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Summary 

Regulatory programs that control the function of stem cells are active in cancer and confer 

properties that promote progression and therapy resistance. However, the impact of a 

stem cell-like tumor phenotype ("stemness") on the immunological properties of cancer 

has not been systematically explored. Using gene expression-based metrics, we evaluate 

the association of stemness with immune cell infiltration and genomic, transcriptomic, and 

clinical parameters across 21 solid cancers. We find pervasive negative associations 

between cancer stemness and anticancer immunity. This occurs despite high stemness 

cancers exhibiting increased mutation load, cancer-testis antigen expression, and 

intratumoral heterogeneity. Stemness was also strongly associated with cell-intrinsic 

suppression of endogenous retroviral expression and type I interferon signaling and 

increased expression of several therapeutically accessible signaling pathways. Thus, 

stemness is not only a fundamental process in cancer progression but may represent a 

unifying mechanism linking antigenicity, intratumoral heterogeneity, and immune 

suppression across cancers. 
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Introduction 

Immunotherapy has recently emerged as an important therapeutic modality for a broad 

range of cancers. In particular, major therapeutic gains have been made using antibodies 

against the CTLA-4 and PD-1 pathways, as well as adoptive cell therapies using natural 

or engineered T cells (June et al., 2018; Ribas and Wolchok, 2018). Despite these 

advances, however, the reality remains that today's immunotherapies are effective for 

only a minority of patients. Among several challenges facing the field, a large proportion 

of solid cancers are non-permissive to lymphocyte infiltration (immunologically "cold"), 

protecting them from cytolytic attack by lymphocytes such as CD8+ T cells (Gajewski, 

2015). With improved understanding of the mechanisms underlying the cold tumor 

phenotype, the benefits of immunotherapy could potentially be extended to a much larger 

number of patients. 

Mounting evidence suggests that, like normal tissues, tumors can possess a hierarchical 

structure of phenotypically diverse cell populations with varying capacities for self-renewal 

and differentiation. The cancer stem cell (CSC) hypothesis posits that a subpopulation of 

cells resides at the top of the cellular hierarchy and sustains the long-term maintenance 

of neoplasms (Balttle and Clevers, 2017). This hypothesis provides compelling 

explanations for clinical observations such as therapeutic resistance, tumor dormancy, 

and metastasis (Nassar and Blanpain, 2016). CSCs have been identified in a variety of 

human tumors, as assayed by their ability to initiate tumor growth in immunocompromised 

mice (Al-Hajj et al., 2003; O'Brien et al., 2007; Singh et al., 2004). While considerable 

controversy remains as to how best to define CSCs and the extent to which different 

tumor types exhibit this hierarchical organization, it is increasingly clear that stem cell-

associated molecular features, often referred to as ‘stemness’, are biologically important 

in cancer (Kreso and Dick, 2014). Indeed, a negative association between stemness and 

prognosis has been reported for a wide variety of cancers (Liu et al., 2007; Merlos-Suarez 

et al., 2011; Ng et al., 2016). Moreover, stemness appears to be a convergent phenotype 

in cancer evolution (Chen and He, 2016; Greaves, 2013), suggesting it is a fundamentally 

important property of malignancy. 
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The evolution of transformed cells in the tumor microenvironment is shaped by diverse 

selective pressures, including the host immune response. Experimental work has shown 

that embryonic, mesenchymal, and induced pluripotent stem cells possess immune 

modulatory properties, while resistance to immune-mediated destruction has also 

recently been shown to be an intrinsic property of quiescent adult tissue stem cells (Agudo 

et al., 2018). These properties can also be shared by CSCs (Bruttel and Wischhusen, 

2014; Maccalli et al., 2014). In cancer, immune selection has been shown to drive tumor 

evolution toward a high-stemness phenotype that inhibits cytotoxic T cell responses (Noh 

et al., 2012). Indeed, a recent analysis of the Cancer Genome Atlas (TCGA) revealed 

negative associations between stemness and some metrics of tumor leukocyte infiltration 

(Malta et al., 2018). Stemness has also been proposed as a driver of intratumoral 

heterogeneity, with CSCs proposed as the unit of selection in cancer (Greaves, 2013). 

Consistent with this, we (Zhang et al., 2018) and others (Safonov et al., 2017) have 

reported negative associations between immune cell infiltration and intratumoral 

heterogeneity.  

Motivated by these observations, we hypothesized that a stemness phenotype of cancer 

cells may confer immunosuppressive properties on tumors, resulting in immunologically 

cold microenvironments that both foster and maintain intratumoral heterogeneity. To 

address this, we performed an integrated analysis of stemness, immune response, and 

intratumoral heterogeneity across cancers. We recover pervasive negative associations 

between antitumor immunity and stemness, and strong positive associations between 

stemness and intratumoral heterogeneity. We further find that cancer cell lines with high 

stemness have cell-intrinsic immunosuppressive features, suggesting that 

immunologically cold microenvironments can arise due to the presence of high-stemness 

cancer cells. We propose that cancer stemness provides a unifying mechanism that links 

tumor antigenicity, intratumoral heterogeneity, immune suppression and the resulting 

evolutionary trajectories in human cancer. 
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Results 

Derivation and comparison of stemness signatures 

We inferred tumor stemness from cancer transcriptomes using single sample gene set 

enrichment analysis (ssGSEA) with a modified version of a gene set developed by Palmer 

and colleagues to measure the level of plasticity and differentiation of mesenchymal stem 

cells, pluripotent stem cells, terminally differentiated tissues, and human tumors across 

