1 **Title**

- 2 Logical design of oral glucose ingestion pattern minimizing blood glucose in humans
- 3 Author
- 4 Masashi Fujii^{1,2,*}, Yohei Murakami^{3,*}, Yasuaki Karasawa^{4,5,*}, Yohei Sumitomo², Suguru Fujita²,
- 5 Masanori Koyama⁶, Shinsuke Uda⁷, Hiroyuki Kubota⁷, Hiroshi Inoue⁸, Katsumi Konishi⁹,
- 6 Shigeyuki Oba³, Shin Ishii^{3,10}, Shinya Kuroda^{1,2,10}
- 7 Lead Contact
- 8 Shinya Kuroda: skuroda@bs.s.u-tokyo.ac.jp
- 9 Affiliation
- ¹Molecular Genetic Research Laboratory, Graduate School of Science, The University of Tokyo,
- 11 Tokyo, 113-0033, Japan
- ¹² ²Department of Biological Sciences, Graduate School of Science, The University of Tokyo,
- 13 Tokyo, 113-0033, Japan
- ³Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto,
- 15 606-8501, Japan
- ⁴Department of Neurosurgery, The University of Tokyo Hospital
- ⁵Department of Rehabilitation, Graduate School of Medicine, The University of Tokyo,
 1

18 113-0033, Japan

- ⁶Department of Mathematics, Graduate School of Science and Engineering, Ritsumeikan
- 20 University, Shiga, 525-8577, Japan
- ²¹ ⁷Division of Integrated Omics, Research Center for Transomics Medicine, Medical Institute of
- 22 Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
- ²³ ⁸Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa
- 24 University, Ishikawa, 920-8640, Japan
- ⁹Department of Computer Science, Faculty of Informatics, Kogakuin University, Tokyo,
- 26 163-8677, Japan
- ¹⁰CREST, Japan Science and Technology Agency, Tokyo, 113-0033, Japan
- ^{*}These authors contributed equally to this work.
- 29

30 SUMMARY

- 31 Excessive increase in blood glucose level after eating increases the risk of macroangiopathy,
- 32 and a method for not increasing the postprandial blood glucose level is desired. However, a
- 33 logical design method of the dietary ingestion pattern controlling the postprandial blood glucose

34	level has not yet been established. We constructed a mathematical model of blood glucose
35	control by oral glucose ingestion in 3 healthy human subjects, used the model to predict an
36	optimal glucose ingestion pattern, and showed that the optimal ingestion pattern minimized the
37	peak value of blood glucose level. Subjects orally ingested 3 doses of glucose by bolus or over 2
38	hours, and blood glucose, insulin, C-peptide and incretins were measured for 4 hours. We
39	constructed an ordinary differential equation model that reproduced the time course data of the
40	blood glucose and blood hormone levels. Using the model, we predicted that intermittent
41	ingestion 30 minutes apart was the optimal glucose ingestion patterns that minimized the peak
42	value of blood glucose level. We confirmed with subjects that this intermittent pattern decreased
43	the peak value of blood glucose level. This approach could be applied to design optimal dietary
44	ingestion patterns.
45	In Brief
46	As a forward problem, we measured blood glucose and hormones in three human subjects after
47	oral glucose ingestion and constructed a mathematical model of blood glucose control. As an
48	inverse problem, we used the model to predict the optimal oral glucose ingestion pattern that
49	minimized the peak value of blood glucose level, and validated the pattern with the subjects.

50 Highlights

- 51 Modeling blood glucose concentrations predicts an intermittent ingestion pattern is optimal
- 52 Human validation shows ingestion at 30-minute intervals limits peak blood glucose
- 53 We provide a strategy to design optimal dietary ingestion patterns

