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SUMMARY 10	

Single-cell RNA sequencing (scRNA-seq) using droplet microfluidics occasionally 11	

produces transcriptome data representing more than one cell. These technical artifacts are 12	

caused by cell doublets formed during cell capture and occur at a frequency proportional to the 13	

total number of sequenced cells. The presence of doublets can lead to spurious biological 14	

conclusions, which justifies the practice of sequencing fewer cells to limit doublet formation rates. 15	

Here, we present a computational doublet detection tool – DoubletFinder – that identifies 16	

doublets based solely on gene expression features. DoubletFinder infers the putative gene 17	

expression profile of real doublets by generating artificial doublets from existing scRNA-seq data. 18	

Neighborhood detection in gene expression space then identifies sequenced cells with 19	

increased probability of being doublets based on their proximity to artificial doublets. 20	

DoubletFinder robustly identifies doublets across scRNA-seq datasets with variable numbers of 21	

cells and sequencing depth, and predicts false-negative and false-positive doublets defined 22	

using conventional barcoding approaches. We anticipate that DoubletFinder will aid in scRNA-23	

seq data analysis and will increase the throughput and accuracy of scRNA-seq experiments. 24	

  25	

INTRODUCTION 26	

Since its introduction nearly a decade ago, scRNA-seq has been used to elucidate 27	

previously unknown cell types and reconstruct developmental dynamics among heterogeneous 28	

cell populations (Human Cell Atlas Consortium, 2017). At first, scRNA-seq workflows were 29	
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limited to tens to hundreds of cells which hindered data interpretation due to batch effects and 30	

low statistical power (Stegle et al., 2016). Today, sequencing thousands to hundreds of 31	

thousands of cells is routine due to the advent of droplet microfluidics and nanowell-based 32	

sequencing strategies (Macosko et al., 2015; Klein et al., 2015; Zheng et al., 2017; Gierahn et 33	

al., 2017; Takara Bio USA, 2018). These techniques rely on a Poisson loading strategy to 34	

compartmentalize individual cells and mRNA capture beads before cell lysis, mRNA capture, 35	

and transcript barcoding via reverse transcription. Since cells are captured randomly, the 36	

proportion of droplets containing >1 cell – known as doublets – scales linearly across an 37	

experimentally-relevant range of input cell concentrations (10X Genomics, 2017), justifying the 38	

practice of limiting the number of sequenced cells to minimize doublet formation rates.  39	

The confounding effects of doublets in scRNA-seq data are well-appreciated (Ilicic et al., 40	

2016). However, genomic and cellular barcoding techniques for identifying doublets have only 41	

recently been developed (Stoeckius et al., 2017; Kang et al., 2018; Gehring et al., 2018; Guo et 42	

al., 2018; Rosenberg et al., 2018). In one such strategy, distinct samples receive unique 43	

oligonucleotide barcodes delivered by conjugation to antibodies targeting broadly expressed 44	

cell-surface antigens. When the barcoded pools are combined and sequenced, doublets can be 45	

identified according to the co-occurrence of orthogonal cell ‘hashtags’ (Stoeckius et al., 2017). 46	

In a second strategy, doublets in a pooled population of cells from different individuals are 47	

identified by a computational pipeline, Demuxlet, which facilitates doublet inference based on 48	

the co-occurrence of mutually-exclusive SNP profiles (Kang et al., 2018).  49	

By detecting doublets, both Demuxlet and Cell Hashing minimize technical artifacts while 50	

enabling users to “superload” droplet microfluidics devices for increased scRNA-seq throughput. 51	

However, both methods have limitations. First, neither method can identify doublets formed from 52	

identically-barcoded cells. Second, neither method is universally applicable across experimental 53	
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systems, since Demuxlet requires genetically distinct samples and Cell Hashing requires unique 54	

antibody-oligonucleotide conjugate panels for the cell types and species of interest. Third, 55	

neither method can be used to analyze existing scRNA-seq datasets. For these reasons, 56	

computational methods for defining doublets based on gene expression patterns alone are 57	

highly desirable.   58	

Here, we present DoubletFinder, a computational doublet detection tool that relies solely 59	

on gene expression data. Beginning with the observation that doublets cluster separately from 60	

singlets in high-dimensional gene expression space (Stoeckius et al., 2017; Kang et al., 2018), 61	