>3200 microarray samples (Palmer et al., 2012) (See methods). Intriguingly, the authors 

of this gene set identified a cluster of ‘immune’ genes that negatively loaded the principal 

components they used to infer stemness; however, they did not further explore this 

relationship. To adopt this gene set for use in ssGSEA and avoid biasing our analysis 

towards recovering negative associations between stemness and immunity, we omitted 

this immune gene cluster from our signature. We also omitted cell proliferation markers 

to avoid recovering a signature of proliferation rather than stemness (Ben-Porath et al., 

2008). The resulting 109-gene stemness gene set (Table S1A) was applied to RNA 

sequencing data from 8,290 primary cancers from 21 solid cancer types in TCGA, 

omitting instances in which multiple tumor samples were acquired from a single patient. 

When applied to TCGA samples, our stemness signature showed only a moderate 

correlation with a recently published mRNA-based stemness signature (‘mRNAsi’; N = 

7,429 overlapping samples; Spearman’s   = 0.43; Figure S1A) that was derived using a 

novel one class logistic regression (OCLR) (Malta et al., 2018). Despite these differences, 

when evaluating our stemness signature against the validation dataset of Malta et al. 

(GSE30652), the two signatures yielded correct classification for 238/239 samples; the 

one exception was a parthenogenetic stem cell sample that scored below the highest 

non-stem cell sample (Figure S1B and S1C). When applied as a classifier to all tissue 

classes and cell types in this dataset, our signature showed comparable performance to 

that of Malta et al. (multiclass AUC 0.92 vs. 0.91, respectively) (See methods). Thus, our 

signature provides a useful metric of stemness that is largely concordant with the mRNAsi 

signature of Malta et al. when applied to the above dataset but, as described below, yields 

contrasting results when applied to human cancers. 
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Stemness varies across cancers and predicts patient survival 

Using our signature, we found that stemness varied strongly across TCGA samples, with 

cancer type explaining 54% of the variation (ANOVA; adjusted R2; Figure 1A). Consistent 

with prior reports of stemness being a negative prognostic factor (Liu et al., 2007; Merlos-

Suarez et al., 2011; Ng et al., 2016), we found a strong negative relationship between 

median stemness and median overall survival across cancer types (Figure 1B;  = -0.60; 

P = 0.004; N = 21 cancers). Within cancer types, univariate Cox regression likewise 

showed stemness to be significantly negatively prognostic for overall survival in the 

majority of cancers (Cox proportional hazards; P < 0.05), and significantly positively 

prognostic for none (Figure 1C) (See methods), underscoring the relevance of this 

signature both within and across cancers. We also noted a significant decrease in the 

magnitude of the hazard associated with stemness within cancers as median stemness 

increased ( = -0.55; P < 0.01), pointing to a potential threshold effect with a saturating 

hazard in cancers with higher average stemness. For reference, we compared the 

prognostic association of our ssGSEA-based stemness with the OCLR-based mRNAsi, 

for which positive associations in some cancers were reported (Malta et al., 2018). Using 

pan-cancer Cox regressions stratified by cancer, we found ssGSEA-based stemness to 

be substantially more predictive of survival in this linear modelling framework (log hazard 

ratio = 0.23  0.03 (coefficient  SE); P < 10-15 vs. not significant for mRNAsi), 

demonstrating our signature more effectively uncovers the negative outcomes associated 

with high-stemness cancers expected from previous reports.  

Stemness negatively associates with immune cell infiltration across solid cancers  

To evaluate the relationship between stemness and antitumor immunity, we generated 

signatures of predicted immune cell infiltration for each patient sample using xCell, an 

ssGSEA-based tool that infers cellular content in the tumor microenvironment (Aran et 

al., 2017) (See methods). CD8+ T cells, which have a well-established association with 

favorable prognosis in a majority of solid cancers (Gooden et al., 2011), showed a clear 

negative association with stemness for most cancers (Figure 2A). We also considered 

other cell types important for antitumor immunity, including NK cells (Larsen et al., 2014)  
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and B cells (Li et al., 2016; Nelson, 2010), and again observed recurrent negative 

associations with stemness (Figure 2A). Additional cell types such as CD4+ T cells, T 

regs, and neutrophils showed more variable associations with stemness, indicating this 

relationship does not apply to all infiltrating immune cell populations in all cancers (Figure 

2A). 

To generate a robust single score for antitumor immunity (hereafter referred to as 

‘immune signature’), we aggregated xCell predictions for CD8+ T cell, NK cell, and B cell 

infiltration, reasoning that these cells represent important anticancer effector cells across 

diverse cancers (Melero et al., 2014; Sarvaria et al., 2017). Indeed, this immune signature 

was significantly associated with increased survival in the majority of cancers (Figure 

S2A; overall survival curves for patients stratified by median stemness and immune 

signature are shown in Figure S2B). A notable exception was certain kidney cancers, 

where negative associations were observed, in accord with prior reports for these 

malignancies (Jochems and Schlom, 2011). Consistent with our analyses using single 

immune cell type scores (Figure 2A), this immune signature showed a negative 

association with stemness within nearly all cancers (Figure 2B). This negative 

association was also recovered using other published stemness gene sets (Ben-Porath 

et al., 2008; Bhattacharya et al., 2004; Shats et al., 2011) (Table S1B), most clearly with 

stemness scores reflecting NANOG, SOX2 and MYC signaling, and to a lesser extent 

with those reflecting embryonic stem cell programs (Figure S3). Furthermore, when we 

used recently published CIBERSORT infiltration scores (Thorsson et al., 2018) in place 

of our immune signature, we found that increased stemness was associated with strong 

polarization of infiltrating leukocyte populations towards a macrophage-dominant, CD8+ 

T cell-depleted composition for most cancers (linear model controlling for cancer type; P 

< 10-15 for both cell fractions). 