55 INTRODUCTION

56	In healthy people, blood glucose levels are stably maintained and show only a slight
57	postprandial increase (Abdul-Ghani et al., 2006). However, massive postprandial increases in
58	blood glucose levels emerge in patients with the type 2 diabetic mellitus (T2DM) and impaired
59	glucose tolerance (Edelstein et al., 1997). This postprandial hyperglycemia requires prevention
60	and treatment, because it is associated with increased risk of cardiac and cerebrovascular
61	complications (Nakagami and DECODA Study Group, 2004). Postprandial blood glucose
62	originates from dietary carbohydrates (Cahill, 2006). Some approaches to prevent postprandial
63	hyperglycemia have thus far been reduction of dietary carbohydrate content, a change in the
64	type of dietary carbohydrates, and ingestion of dietary fiber with meals (Schulze et al., 2004).
65	However, the ideal type of pattern of ingestion of carbohydrate that minimize postprandial
66	hyperglycemia is unknown.
67	Insulin, secreted from the pancreatic β cells, performs a pivotal role in homeostatic regulation
68	of blood glucose levels. Insulin acts on the target organs such as muscle and liver, to promote
69	uptake of glucose from the blood and suppress hepatic glucose production. Consequently,
70	insulin decreases blood glucose levels and promotes the rapid recovery of increase in

71 postprandial blood glucose. As blood glucose levels decrease, insulin secretion also

72	Thus, the blood glucose level is maintained within a narrow normal range by the feedback
73	relationship between blood glucose and insulin (Castillo et al., 1994).

Although insulin secretion is regulated mainly by blood glucose, it is also regulated by a

75	family of circulating hormones called incretins (Seino et al., 2010). Incretins are hormones
76	secreted from the gastrointestinal tract upon food ingestion, these hormones act on pancreatic $\boldsymbol{\beta}$
77	cells to promote insulin secretion. Gastric inhibitory polypeptide (GIP) and glucagon-like
78	peptide-1 (GLP-1) are incretins (Fujimoto et al., 2009; Preitner et al., 2004; Seino et al., 2010;
79	Vollmer et al., 2008). GIP is secreted from K cells of the upper small intestine (Inagaki et al.,
80	1989; Takeda et al., 1987); GLP-1 is secreted from L cells of the lower small intestine (Bell et
81	al., 1983; Orskov et al., 1993). Orally ingested glucose promotes incretin secretion into the
82	small intestine, where it is absorbed and enters the blood. Blood glucose and incretin act
83	cooperatively on pancreatic β cells to promote insulin secretion and increase circulating insulin
84	levels (Parkes et al., 2001).

- 85 Postprandial hyperglycemia is identified with an oral glucose tolerance test (OGTT), in which
- 86 a subject's ability to tolerate a glucose load (glucose tolerance) is evaluated by measuring blood

87	glucose level after an overnight fast and again 2 h after a 75-g oral glucose load (Stumvoll et al.,
88	2000). Using time course data of glucose and insulin in the blood during the OGTT, many
89	mathematical models have quantitatively evaluated the relationship between the blood glucose
90	and insulin in humans (Bergman et al., 1979; Brubaker et al., 2007; Dalla Man et al., 2016,
91	2013, 2007, 2006; De Gaetano et al., 2013; Hill et al., 1997; Kabul et al., 2015; Kim et al.,
92	2014; Overgaard et al., 2006; Pedersen et al., 2011; Riz et al., 2014; Røge et al., 2017; Salinari
93	et al., 2011; Tura et al., 2001). These models consist of blood glucose and insulin, but not
94	incretins (Bergman et al., 1979; Dalla Man et al., 2007, 2006; De Gaetano et al., 2013; Tura et
95	al., 2001). Other mathematical models incorporate the incretins (Brubaker et al., 2007; Dalla
96	Man et al., 2016; Kabul et al., 2015; Kim et al., 2014; Pedersen et al., 2011). In some models,
97	blood glucose and incretin act independently on insulin secretion during the OGTT (Brubaker et
98	al., 2007; Kabul et al., 2015; Kim et al., 2014); in others, blood glucose and incretin act
99	cooperatively (Dalla Man et al., 2016; Pedersen et al., 2011). The effective action of incretins on
100	the insulin secretion in mathematical models remains to be determined.
101	One application of mathematical models is the ability to make prediction. Published

102 mathematical models of blood glucose and insulin have been used to predict blood glucose