we reasoned that real doublets would cluster together with synthetic doublets formed by 62	

averaging the expression data of two real cells. By merging artificial doublets with existing 63	

scRNA-seq data, we can distinguish doublets from singlets according to the proportion of 64	

artificial nearest neighbors (pANN) for each real cell in gene expression space. Thresholding the 65	

resulting pANN distribution to match the expected number of doublets provides an accurate 66	

metric for doublet prediction that can be applied to any scRNA-seq dataset.  67	

 68	

RESULTS 69	

DoubletFinder predicts doublets more accurately than nUMIs: Existing strategies for identifying 70	

doublets using gene expression features primarily rely on two sources of information. First, since 71	

the total number of captured mRNA molecules is expected to be greater for doublets than 72	

singlets, doublets are commonly excluded by thresholding cells with high numbers of unique 73	

molecular identifiers (nUMIs; Islam et al., 2014; Ziegenhain et al., 2017). While intuitively 74	

appealing, technical variability in mRNA capture efficiency and biological variability in mRNA 75	

content limits the utility of nUMI-based doublet predictions (Stoeckius et al., 2017). In a second 76	

strategy, doublets are removed from scRNA-seq data by identifying groups of cells exhibiting 77	
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the co-expression of genes with non-overlapping expression patterns in vivo (Rosenberg et al., 78	

2018). This strategy cannot be applied to biological systems where such marker genes are 79	

unknown, undetected, or unavailable. Moreover, such a strategy could theoretically lead to the 80	

erroneous removal of new cell types or developmental states with intermediate expression 81	

profiles (Fig. 1A). Given these shortcomings, new methods for predicting doublets using gene 82	

expression features alone would greatly benefit the single-cell genomics field. 83	

DoubletFinder predicts doublets in a fashion agnostic to nUMIs, marker gene expression, 84	

genetic background or exogenous barcodes and can be split into four distinct steps: (1) Generate 85	

artificial doublets, (2) Merge real and artificial data and reduce dimensionality with principal 86	

component analysis (PCA), (3) Define the nearest neighbors for every real cell in PC space, and 87	

(4) Compute and threshold the proportion of artificial nearest neighbors (pANN; Fig. 1B). We 88	

tested the efficacy of DoubletFinder against scRNA-seq datasets where doublets are empirically-89	

defined: The publically-available Cell Hashing and Demuxlet datasets comprised of 15,178 and 90	

35,524 peripheral blood mononuclear cells (PBMCs), respectively. Demuxlet PBMCs were 91	

derived from 8 genetically-distinct human sources while Cell Hashing PBMCs were barcoded 92	

with 8 distinct antibody-oligonucleotide conjugate panels. Using optimized input parameters 93	

(Supplementary Materials, Fig. S1), we tested whether pANN outperforms nUMIs as a doublet-94	

prediction feature by using receiver operating curve (ROC) analysis to compare logistic 95	

regression models trained on the Cell Hashing data using pANN alone, nUMIs alone, or both 96	

(Fig. 1C). ROC analysis demonstrates that pANN predicts doublets more accurately than nUMIs. 97	

Moreover, the model trained with both features performed nearly indistinguishably to the pANN-98	

alone model, suggesting that DoubletFinder captures all of the doublet-specific information 99	

inherent to nUMIs. 100	

 101	
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DoubletFinder predicts Cell Hashing doublets: To make specific doublet predictions for each 102	

cell, DoubletFinder rank-orders cells by their pANN values and thresholds this list according to 103	

the number of expected doublets. To test the robustness of pANN thresholding, the number of 104	

expected doublets was determined using two different strategies (Fig. 1D). First, since 8 samples 105	

were multiplexed in the Cell Hashing and Demuxlet studies, we reasoned that 1/8 of the true 106	

doublets were undetected because they were formed from genetically-identical or identically-107	

barcoded cells. Thus, we thresholded pANN according to the number of detected doublets with 108	

an assumed 12.5% false negative rate (b). Second, since the doublet formation rate can be 109	

accurately estimated by applying Poisson statistics to the number of cells loaded into the droplet 110	

microfluidics device (10X Genomics, 2017), we thresholded pANN according to this rate. For 111	

standard scRNA-seq experiments where doublets are not empirically-defined, pANN can only 112	