Whereas the preceding analyses were performed within cancer types, we also evaluated 

the relationship between stemness and immune signature across cancer types. 

Unexpectedly, we found no significant association between median immune signature 

and median stemness score across cancers (P = 0.82). This suggests that factors other 

than stemness control the differences in immune cell infiltration across cancer types, 
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while the association with stemness applies within individual cancer types. It also 

demonstrates that our stemness metric is not recovering negative associations with 

immunity simply due to the lower tumor purity that is inextricably associated with the 

presence of infiltrating immune cells. 

We next examined whether the negative association between immune signature and 

stemness was influenced by tumor subtype or stage. Here, we focused on breast and 

endometrial cancers, which have well-characterized subtypes with strong prognostic 

associations, and melanoma, for which both primary and metastatic samples are 

available within TCGA. In breast cancer, stemness varied markedly across subtypes 

(ANOVA; adjusted R2
 = 0.26), with the basal subtype having the highest stemness, as 

expected (Ben-Porath et al., 2008), and the luminal-A subtype the lowest (Figure 2C). In 

endometrial cancer, the highest stemness score was observed in high-copy number 

alteration (CN-high) and polymerase-epsilon mutant (POLE) tumors, and the lowest 

stemness score was seen in low-copy number alteration tumors (CN-low) (Tukey HSD; 

P = 0.003; CN-high vs. CN-low tumors). Finally, we observed a substantially higher 

stemness score in metastatic compared to primary melanoma lesions (Figure 2C). In all 

these cancers, we observed recurrent negative associations between stemness and 

immune signature which remained significant when controlling for cancer subtype and 

tumor purity (see below; linear models; P < 10-7).  

To investigate in an unbiased manner whether processes apart from antitumor immunity 

negatively correlate with stemness, we conducted differential expression tests to identify 

gene expression patterns associated with the lowest versus highest stemness quantiles 

(< 20th versus > 80th percentiles) for each analyzed cancer type (See methods). Even with 

this unbiased approach, nearly all the pathways recurrently enriched in low-stemness 

samples within a cancer were immune-related (Figure 2D). Recognizing that the 

presence of non-malignant cells (e.g. immune, stromal, endothelial cells) can confound 

expression analyses of bulk-sequenced tumor samples by diluting tumor-specific 

expression signatures, we performed additional analyses to control for such effects. First, 

using recently published estimates of purity across TCGA (Aran et al., 2015), we found 

that the association between tumor purity and stemness was negligible and failed to reach 
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significance in a pan-cancer linear model controlling for cancer type (P = 0.23). Second, 

we re-fit the differential expression models described above to control for tumor purity 

and repeated the pathway enrichment analyses, still finding that immune-associated 

pathways were enriched in low-stemness tumors (Figure S4) (See methods).  

Stemness associates with immunologically cold cancers measured via IHC 

To confirm the negative association between stemness and lymphocyte infiltration, we 

turned to three patient cohorts with matched immunohistochemistry (IHC)-based T cell 

infiltration scores and gene expression data suitable for computing a stemness score 

(See methods). Using a cohort of 33 colorectal cancer patients (Becht et al., 2016), we 

found a strong negative association between stemness and total infiltrating CD3+ T cells 

( = -0.63; P < 0.001; Figure 3A). Furthermore, in this cohort the xCell-based immune 

signature was strongly correlated with infiltrating CD3+ cells ( = 0.69; P < 0.001), 

supporting its fidelity for measuring immune-cell infiltration. With this validation in hand, 

we compared the xCell-based immune signature and stemness for the total patient cohort 

with available microarray data (N = 585), and again observed a clear negative correlation 

( = -0.22; P < 10-7). 

We next evaluated this relationship in a cohort of 35 lung cancer patients with matched 

RNA-sequencing and IHC-based quantitation of immune cell infiltrates (Mezheyeuski et 

al., 2018). For consistency with the above analysis, we calculated the infiltration of T cells 

by summing previously calculated CD4+ and CD8+ cell fractions. Again, we observed a 

negative association between the stemness score and the percent of infiltrating T cells ( 

= -0.36; P = 0.035; Figure 3B). Furthermore, using the additional RNA-sequencing data 

in this cohort, we observed a negative association between the stemness and immune 

signature (N = 199 tumor samples;  = -0.19; P = 0.007).  