103	levels after glucose administration. We require a solution of a pair of forward and inverse
104	problems to obtain an optimal design of input pattern. Firstly, we need a dynamics model to
105	predict the temporal pattern as a consequence of a given input pattern. This mode of prediction
106	is a forward problem: The prediction is an "output pattern" related to the input pattern. Secondly,
107	optimal input pattern should be determined so as to minimize the outcome that is defined as an
108	arbitrarily given objective function of the predicted output pattern. This mode of prediction is an
109	inverse problem: The prediction is an "input pattern" that produces an optimal output pattern.
110	There are many established methods that use complex ordinary differential equations to solve
111	the forward problem of predicting output patterns, but few methods exist to solve the inverse
112	problem of predicting input patterns. Recently, we proposed a mathematical framework to
113	estimate an input pattern that produces a defined output pattern (Murakami et al., 2017).
114	Here, we constructed mathematical models with either glucose-independent and/or
115	glucose-cooperative roles of incretins on insulin secretion. We used the models to predict an
116	optimal glucose ingestion pattern that controls blood glucose level. Because blood glucose level
117	is the output pattern, this represents using the model to solve an inverse problem. We measured
118	blood glucose, insulin, GIP and GLP-1 before and after oral glucose ingestion with different

119	doses and ingestion durations for three subjects. As a forward problem, we constructed a
120	mathematical model of blood glucose (output) in response to orally ingested glucose (input) for
121	each subject. As an inverse problem, we optimally designed glucose ingestion pattern that
122	minimized the peak value of blood glucose level for each subject. Each subject had an
123	optimized pattern of ingestion that was intermittent. We validated blood glucose level by the
124	predicted intermittent ingestion pattern for each subject and found that the intermittent ingestion
125	pattern decreased the peak value of blood glucose level compared with the blood glucose levels
126	that occurred with bolus or 1 h-continuous ingestion patterns. Thus, we provide the logical
127	design of oral glucose ingestion pattern that minimizes the peak value of blood glucose level in
128	humans, using an approach of combination of a forward and an inverse problems, which can be
129	widely applied to design optimal dietary ingestion patterns for human health.
130	RESULTS
131	Measurement of Blood Glucose and Blood Hormones Before and After Oral Glucose
132	Ingestion
133	To obtain the data for developing the model, we monitored the effect of ingestion of different

134 amounts of glucose in different temporal patterns of ingestion on blood glucose and hormone

135	levels (Figure 1). In 6 separate experiments, the three healthy volunteers either rapidly
136	consumed one of three doses of glucose (25 g, 50 g, 75 g) or consumed the glucose over 2 hours
137	(see STAR Methods A.1, A.2). The rapid ingestion paradigm is referred to as bolus ingestion
138	and the slow ingestion paradigm as 2 h-continuous ingestion. Prior to glucose ingestion and
139	after glucose ingestion, we measured levels of blood glucose, insulin, C-peptide, intact GIP
140	(designated GIP hereafter), and intact GLP-1 (designated GLP-1 hereafter) (see STAR Methods
141	A.2).
142	With any ingestion pattern, the temporal pattern of each molecule exhibited a transient
143	increase that returned to baseline within 4 hours (Figure 2). For bolus ingestion, the blood
144	glucose and other blood hormones reached similar peak values for each dose of ingested
145	glucose (Figure 2A, C, E, G, I). For the 2 h-continuous ingestion, blood glucose and other blood
146	hormones showed increasing peak values with increasing doses of ingested glucose (Figure 2B,
147	D, F, H, J). A consistent difference between bolus and continuous ingestion was that in the bolus
148	ingestion case, with increasing doses of glucose, the time when blood glucose and hormones
149	began to decrease and time to return to baseline become more delayed. In contrast, for 2
150	h-continuous ingestion, the time when blood glucose and other hormones began to decrease,

- and the time when all returned to the basal level were similar regardless of dose of ingested
- 152 glucose. Subjects #2 and #3 showed similar responses to subject #1 by bolus and 2 h-continuous
- 153 ingestion, except for GLP-1 (Figure S1). GLP-1 for only 75 g bolus ingestion for subject #1
- 154 showed a high transient peak, but that for subjects #2 and #3 did not.