be thresholded using the Poisson strategy.  113	

Depending on the threshold used, DoubletFinder predicted 2680 or 2155 doublets when 114	

applied to the full Cell Hashing dataset. Single-cell gene expression data was visualized using 115	

t-stochastic neighborhood embedding (t-SNE; van der Maaten and Hinton, 2008) and cells were 116	

colored according to their real and predicted doublet status (Fig. 1E). Visual comparison of 117	

doublets in t-SNE space illustrates that DoubletFinder predictions closely track Cell Hashing 118	

results. This result is further supported by the observation that the frequency of DoubletFinder 119	

predictions is highly enriched in Cell Hashing-defined doublet groups relative to singlet groups 120	

(Fig. 1F), regardless of the thresholding strategy used.  121	

 122	

DoubletFinder predicts Cell Hashing false-negatives: DoubletFinder predictions exhibit a less 123	

‘speckled’ appearance in t-SNE space relative to the Cell Hashing results (Fig. 2A, insets). 124	

Considering that doublets often cluster separately from singlets in gene expression space 125	
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(Stoeckius et al., 2017; Kang et al., 2018), we reasoned that cells called as singlets via Cell 126	

Hashing, that nonetheless co-cluster with high-confidence doublets, are actually false-negatives 127	

derived from identically-barcoded cells. Two main predictions follow from this line of reasoning. 128	

First, if the putative false negatives are truly doublets, then they should exhibit gene expression 129	

patterns associated with distinct cell types. In line with this prediction, Cell Hashing-defined 130	

doublets and singlets in the highlighted region express marker genes for both B cells and NK 131	

cells (Fig. 2B) – hematopoietic cell types that do not share a common progenitor in peripheral 132	

blood. Second, since false negative cells would be associated with the combined barcodes of 133	

two cells, the nUMI counts for the most abundant barcode should be significantly higher in false 134	

negatives than high-confidence doublets. Moreover, since false negatives would not be 135	

associated with high levels of multiple barcodes, the second most abundant barcode should be 136	

similar to high-confidence singlets and significantly lower relative to high-confidence doublets. 137	

Statistical analysis supports these predictions (Wilcoxon rank sum test, p < 10-13; Fig. 2C). 138	

Collectively, these results demonstrate that DoubletFinder robustly recapitulates doublet 139	

assignments and accurately predicts Cell Hashing false-negatives.  140	

 141	

DoubletFinder predicts Demuxlet doublets and identifies putative false-positives: To test whether 142	

DoubletFinder performance is sensitive to changes in the number of sequenced cells and 143	

sequencing depth, we applied DoubletFinder to the Demuxlet dataset. In addition to having more 144	

cells than the Cell Hashing data, the average number of UMIs (2408 vs 676) and genes (837 vs 145	

376) per cell is also greater in the Demuxlet data. In line with our previous results, visual 146	

comparison of real and predicted doublets using t-SNE illustrates that DoubletFinder 147	

successfully identifies all doublet-enriched regions in gene expression space (Fig. 2D).  148	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 26, 2018. ; https://doi.org/10.1101/352484doi: bioRxiv preprint 

https://doi.org/10.1101/352484


	 7	

 As with our Cell Hashing comparison, there were a number of regions in gene expression 149	

space where DoubletFinder predictions differed from Demuxlet classifications. Specifically, there 150	

were many DoubletFinder-defined doublets called as singlets by Demuxlet that give doublet-151	

enriched clusters the ‘speckled’ appearance discussed above. Moreover, in contrast to the Cell 152	

Hashing comparison, there was a subset of cells classified as doublets by Demuxlet and singlets 153	

using DoubletFinder (Fig. 2D, insets). Interestingly, the majority of these discordant calls are 154	

scattered amongst high-confidence singlet clusters in gene expression space. This observation 155	

can be explained by two alterative models. In one model, these discordant calls are caused by 156	

homotypic doublets – i.e., doublets formed from cells of the same type – which presumably have 157	

a similar transcriptional profile to singlets and, thus, would be more difficult for DoubletFinder to 158	

detect relative to heterotypic doublets. Alternatively, the discordant calls are due to false-positive 159	