Finally, we evaluated a small cohort of high-grade serous ovarian cancer (HGSC) cases 

(Zhang et al., 2018) for which matched IHC-based T cell counts and microarray-based 

gene expression data were available for multiple tumor sites within each patient (N = 44 

samples from 12 patients). Consistent with the above findings, we found negative 
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association between stemness and total CD3+ T cells (negative binomial mixed effects 

model; P = 0.042; Figure 3C). We did not, however, find an association between 

stemness and intratumoral heterogeneity in this cohort (P > 0.05), although the sample 

size for this analysis was even more limited (N = 25 samples from 6 patients with available 

data). Additionally, we previously subjected samples from this cohort to Getis-Ord Gi* 

‘hotspot’ analysis to quantify immune cell engagement with tumor cells (Zhang et al., 

2018). Intriguingly, all hotspot metrics showed clear negative association with stemness 

(mixed effects models; P < 0.01; 44 samples from 12 patients; Figure 3D (Nawaz et al., 

2015); FCI shown), suggesting that stemness negatively influences lymphocyte 

engagement with tumor cells.  

Stemness associates with intratumoral heterogeneity 

Stemness has been implicated in fostering tumor clone diversity, with the replicative 

potential of CSCs enabling greater tumor heterogeneity (Greaves, 2013; Kreso and Dick, 

2014). Our hypothesis suggests that stemness could additionally promote intratumoral 

heterogeneity by inhibiting immune selection against new tumor clones. These 

predictions have not, to our knowledge, been systematically tested within or across 

cancers. We compared stemness and intratumoral heterogeneity using data from two 

recent TCGA studies (See methods). Comparing stemness with predictions of cancer 

clonality from the first study (Andor et al., 2016) (N = 935 patients), we found a dramatic, 

positive correlation between median stemness and median number of clones in a cancer 

( = 0.75 ; P = 0.008; N = 11 cancers; Figure 4A). Furthermore, we found a positive 

association between stemness and tumor clone count in a linear model controlling for 

cancer site, indicating that these trends are discernible both across and within cancers (P 

= 0.002, Figure 4B). We also exploited pan-cancer predictions of intratumoral 

heterogeneity from a second, larger TCGA-based study (Thorsson et al., 2018) and 

recovered a similarly striking trend ( = 0.64 ; P = 0.002; N = 6,791 samples across 21 

cancers; Figure 4C), which was again significant across all samples when controlling for 

cancer site (P < 10-15; Figure 4D).  
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Potential mechanisms and consequences of stemness-associated 

immunosuppression  

We evaluated the association between stemness and several known genetic and 

environmental factors that affect antitumor immunity. Antitumor immunity involves T cell 

recognition of neo-antigens arising from somatic mutations (Matsushita et al., 2012). We 

therefore examined the association between stemness, immune signature, and non-

synonymous mutation load, analyzing TCGA samples with available mutation calls (N = 

6,682) (See methods). While median mutation load correlated with median immune 

signature across cancers ( = 0.49; P = 0.02, N = 21), there was generally little correlation 

within cancers, as has been reported in other TCGA-based analyses (Figure S5A, 

(Senbabaoglu et al., 2016)). Across cancers, median mutation load showed a positive 

association with median stemness ( = 0.61; P < 0.01, N = 21; Figure 5A), consistent 

with our observations of intratumoral heterogeneity. Indeed, we found one of the 

intratumoral heterogeneity estimates (of Andor et al., 2016) to be highly correlated with 

mutation load, although this was not the case with estimates from the more recent  study 

(Thorsson et al., 2018). Likewise, within cancers, we generally found positive associations 

between mutation load and stemness (Figure 5B), consistent with our observation of high 

stemness in ultramutated endometrial cancers. We also evaluated stemness and immune 

associations with NetMHCpan-predicted neoantigen loads computed in the above pan-

cancer analysis (Thorsson et al., 2018) and recovered qualitatively similar but slightly 

stronger trends (Figure S5B and S5C). These findings corroborate other recent studies 

suggesting that point mutation/neoantigen loads are not the strongest predictors of a 

functional antitumor immune response when considered within a cancer type 

(Senbabaoglu et al., 2016), underscoring the importance of other factors such as 

stemness, as shown here. 

Cancer-testis (CT) antigens are a class of tumor antigens that normally are expressed 

only in gametogenic tissue but become aberrantly expressed in a broad range of 

malignancies, often leading to the induction of immune responses (Simpson et al., 2005). 

Using a set of 201 CT genes curated by the CTdatabase (Table S2) (Almeida et al., 

2009), we generated an ssGSEA CT antigen score and found a strong positive 
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association with the stemness signature within cancers (Figure 5C). Accordingly, there 

was a generally negative association between CT antigen score and the immune 

signature, which reached statistical significance in 8 of 21 cancers (Padj < 0.05; Figure 

5D). Thus, like neoantigens, CT antigens show a positive association with stemness and 

a negative association with immune signature.  

Normal stem cells have been shown to suppress endogenous retrovirus (ERV) 

expression, presumably to prevent insertional mutagenesis in long-lived stem cell 

lineages (Gaudet et al., 2004). Conversely, ERV expression can be activated in cancer 

cells (Strissel et al., 2012; Wang-Johanning et al., 2007), where it can potentially elicit 

antitumor immune responses by activating viral defense mechanisms and the type I 

interferon response (Chiappinelli et al., 2015) or by yielding immunogenic foreign epitopes 

(Boller et al., 1997). Despite these possibilities, clear associations between immunity and 

ERV expression were not seen in a recent pan-cancer analysis (Rooney et al., 2015). To 

better understand this relationship, we investigated interactions between stemness, 

immune signature, and ERV expression. Because of the repetitive nature of ERVs, we 

used ERV-specific read-mappings (Rooney et al., 2015) to evaluate ERV expression in 

4,252 TCGA samples that overlapped with our stemness and immune signature analysis. 

