  467 
Error bars represent 95% confidence intervals. 468 

 469 

3.3 Automated data processing 470 

  After the raw data processing using the instrument-coupled software (TargetLynx), a single-471 
sheet excel file containing information such as sample ids, file name, and concentrations (PPB) is 472 
generated in a complex format for all metabolites. For example, in a single-batch run of 85 samples, 473 
after data processing the concentration values for all samples are obtained under each metabolite 474 
separately. This means that if a data matrix of 85 samples x 100 metabolites is desired, each individual 475 
concentration value must be copied and pasted in another sheet. PPB values are then converted into 476 
µM and corrected for process efficiencies and dilution factors (if any) and normalized with tissue 477 
weight or cell number depending on the sample type. Apart from these steps, as the samples are 478 
analyzed in a randomized manner, the next step is to rearrange the experimental samples according 479 
to phenotypic group and also to separate the QC samples. Manual data formatting to create a ready-480 
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to-use data matrix for visualization and for downstream statistical analyses is a tedious and time-481 
consuming task and (most importantly) is prone to errors. 482 

We have implemented a software package “Unlynx” in R statistical language. This package takes 483 
the raw data produced by TargetLynx software as input and produces processed data into ready-to-484 
use spreadsheets. Using the R package, all the PPB values are converted into µmol/L, µmol/g, or 485 
µmol/million cells by diving with molecular weight of the respective metabolites and correction 486 
factor (weight of tissues, number of cells, and dilution factor) with respect to sample types. In 487 
addition, mean concentrations and %CV of QC samples for all the metabolites are calculated and 488 
used to evaluate quality by comparing with the in-house QC database constructed based on inter-day 489 
%CV. Furthermore, retrieving LLOQ, ULOQ, and outlier values in each phenotypic group according 490 
to one and two standard deviations, retention time values, and R2 values for each metabolite is 491 
implemented in the R software. After implementing the automated data processing, we had reduced 492 
the 2-day manual workload to a few minutes. 493 

Thus, after processing the data using TargetLynx, we routinely export all results to an excel file 494 
for automated data processing using “Unlynx” software. Typically, the data resulting from such 495 
automated data processing is suitable for more specialized data analyses (such as statistical 496 
hypotheses testing, classification, regression, and clustering) aimed at answering specific scientific 497 
questions related to the study design. 498 

 499 

3.4 Applicability of the method 500 

We have applied our fully validated analytical methodology in various international and national 501 
biomedical research projects, epidemiological studies, clinical studies including dietary 502 
interventions, and clinical trials. We have successfully implemented our technology in the following 503 
research fields, including but not limited to: mitochondrial metabolism/disorders [11,17-23], cancer 504 
[24,25], bone metabolism [12], endocrinology [26,27], psychiatric disorders [28], inflammatory bowel 505 
disease [29], viral infections [30-33], allergies [34,35], circadian rhythms [36], and pain research [37]. 506 

 507 

4. Conclusions 508 

The developed high-throughput targeted and semi-quantitative method was optimized for various 509 
biological matrices (biofluids, tissues, cells) from different organisms. We validated the analytical 510 
method according to EMA guidelines for bioanalytical methods and showed good accuracy, 511 
reproducibility, selectivity, specificity, recoveries, and stability. We have also implemented a strict 512 
quality management and electronic notebook system. Reproducibility was demonstrated by 513 
consistent results for retention time and correlation coefficient of calibration curves, and 514 
concentrations of QC samples over a period of 1 year. Reliability was shown by the excellent 515 
correlation between metabolite concentrations measured using our method and the NIST reference 516 
values. Moreover, robustness was shown via good cross-platform comparability between two 517 
completely different analytical platforms. Furthermore, we have automated the downstream data 518 
processing steps to handle sample analyses in a high-throughput manner, which is particularly 519 
valuable for analyzing population cohorts and large clinical samples for metabolomics studies. We 520 
have successfully applied this method in many biomedical research projects and clinical trials, 521 
including epidemiological studies for biomarker discovery.  522 

 523 

Supplementary Materials: The following are available online at www.mdpi.com/link, Table S1: List of 524 
metabolites showing molecular weight, retention time, linearity of calibration, and compound dependent MS 525 
parameters. 526 
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