155 Mathematical Model of Blood Glucose Control

156 As a solution to the forward problem, we constructed a mathematical model of blood glucose

157 control that fits time course data of blood glucose and hormones. We constructed a

- 158 mathematical model from ordinary differential equations (Figure 3A, Table 1, Table S1, see
- 159 STAR Methods B.1). Because of possible alternative mechanisms of actions of GIP and GLP-1
- 160 on insulin secretion (Brubaker et al., 2007; Dalla Man et al., 2016; Kabul et al., 2015; Kim et al.,
- 161 2014; Pedersen et al., 2011), we constructed multiple alternative models in which the GIP or
- 162 GLP-1 or both have independent actions or cooperative actions with blood glucose to promote
- 163 insulin secretion (Figure 3A, Table 1, Table S1, see STAR Methods B.1). We estimated
- 164 parameters of each model for each subject separately to fit time course data of blood glucose
- and hormones. We selected the best model of blood glucose control for each subject by Akaike
- 166 Information Criterion (AIC) (see STAR Methods B.2). The selected models were the same for

167	subjects #1	and #3, 1	but different	from the	model fo	r subject #2	(Table S2	, S3). I	n the models of

- subject #1 and #3, cooperative action by blood glucose and GIP was selected, indicating that
- 169 insulin secretion did not depend on GLP-1. In the model of subject #2, the independent action of
- 170 GIP and Cooperative action by blood glucose and GLP-1 were selected. In each subject model,
- 171 time course data of each blood glucose and hormones were approximately reproduced (Figure
- 172 3B, Figure S2, S3, Table S4).

173 Optimization and Validation of Glucose Ingestion Pattern that Minimizing Peak Value of

174 Blood Glucose Level

175 Using mathematical, we tackled the inverse problem of predicting an optimal input pattern 176 that optimally controls the output pattern. Here, input and output patterns are, specifically, time 177 courses of oral glucose ingestion and blood glucose level, respectively. The optimality of the 178 output pattern is defined as an objective function that is a function of the output pattern, 179 typically the peak value of blood glucose level. First, we optimized the glucose ingestion pattern 180 for each subject that minimized the typical objective function. Hereafter, we designate the 181 optimized patterns minimizing objective function as the minimization pattern. We searched the 182 solution under the following restrictions; total 50 g of glucose should be ingested within 60 min,

183	glucose is ingested every 5 min, at least 1 g is ingested at 0 min and the remaining 49 g of
184	glucose is distributed between 0 and 60 min. Because the combination of glucose ingestion
185	patterns is enormous $(62!/(49!13!))$, we obtained an optimal ingestion pattern using an
186	evolutionary programing-based optimization algorithm (see SART Methods B.3) (Bäck and
187	Schwefel, 1993). The minimization patterns for the three subjects were designed with the
188	above-explained method and shown in Fig. 4A.
189	The optimized minimization pattern of the subject #1 appeared to be an intermittent pattern
190	with 30-min intervals with most glucose ingested at 0 min (17 g) and 60 min (23 g), and smaller
191	amounts ingested at 30 min (8 g) and 35 min (2 g) (Figure 4A, Table S5). This pattern was
192	different from bolus and 1 h-continuous ingestions. The predicted blood glucose achieved with
193	the minimization pattern showed a bimodal temporal pattern with peaks from ~ 25 min to 50 min
194	and at ~80 min (Figure 4B, red line).
195	The optimized minimization patterns of subjects #2 and #3 appeared to be intermittent
196	patterns similar to the pattern of the subject #1 (Figure 4A; Table S5). Compared with subject
197	#1, for subjects #2 and #3, the optimized pattern of ingestion had some notable differences:
198	Ingestion amount of glucose at 0 min was less, the number of time points at ~30-min the

199	intermittent period during which glucose was ingested was larger, and the ingestion amount of
200	glucose at 60 min was larger. The predicted blood glucose level achieved with the minimization
201	pattern for subjects #2 and #3 showed a similar bimodal pattern to that for subject #1 (Figure 4B,
202	red line).
203	We also compared the simulated blood glucose levels produced with the minimization pattern
204	with those simulated for bolus or 1 h-continuous ingestion of 50 g of glucose. The predicted
205	minimization pattern produced a lower peak value of blood glucose level than either simulations
206	of bolus or 1 h-continuous ingestion using the subject-specific models (Figure 4B).
207	We validated the predicted blood glucose levels produced with the minimization patterns for
208	each subject. Each subject ingested glucose according to their specific optimized minimization
209	pattern (Table S5), and blood glucose levels were measured. (Figure 4C, red line). The peak
210	value of blood glucose level produced by ingestion according to the minimization pattern in
211	each subject was less than those produced by bolus and 1 h-continuous ingestion (Figure 4C,
212	Table S6). All subjects exhibited bimodal temporal patterns of blood glucose level. These
213	experimental results are consistent with the predictions except that first peak in blood glucose
214	level at ~30 min was lower than the second peak at ~80 min for subjects #1 and #2 and the peak

215 in blood glucose was delayed from the prediction for subject #3.