Using redundancy analysis (a constrained extension of principal components analysis), 

we found that multivariate ERV expression was not clearly associated with the immune 

signature, consistent with prior reports (Rooney et al., 2015) (See methods); members of 

the ERVK family were an exception, showing moderate positive associations with immune 

signature (Figure 5E). In contrast, ERV expression showed a pervasive negative 

association with stemness (P < 0.001; Figure 5E), consistent with the notion that 

suppression of ERV expression is a feature of the stem cell phenotype (Yang et al., 2015). 

Thus, both immune signature and ERV expression are negatively associated with 

stemness, but these appear to be largely orthogonal relationships.  

Tumor cell intrinsic mechanisms of stemness-mediated immunosuppression 

To address whether the negative association between stemness and immune signature 

is attributable to cancer cell-intrinsic processes, we calculated stemness scores for 1,048 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 20, 2018. ; https://doi.org/10.1101/352559doi: bioRxiv preprint 

https://doi.org/10.1101/352559


13 
 

cancer cell lines using gene expression data from the Cancer Cell Line Encyclopedia 

(CCLE) (Barretina et al., 2012) (See methods). We first assessed associations between 

stemness scores and the expression of 11 mapped ERVs in CCLE transcriptomes and 

found that 3/3 ERVs with non-negligible expression levels across cell lines were 

significantly negatively associated with stemness, two of which remained significant when 

controlling for tissue of origin (linear models; Padj < 0.05; Figure S6). We next generated 

an ssGSEA score for type I interferon signaling (Reactome IFN alpha/beta pathway gene 

set) and observed a clear negative relationship between this signature and stemness ( 

= -0.22. P < 10-10) (Figure 6A); this association remained significant when controlling for 

tissue of origin of the cell line (linear model; P < 0.001) and when omitting cell lines derived 

from hematopoietic lineages (linear model; P = 0.02). To evaluate the association 

between stemness and type I IFN signaling in non-neoplastic lineages, we took 

advantage of the stem cell gene expression dataset previously used to validate stemness 

signatures (GSE30652). This too revealed a striking negative association between type I 

IFN signaling and stemness ( = -0.81; P < 10-15; Figure 6B).  

Finally, to examine other cell-intrinsic mechanisms of immunosuppression, we analyzed 

a curated list of immunoinhibitory genes previously reported to be expressed in human 

cancer cells. Using both the CCLE and pan-cancer TCGA datasets, the expression of 

each of these genes was assessed in relation to our stemness signature (Figures 6C 

and 6D). This revealed positive associations between stemness and a number of 

immunoinhibitory genes, including CD276 (B7-H3, shown to inhibit T cell activation and 

autoimmunity (Lee et al., 2017), PVR (CD155, a member of the B7/CD28 superfamily, 

shown to exhibit potent inhibitory action in different subsets of immune cells (Mahnke and 

Enk, 2016), and TGFB1 (a key player in the induction of immunological tolerance 

(Johnston et al., 2016). Thus, the stemness phenotype involves the expression of several 

gene products that could potentially serve as targets for immune modulation. 
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Discussion 

Although cancer stemness, antitumor immunity, and intratumoral heterogeneity have all 

emerged as centrally important features of cancer in recent years, their covariation across 

cancers has not been systematically investigated. Here we report that stemness is 

associated with suppressed immune response, higher intratumoral heterogeneity, and 

dramatically worse outcome for many cancers. Although correlative analyses such as 

ours do not reveal causality, we propose that the stemness phenotype found in cancer 

cells, similar to that in normal stem cells, involves the expression of immunosuppressive 

factors that engender the formation of immune-privileged microenvironments in which 

tumor clone diversification can occur. The resulting heterogeneity provides a substrate 

for the selection of treatment-resistant tumor clones, resulting in inferior clinical outcomes. 

Thus, our findings implicate the stemness phenotype as a shared therapeutic target to 

achieve the dual objectives of constraining tumor evolution and enhancing antitumor 

immunity.  

A recent pan-cancer analysis reported inconsistent relationships between cancer 

stemness and immunity, recovering negative relationships between stemness and tumor-

infiltrating lymphocytes for some cancers and positive relationships for others (Malta et 

al., 2018). While this work provided a valuable perspective on stemness across cancers, 

our results differ in that we recover much stronger and more pervasive negative 

relationships with immune infiltration and survival. In contrast to ssGSEA, the OCLR 

approach used above was trained on a cohort that lacked any malignant samples. 

Moreover, when we reproduced their analysis, we found many components of their 

stemness score (i.e. positive model weights) were immunologically relevant genes; for 

example, among the 50 most positive gene weights were IDO1, LCK, KLRG2, PSMB9 (a 

component of the immunoproteasome), and multiple TNF-receptors. With the OCLR 

approach, higher expression of such immune genes contributes positively to the 

stemness score, precluding an unbiased assessment of the relationship between 

stemness and tumor immunity.  
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The contribution of cancer stemness to intratumoral heterogeneity has been postulated 

for some time (Kreso and Dick, 2014), but direct evidence has been lacking. We 

recovered a dramatic positive association between stemness and intratumoral 

heterogeneity across cancers, which is especially noteworthy given that these metrics 

were derived from separate data types (i.e. mRNA vs DNA). Given recent work from our 

group and others linking increased intratumoral heterogeneity with decreased immune 

cell infiltration (Safonov et al., 2017; Zhang et al., 2018), one could speculate that 

stemness might enable intratumoral heterogeneity by both increasing the replicative 

capacities of individual tumor clones and by shielding antigenic clones from elimination 

by the immune system.  