Demuxlet classifications.  160	

If these cells were in fact homotypic doublets left undetected by DoubletFinder, then one 161	

would expect that DoubletFinder was insensitive to homotypic doublets throughout the Demuxlet 162	

dataset. To test this possibility, we tracked the cell types comprising each artificial doublet and 163	

deconvolved pANN values into homotypic and heterotypic components. Visualization of cells 164	

with majority homotypic or heterotypic nearest neighbors highlights a region of homotypic 165	

doublets formed from CD4+ T-cells (Fig. 2E; Supplementary Materials, Fig. S2), which suggests 166	

that DoubletFinder has the sensitivity to detected certain classes of homotypic doublets. 167	

Moreover, the scattering of discordant doublet classifications amongst high-confidence singlet 168	

clusters in gene expression space is also evident in Demuxlet classifications of the Cell Hashing 169	

data (Supplementary Materials, Fig. S2). Cell Hashing is sensitive to homotypic doublets, which 170	

suggests that the discordant calls are not a consequence of homotypic doublets missed by 171	

DoubletFinder. Finally, if the putative false-positive calls are homotypic doublets, one would 172	
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expect the number of RNA UMIs to approximate levels observed for high-confidence doublets. 173	

Interestingly, the RNA nUMI distribution for putative false-positives is nearly indistinguishable to 174	

high-confidence singlets (Wilcoxon rank sum test, p = 0.34), while high-confidence doublets and 175	

putative false-negatives are both significantly enriched for RNA nUMIs (Wilcoxon rank sum test, 176	

p < 10-15; Fig. 2F). While it is difficult to definitively ascertain the ground truth for these discordant 177	

calls, these results collectively demonstrate that DoubletFinder is robust across a range of cell 178	

numbers and sequencing depths and prospectively predicts Demuxlet false-positives. 179	

 180	

DISCUSSION 181	

 High-throughput scRNA-seq suffers from the formation of doublets due to the inherent 182	

nature of Poisson cell loading. Doublets can lead to spurious conclusions during analysis when 183	

left unidentified because the resulting artefactual expression data may be interpreted as 184	

previously-undescribed cell types, developmental intermediates, or disease states. As a result, 185	

it has become common practice to minimize the doublet formation rate by minimizing the ratio 186	

of sequenced cells to mRNA capture beads. Although recent advances in direct doublet 187	

detection methodologies have proven to be effective, they are not universally or retroactively 188	

applicable. For this reason, complementary techniques for predicting doublets based only on 189	

gene expression data have the potential to further increase scRNA-seq throughput while 190	

removing technical artifacts.  191	

Towards this goal, DoubletFinder accurately identifies doublets in scRNA-seq data by 192	

integrating artificial doublets into real data and computing the pANN for every real cell. We have 193	

shown that DoubletFinder distinguishes real doublets from singlets better than nUMIs in the Cell 194	

Hashing dataset. Moreover, we demonstrate that DoubletFinder accurately predicts doublets for 195	

two independent PBMC scRNA-seq datasets of different sizes and sequencing depths. As these 196	
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are the only publically available data with empirically-defined doublets, it is unclear whether 197	

DoubletFinder will require further optimization for scRNA-seq datasets describing different 198	

tissues or biological systems. We have also shown that DoubletFinder identifies false-negative 199	

and putative false-positive doublet classifications present in these datasets, which supports the 200	

use of DoubletFinder in concert with Cell Hashing, Demuxlet, and other barcoding approaches. 201	

Finally, we demonstrate that DoubletFinder performs robustly with pANN thresholding strategies 202	

that differed by >5000 cells (Fig. 1D). This suggests that DoubletFinder can be applied in 203	

experimental contexts where doublet formation rates differ significantly from industry estimates 204	

– e.g., clumpy single-cell suspensions or especially cohesive cell types. Collectively, 205	

DoubletFinder represents a fast, easy-to-use doublet detection strategy that will aid the single-206	

cell genomics community in data analysis and enable high-throughput scRNA-seq technologies 207	

to be utilized to their fullest potential. 208	

 209	

MATERIALS & METHODS 210	

DoubletFinder Overview: Artificial doublets were generated from raw UMI count matrices via 211	

random sampling of cell expression profiles without replacement before pre-processing using 212	

the ‘Seurat’ R package, as described previously (Butler et al., 2018). Notably, no sources of 213	

variation were regressed out of the merged data before PCA, and the top 10 PCs – chosen via 214	

inflection point estimation on the corresponding elbow plot – were used to define the Euclidean 215	

distance matrix using the ‘dist’ R function. 216	

 217	

ROC Analysis: ROC analysis-based model comparisons were performed using the ‘ROCR’ 218	