216	To examine how the key parts of the ingestion pattern that resulted in the pattern that
217	minimized the peak value of blood glucose level, we simplified the ingestion pattern into a
218	coarse-grained ingestion pattern (Figure 5). We generated a minimization pattern with 5
219	parameters (Figure 5A, see STAR Methods B.4), and examined the effect of parameters on the
220	peak value of blood glucose level.
221	We coarse-grained the minimization pattern into three periods; start time (0 min) of the first
222	bolus ingestion, continuous-like intermediate period, and the end time of the ingestion (Figure
223	5A, upper panel). The coarse-grained pattern was characterized by 5 parameters; the dose of
224	ingested glucose at 0 min u_0 , the start time of the intermediate period t_s , the duration of
225	intermediate period Δt , the dose of ingested of glucose at the end time u_T , and the end time of
226	the ingestion T (Figure 5A, see STAR Methods B.4). We changed the parameters, and
227	examined the effect of each parameter on the peak value of blood glucose level (Figure 5B).
228	To determine the parameter sets of the coarse-grained minimization pattern, we fixed $T = 60$
229	[min], the same duration as Figure 4A, and identified the parameter set that minimized the
230	peak value of blood glucose level of subject #1 (Figure 5B, larger symbols). The parameter set

231	$u_0 = 17$ [g], $u_{60} = 24$ [g], $t_s = 30$ [min], $\Delta t = 0$ [min] produced a minimum (174.07)
232	mg/dL) value for the peak value of blood glucose level, and this value is equivalent to that
233	(173.95 mg/dL) achieved with the minimization pattern (Table 2). The coarse-grained
234	minimization pattern was almost the same as that of the minimization pattern of subject #1
235	obtained in Figure 4. This result indicates that the coarse-grained minimization pattern
236	captures essential characteristics of the minimization pattern, such as the peak value of blood
237	glucose level and the temporal pattern.
238	We examined the dependency of the parameters on the end time of ingestion T for
239	minimizing the peak value of blood glucose level (Figure 5B, top). When $T \leq 40$ [min],
240	$u_0 + u_T = 50$ [g], and, as T increases u_0 increases (Figure 5B, red line), and u_T decreases
241	(Figure 5B, green line). Thus, when the total ingestion time is within 40 min, (i) there is no
242	intermediate period, and (ii) as the total ingestion time increases, the dose of ingested glucose at
243	0 min increases and the dose of ingested glucose at the end time decreases. When $T > 40$
244	[min], both u_0 and u_T decrease as T increases, and the dose of ingested glucose at the
245	intermediate period $50 - u_0 - u_T$ increases almost linearly (Figure 5B, blue line). Thus, as the
246	total ingestion time is longer than 40 minutes, (i) the dose of ingested glucose both at 0 min and

247	at the end time decrease and (ii) the dose ingested during the intermediate period increases. Also,
248	when $T > 40$ [min], t_s is almost constant between 20 [g] and 30 [g] (Figure 5B, magenta
249	line). Δt is nearly 0 [min] when $T \leq 60$ [min], and increases almost linearly when $T > 60$
250	[min] (Figure 5B, cyan line). Together these simulations indicated that, when the total ingestion
251	time is shorter than 60 min, the duration of the intermediate period becomes so short that
252	ingestion becomes bolus-like, and the intermediate period becomes longer as the total ingestion
253	time is longer than 60 min. For subjects #2 and #3, the dependency of the parameters on the end
254	time of ingestion T was also qualitatively the same (Figure 5B, middle and bottom).
255	Changing the duration of intermediate period Δt caused the greatest differences among the
256	subjects (Figure S4). When $T = 60$ [min], the duration of the intermediate period of subject #
256 257	subjects (Figure S4). When $T = 60$ [min], the duration of the intermediate period of subject # 1 is shorter than those of subject #2 and #3, which was also shown in non-coarse-grained
257	1 is shorter than those of subject #2 and #3, which was also shown in non-coarse-grained
257 258	1 is shorter than those of subject #2 and #3, which was also shown in non-coarse-grained minimization patterns for the subjects (see Figure 4). For both subjects #2 and #3, as the total
257 258 259	1 is shorter than those of subject #2 and #3, which was also shown in non-coarse-grained minimization patterns for the subjects (see Figure 4). For both subjects #2 and #3, as the total ingestion time becomes shorter than 60 min, the duration of the intermediate period becomes

263 during the intermediate period.