We found generally positive associations between stemness and mutation load within 

cancers, and clear evidence of this across cancers, consistent with studies demonstrating 

accumulation of mutations in normal adult stem cells (Blokzijl et al., 2016). We also found 

strong positive associations between stemness and CT antigen expression, which is 

consistent with reports of CT antigen expression in mesenchymal (Saldanha-Araujo et 

al., 2010) and embryonic stem cells (Lifantseva et al., 2011), as well as cancer stem cells 

(Yamada et al., 2013). It is also consistent with prior studies (Thorsson et al., 2018) and 

the present work finding non-significant or negative correlations between immune 

infiltration and CT antigen expression (Figure 5D). Thus, the negative association 

between stemness and immunity is not attributable to low neoantigen or CT antigen load, 

strongly implicating the involvement of other mechanisms.  

ERVs, which constitute approximately 8% of the human genome, are known to be 

suppressed in pluripotent and embryonic stem cells (Yang et al., 2015) yet activated in 

human cancer (Roulois et al., 2015; Schmitt et al., 2013), leading us to ask which behavior 

would predominate in high stemness cancers. We found a strong negative association 

between stemness and ERV expression, indicating that the stemness phenotype in 

human cancer retains this property of normal stem cells. This negative association was 

also seen in cancer cell line data, suggesting a cell-intrinsic phenomenon. The cell line 

data also revealed a negative correlation between stemness and type I IFN signaling. 

Whether ERV suppression underlies the low intrinsic IFN signaling in high stemness 
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cancer cell lines awaits experimental investigation. However, in support of this notion, an 

attenuated innate immune response is a major characteristic of embryonic stem cells 

(Guo et al., 2015), and we find clear confirmation of this in non-neoplastic stem cell 

transcriptomes (Figure 6B). Collectively, these data suggest that activation of a stemness 

program in tumors could limit antitumor immune responses by silencing ERVs and 

repressing type I IFN signaling in a cell-intrinsic manner (Fuertes et al., 2013).  

Using CCLE data, we found a clear association between stemness and the expression of 

several immunoinhibitory genes, including CD276, PVR, and TGFB1. These associations 

are especially intriguing given that CCLE-based gene expression profiles are independent 

of any ongoing influence of the immune system. CD276, a B7 family ligand, is now being 

clinically targeted due to expression on both cancer cells and tumor infiltrating blood 

vessels (Seaman et al., 2017). Intriguingly, CD276 is co-expressed with CD133, a marker 

that distinguishes cell populations enriched for cancer stem cells in colorectal cancer (Bin 

et al., 2014). PVR is a key ligand in an emerging checkpoint pathway involving TIGIT, an 

inhibitory receptor expressed on T cells and other immune cells (Mahnke and Enk, 2016). 

Although no association between stem cells and PVR has been described so far in 

mammalian stem cells, expression of PVR can be activated by sonic hedgehog signaling 

(Solecki et al., 2002), a pathway essential for self-renewal and cell fate determination in 

normal and cancer stem cells (Cochrane et al., 2015). TGFB1  and other TGFB family 

members have well documented roles in development (Watabe and Miyazono, 2009) and 

CSC proliferation and maintenance (Ikushima et al., 2009; Penuelas et al., 2009).  

Recent work has demonstrated that tumor-intrinsic oncogenic signaling pathways have 

immune suppressive properties (Spranger and Gajewski, 2016, 2018), but this too can 

be understood in the context of stemness. For example, molecular pathways involving 

WNT/B-catenin, MYC, PTEN and LKB1 have been implicated in the inhibition of antitumor 

immunity (Spranger and Gajewski, 2018), yet they also play important roles in stem cell 

maintenance (Gurumurthy et al., 2010; Hill and Wu, 2009; Murphy et al., 2005; Nusse, 

2008). Thus, stemness may provide a unifying framework for understanding how various 

oncogenic signaling pathways engender an immunosuppressive tumor 

microenvironment.  
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Tumors with reduced lymphocyte infiltration are less susceptible to immunotherapies, 

including checkpoint blockade (Ji et al., 2012). Consequently, our findings imply that high-

stemness tumors will be more refractory to immunotherapy, much as they are to more 

conventional chemo- and radiotherapies (Morrison et al., 2012). If stemness is an 

underlying cause of the cold tumor phenotype, it may prove beneficial to target specific 

molecules or pathways that appear to be inherent to the stemness phenotype, such as 

the aforementioned immunoinhibitory molecules. Likewise, high-stemness cancer cells 

might be rendered more sensitive to immunotherapy by administering drugs that induce 

cell differentiation to irreversibly disrupt the stemness phenotype (de The, 2018). This 

would bring the additional benefit of constraining further tumor evolution, creating the 

conditions for durable clinical responses.  
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Methods  

1 Contact for reagent and resource sharing 

Further information and requests for resources should be directed to and will be fulfilled 

by the lead contact, Brad Nelson (bhnelson@bccrc.ca). 

2 Experimental models and subject details 

Clinical parameters and molecular subtypes for TCGA data were extracted from the 

expression data files accessed through TCGAbiolinks package. Mutation data were 

downloaded from Firebrowse (www.firebrowse.org) as the number of non-synonymous 

mutations. Tumor purity (Aran et al., 2015), mRNAsi (Malta et al., 2018), intratumoral 

heterogeneity (Andor et al., 2016; Thorsson et al., 2018), and CIBERSORT and 

neoantigen scores (Thorsson et al., 2018) by extracting the relevant data for overlapping 

samples from the respective supplemental materials.  