(Sing et al., 2005) and ‘pROC’ (Robin et al., 2011) R packages. Briefly, logistic regression 219	

models were defined on a training set comprising half the total data using the ‘glm’ R function 220	
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with the link argument set to ’logit’. These models were then used to create a vector describing 221	

each cell’s doublet probability with the ‘predict’ R function. ROC analysis was then performed by 222	

calculating the sensitivity and specificity of doublet predictions based on the aforementioned 223	

probability vector at varying probability thresholds. The AUC was then calculated for the resulting 224	

curve, and AUC was used as a proxy for doublet detection model performance.  225	

 226	

Statistical Analysis: Statistically-significant differences between UMI levels were defined using 227	

the Wilcoxon rank sum test implemented with the ‘pairwisewilcox.test’ R function. Multiple 228	

comparison correction was performed using the Benjamini-Hochberg procedure. 229	

 230	

Data Availability: Cell Hashing (GEO: GSE108313) and Demuxlet (GEO: GSE96583) UMI count 231	

matrices were downloaded from the Gene Expression Omnibus. DoubletFinder is implemented 232	

as a fast, easy-to-use R package that interfaces with Seurat version 2.0 and higher. 233	

DoubletFinder can be downloaded from GitHub (github.com/chris-mcginnis-ucsf/DoubletFinder). 234	

 235	
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 327	
 328	
 329	
FIGURE LEGENDS 330	
 331	
Figure 1: DoubletFinder robustly predicts Cell Hashing doublets and outperforms nUMI 332	
thresholding. (A) Schematic describing importance of doublet detection. Developmental 333	
intermediates (light red) can express genes associated with both progenitor (grey) and 334	
differentiated (dark red) cell types. Doublets formed from progenitor and mature cells may mimic 335	
the expression profile of intermediate cell states, and thereby confound analysis. (B) Schematic 336	
of DoubletFinder workflow. After artificial doublet (red outline) generation, the proportion of 337	
artificial nearest neighbors is defined for every real cell (examples highlighted yellow). These 338	
results are thresholded to define doublet predictions. (C) Density plot of pANN values with red 339	
dotted lines denoting expected doublet thresholds. Histogram is colored according to whether 340	
the cells were called as singlets (grey) or doublets by one (light red) or both thresholding 341	
strategies (dark red). (D) t-SNE visualization of real and predicted Cell Hashing doublets (red) 342	
and singlets (grey), DoubletFinder predictions, and nUMI thresholding predictions. nUMI 343	
predictions deviate significantly from Cell Hashing results (red dashed boxes). (E) Heat map 344	
showing the proportion of DoubletFinder and nUMI-predicted doublets present in Cell Hashing 345	
singlet (S) and doublet (D) groups. (F) ROC analysis of logistic regression models trained using 346	
nUMIs alone (dotted red), pANN alone (solid blue) and both nUMIs and pANN (dashed orange) 347	
as features. 348	

Figure 2: DoubletFinder detects false-negative and false-positive doublet predictions in 349	
Cell Hashing and Demuxlet datasets.	 (A) t-SNE visualization of real and predicted Cell 350	
Hashing doublets (red) and singlets (grey) highlighting a doublet-enriched, ‘speckled’ region.  351	
(B) Violin plots describing the distribution of marker gene expression in high-confidence doublets 352	
(red), putative false-negatives (blue), and singlet B-cells (teal) and NK cells (orange). (C) 353	
Barcode UMI box plots for the 1st and 2nd most abundant barcodes in high-confidence singlets 354	
(black) and doublets (red), as well as false-negative singlets (blue). (D) t-SNE visualization of 355	
real and predicted Demuxlet doublets (red) and singlets (grey) highlighting putative false-356	
positives. (E) Violin plots describing the contributions of homotypic and heterotypic doublets to 357	
each DoubletFinder-defined doublet’s nearest neighborhood. t-SNE visualization of putative 358	
homotypic and heterotypic doublet clusters in gene expression space. (F) RNA UMI box plots 359	
for high- confidence singlets (black) and doublets (red) as well as discordant doublet predictions 360	
between Demuxlet and DoubletFinder (orange). 361	
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