264	The quantitative difference of duration of intermediate period among subjects may relate to
265	differences in glucose tolerance among subjects. Glucose tolerance is determined by the balance
266	between insulin secretion, sensitivity, and clearance; as glucose tolerance decreases, insulin
267	secretion, sensitivity, and clearance also decrease (Antuna-Puente et al., 2011; Ohashi et al.,
268	2018, 2015; Polidori et al., 2016; Schofield and Sutherland, 2012). Therefore, we examined the
269	effect of the parameters for the reaction rates for insulin secretion, sensitivity and clearance on
270	duration of the intermediate period (Figure S5). The models for each subject showed that the
271	duration of the intermediate period becomes longer as the insulin secretion or sensitivity
272	increase and becomes shorter as the insulin clearance increases. Thus, the duration of the
273	intermittent period does not correspond to these insulin-related parameters controlling glucose
274	tolerance.
275	DISCUSSION
276	Prediction and Validation of Glucose Ingestion Patterns that Minimize the Peak Value of
277	Blood Glucose Level

278 In this study, as a forward problem, we constructed a mathematical model of the change in

279	blood glucose from time course data of blood glucose and hormones in blood during and
280	following oral glucose ingestion with various doses and durations in human subjects. Using this
281	model, as an inverse problem, we optimized glucose ingestion patterns that minimize the peak
282	value of blood glucose level and validated these patterns with the human subjects by
283	experiments. The minimization pattern was an intermittent pattern different from both the bolus
284	ingestion and the continuous ingestion. This intermittent ingestion pattern was intuitively not
285	obvious. However, we discovered the pattern using this approach of both constructing a
286	mathematical model as a forward problem and optimizing input pattern from the model as an
287	inverse problem. Although the best fitting model for each subject had important differences in
288	the roles of the blood hormones, the intermittent pattern as an optimal ingestion pattern to
289	minimize peak value of blood glucose level was common to all three subjects, suggesting that
290	the minimization pattern is robust to these differences in the model. Although we determined
291	that the duration of the intermittent period was a key parameter controlling the minimization
292	pattern output, we did not determine a molecular mechanism for how the intermittent pattern
293	minimizes the peak value of blood glucose level. This question will be analyzed in the future.
294	Methodologically, construction of a mathematical model based on the experimental data as a

295	forward problem is well-known. However, the inverse problem of optimizing an input pattern
296	to achieve a specified output pattern is challenging (Murakami et al., 2017). Our success in
297	identifying optimal input patterns through analysis of both the forward problem and inverse
298	problem suggests that this approach is valid for biological systems. An obvious potential
299	application is designing optimal ingestion patterns for various nutrients or combinations of
300	nutrients such that the ingestion pattern that minimizes the peak value of blood glucose level
301	can be logically designed. Such logical design of optimal food ingestion pattern will contribute
302	the human metabolic care and the prevention of the type 2 diabetes. Here, the objective
303	function for which we predict the input pattern is the peak value of the blood glucose level. By
304	changing the objective function, this approach can evaluate other biological outputs and
305	predict the input pattern that optimizes molecular concentrations or other measurable factors.
306	Identification of Individualized Models of the Control of Blood Glucose Level
307	Our ordinary differential equation models include the roles of incretins in insulin secretion.
308	By determining the best fitting model for each subject, we observed differences between
309	subjects in the roles of incretins in regulating blood glucose level. None of the subjects had
310	models that included an independent effect of GLP-1 on insulin secretion. Two of the three