For correlations between stemness scores and IHC-based immune cell counts, immune 

cell infiltration data were provided by the authors of the respective studies (Becht et al., 

2016; Mezheyeuski et al., 2018). Overlapping expression data (microarray or RNA-

sequencing) was obtained from the gene expression omnibus (GEO: GSE39582; GEO: 

GSE81089), or provided by the authors (Bashashati et al., 2013; Zhang et al., 2018). 

3 Method Details 

All analyses were conducted with R v. 3.4.2. We accessed RNA sequencing as upper 

quartile normalized FPKM using the the TCGAbiolinks R/Bioconductor package 

(Colaprico et al., 2016), for each cancer of interest, and expression data were merged 

across cancers. For genes with multiple annotated transcripts, we selected the transcript 

with the greatest expression to represent the gene, then filtered the expression set to 

include only primary samples (except for melanoma, for which we included metastases), 

removed patients with duplicate samples, and removed any patients without a consensus 

purity score in (Aran et al., 2015) to enable purity corrections in analyses. For microarray 

datasets, we converted probe IDs to human gene symbols using biomaRt (Durinck et al., 
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2009), and retained the most expressed probe for each gene, as above. Where 

appropriate (e.g. for linear modelling), expression data were log2(x + 1) transformed. 

We calculated stemness and other ssGSEA signatures using the GSVA package in R 

(gene sets in table S1; (Hanzelmann et al., 2013)) without normalization, and 

subsequently scaled values as z-scores within the dataset of interest. xCell enrichment 

scores were calculated in R, using the rawEnrichmentanalysis (Aran et al., 2017) function, 

which omits scaling scores to [0, 1] and correction for correlations among related cell 

types (Aran et al., 2017), as we sought to avoid introducing non-linearities from these 

steps into analysis. To generate the immune signature, we summed z-scored signatures 

of cell types of interest (CD8+ T cells, NK cells, B cells). Because z-scoring of ssGSEA 

scores was done within each dataset, these scores should not be directly compared 

across datasets. 

4 Quantification and Statistical analysis 

We used non-parametric Spearman’s correlation to assess pairwise associations 

between variables of interest within cancers, or for median values across cancers, 

adjusting for multiple tests using the Benjamini-Hochberg method, where appropriate. For 

analyses across multiple cancer types or subtypes, we used linear models, controlling for 

site or subtype as fixed main effects, and inspecting model residuals to ensure model 

assumptions were reasonable. For analyses controlling for purity, purity (as consensus 

purity estimate from (Aran et al., 2015)) was included as a covariate in linear models. 

We conducted survival analyses using Cox proportional hazards models, calculating 95% 

CIs on log hazard ratios. We tested model assumptions using cox.zph (Therneau, 2018). 

Where there were significant violations of model assumptions (P < 0.05), we inspected 

model Schoenfield residuals; we found that for the few instances in which model 

assumptions were violated, this was attributable to higher than predicted survival for some 

long-term survivors. For analyses across all patients and cancer types, we stratified Cox 

models by cancer type. For IHC data with multiple samples taken from the same patient, 

we modelled patient as a random intercept in mixed effects models implemented in lme4 
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in R (Bates et al., 2015) and assessed the significance of fixed effects using likelihood-

ratio tests on nested models. 

Pathway enrichment analysis was conducted using ReactomePA (Yu and He, 2016) after 

testing for differential expression using limma (Ritchie et al., 2015). For enrichment 

analysis, we selected the top 1000 significantly down-regulated genes in high stemness 

cancers based on the moderated t statistic; in cancers where < 1000 genes were 

significantly down-regulated (Padj < 0.05), we selected all significantly down-regulated 

genes for downstream analysis. Significance of enrichment was evaluated at Padj < 0.05, 

and recurrently enriched pathways were defined as those that were significantly enriched 

in the greatest number of cancers. In limma analyses that included purity as a covariate, 

purity was log-transformed for consistency with the transformation of expression values.  

To assess ERV expression, we first variance-filtered mapped ERVs to select those above 

the median interquartile range of expression using the genefilter R package (R. 

Gentleman et al., 2018). We conducted partial redundancy analysis using the vegan 

package, implementing the default distance metric (Euclidean). We conditioned the 

analysis by cancer type to control for cancer type-specific effects, and tested the 

significance of multivariate associations using permutation tests (n=1000) in vegan (J. et 

al., 2015). 

5 Data and software availability 

All data used in this analysis are publically available (see Model and Subject Details) or 

provided by the original authors. Scripts to reproduce analyses are available upon 

request. 
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Figure legends 

Figure 1. Stemness and survival across cancers. A) Stemness score varies widely across 

21 solid cancers from TCGA. Each point represents an individual case, and cancer types 

are ordered by median stemness score (z-scored ssGSEA). B) Median survival 

decreases with increasing median stemness (P = 0.004).  Gray points represent cancers 

in which median overall survival times were not evaluable. C) Stemness associates with 

poor outcome within cancers. Log hazard ratio ( 95% CI) for the association of stemness 

with overall survival is shown. Hazard decreases with increasing average stemness of 

cancers (P = 0.008). See also Table S1A. 

Figure 2. Stemness negatively associates with immune cell signatures. A) Circos plot 

showing the association between stemness score and the presence of 8 inferred immune 

cell types across 21 cancer types (colored bars in outer ring). The color and height of the 

inner bars represent the Spearman correlation ρ values for each cell type and cancer 

type. B) Volcano plot showing the association between stemness score and immune 

signature (sum of z-scored signatures of CD8+ T cells, NK cells, and B cells) for each 

cancer. The dashed line indicates Padj = 0.05. C) Association between stemness score 

and immune signature in the different molecular subtypes of endometrial (UCEC) and 

breast (BRCA) cancer, and within primary and metastatic melanoma (SKCM) samples 

(Padj < 10-7). Each point represents one case. Colors indicate the different molecule 

subtypes of UCEC and BRCA, or sample types for SKCM. CN = copy number, MSI = 

microsatellite instable, POLE = polymerase epsilon. D) Reactome pathway enrichment 

analysis of the top 1,000 genes up-regulated in low stemness (<20th percentile) vs. high 

stemness (>80th percentile) samples. The size of each point reflects -log10 adjusted P 

values. See also Figure S2,3,4 and Table S1.  

Figure 3. Stemness-immune signature relationship in different cancer cohorts scored via 

immunohistochemistry. A) Stemness score negatively associates with tumor-infiltrating 

CD3+ T cells in colorectal cancer (P < 0.001; N=33) (data from Becht et al., 2016). Each 

point represents one patient sample. B) Stemness negatively associates with tumor-

infiltrating T cells (in this case the sum of CD4+ and CD8+ cells) in lung cancer (P= 0.035; 
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N=35) (data from Mezheyeuski et al., 2018). Colors denote adeno versus squamous cell 

lung cancers. C) Stemness is significantly associated with tumor-infiltrating CD3+ T cells 

in a multi-site dataset from high grade ovarian cancer (P = 0.042; N = 44 samples from 

12 patients) (data from Zhang et al., 2018). Colors represent individual patients. D) By 

hotspot analysis, the fraction of tissue area occupied by co-localizing tumor and immune 

cells (FCI) is negatively associated with stemness score in a multi-site dataset from high 

grade ovarian cancer (P < 0.01; 44 samples from 12 patients) (source data derived from 

Zhang et al., 2018). Colors represent individual patients.  

Figure 4. Stemness associates with intratumoral heterogeneity within and across 

cancers. A) Median stemness and median clonality, (inferred by Andor et al., 2016), are 

strongly correlated across cancers (N = 11; P = 0.008). B) Stemness score and clonality, 

(inferred by Andor et al., 2016), are correlated across patients while controlling for cancer 

type (N = 935; P = 0.008). Colored points represent different tumor sites. C) Median 

stemness score and median intratumoral heterogeneity score, (inferred by Thorsson et 

al., 2018), are strongly correlated across cancers (N = 20; P = 0.002). D) Stemness score 

and intratumoral heterogeneity, (inferred by Thorsson et al., 2018), are correlated across 

patients while controlling for cancer type (N = 6,791; P < 10-15). Colored points represent 

different tumor sites. Spearman ρ values are shown. 

Figure 5.  Mutation load, CT antigen expression and ERV associations with stemness. 

A) Median stemness and median mutation load are positively correlated across cancers 

(N = 21; P = 0.020). Mutation load is represented as log-transformed non-synonymous 

mutations per megabase (log ns mutations / mb). B) Volcano plot reveals stemness score 

and mutation load correlate within some cancers (upper right quadrant). The X axis 

represents Spearman correlation ρ values, and the Y axis represents -log 10 adjusted P 

values (Padj). Dashed red line indicates the significance threshold, P adj value = 0.05. C) 

Stemness score and CT antigen expression (ssGSEA of CT antigen gene set) positively 

correlate in most cancers, while D) immune signature and CT antigen expression 

negatively correlate, where significant. In C and D, bar plots show the Spearman ρ values 

for each cancer type, and asterisks denote Padj < 0.05. E) Redundancy analysis triplot 

reveals stemness negatively associates with multivariate ERV expression (P < 0.001; 33 
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ERVs evaluated in 4,252 samples, analysis conditioned by cancer type). See also Figure 

S5 and Table S2. 

Figure 6: Cell-intrinsic stemness score associate with decreased type I interferon 

signaling and increased expression of CD276 and PVR. In A and B, colored points 

represent different cell lines and tissues in data from the CCLE and GSE30652, 

respectively. A) Stemness score negatively associates with type I interferon signaling (P 

< 10-10; Reactome IFN α/β pathway ssGSEA) across cancer cell lines. Only tissues 

represented by more than 10 cells lines were included in analysis. B) Stemness 

negatively associates with type I interferon signaling across non-malignant stem cells, 

somatic tissues, and primary cells (P < 10-15). C, D) Heatmaps showing Spearman 

correlations for stemness and select immunoinhibitory genes based on data from the 

CCLE (C) and TCGA (D). Spearman correlations were calculated within tissues 

represented in the CCLE by more than 10 cells lines. Genes are ranked according to the 

final column ("overall"), which represents the correlation across all samples, irrespective 

of cell line or tumor type. Red-blue intensities reflect the correlation ρ values. Asterisks 

denote Benjamini-Hochberg-corrected significant associations (Padj < 0.05). See also 

Figure S6.  
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