311	subjects had no role for GLP-1 (independent or cooperative with glucose) in their optimal
312	models. In previous mathematical models using Caucasians data, only GLP-1, but not GIP, were
313	incorporated (Dalla Man et al., 2016; Pedersen et al., 2011). It has been reported that secretion
314	of intact GLP-1 in Japanese is very small, although that of the total GLP-1 in Japanese is almost
315	the same as that in Caucasians (Seino et al., 2010). All subjects in this study are Japanese, and,
316	the intact GIP level was higher than the intact GLP-1 level for all of them (Figure 2). Intact
317	GLP-1 and intact GIP have a similar EC_{50} for their receptors: The EC_{50} of intact GIP is 8 nM
318	(Gespach et al., 1984), and the EC_{50} of intact GLP-1 is 2.6 nM (Adelhorst et al., 1994).
319	Considering the higher level of intact GIP than intact GLP-1 in the blood and their similar
320	sensitivities, it is reasonable that intact GIP rather than intact GLP-1 was the incretin with the
321	most effect on insulin secretion in the best fitting model.
322	Many mathematical models use average values of blood glucose from many subjects of all
323	subjects. Some models that use data from individual subjects used data with only a single dose
324	of glucose (Dalla Man et al., 2013; De Gaetano et al., 2013; Ohashi et al., 2018, 2015). Here,
325	we used data from individual subjects using 3 different doses and 2 different durations of
326	glucose ingestion. We constructed a mathematical model using a single dose of glucose (75 g,

327	like that of the OGTT) in subject #1 and compared this OGTT model with the model that we
328	constructed from the data for the 3 different doses and 2 different durations of glucose ingestion
329	(Figure S6). The model that used the multiple dose and ingestion durations had a better fit to the
330	blood glucose level achieved by ingestion of glucose according to the minimization pattern
331	(lower RSS value) than did the model using 75 g OGTT alone. Thus, the single dose OGTT
332	appears insufficient to reflect the dynamics of the blood glucose level in sufficient detail for
333	mathematical modeling, and models should be constructed from data on multiple doses and
334	durations of glucose ingestion to be useful in predicting the minimization pattern.
335	This finding that more training data provides more accurate predictive power is expected.
336	However, the number of conditions for training data sets is limited in humans, because these
337	types of studies take a long period of time and require several hours and fasting by the
338	participants for each experimental condition. Here, we set an interval of 1 to 2 months for each
339	experiment, thus collecting the data required a minimum of six months, and, in reality, more
340	than a year. During such a long period, having many subjects for blood sampling following oral
341	glucose ingestion every month over a year is difficult. Changes in the state of a subject can
342	change during the months of the experiment, which can affect the model and reduce predictive

343	power. Thu	ıs, in	human	subject	tests,	there	is a	trade-off	relationship	between	the	number	of

344	training data sets and the prediction accuracy.
345	A limitation of the study is that the model is limited. There

346 autonomic nerves, and free fatty acids, that did not incorporate into the model. Glucagon is a

are mechanisms, such as glucagon,

- 347 counter-acting hormone to insulin in regulation of blood glucose. Glucagon increases blood
- 348 glucose level by facilitating glycogenolysis (Alberti and Zimmet, 1998; Jiang and Zhang, 2003).
- Autonomic nerves not only regulates secretion of insulin and glucagon (Thorens, 2011), but also
- 350 affects hepatic glucose production and uptake (Kimura et al., 2016; Ruud et al., 2017). Free
- 351 fatty acids weakens the effect of insulin on hepatic glucose production and peripheral glucose
- 352 uptake (Okuno et al., 1998; Yamauchi et al., 2001). Although glucagon and free fatty acid are
- 353 not explicitly incorporated in our model, blood glucose levels and other hormone concentrations
- are well reproduced, which may suggest that the effects of other molecules such as glucagon
- and free fatty acid, are implicitly incorporated by some parameters in the model. Incorporating
- 356 glucagon and free fatty acid explicitly into the model is a future goal.
- 357 In conclusion, the key points of this study are three. The first point is the experimental design.
- 358 We performed six different conditions of oral glucose ingestion (3 doses and 2 durations) for

359	each subject and obtained detailed time course data, which makes the model predictable. The
360	second point is the demonstration of ability to logically design blood glucose control. We
361	predicted and validated the oral glucose ingestion pattern that minimized the peak value of
362	blood glucose level. The third point is the methodology. We solved a forward problem by
363	constructing the mathematical model of output with the given input patterns, and in turn, solved
364	an inverse problem by logical designing the input pattern to control the output pattern. We
365	expect that this approach with a forward problem and an inverse problem that are solved using
366	the mathematical model can be widely applied to design optimal dietary ingestion pattern
367	relevant to human health.

369 STAR★Methods

- 370 Detailed methods are provided in the online version of this paper and include the following:
- 371 •METHOD DETAILS
- 372 •A. Experiment
- 373 OB. Model and Analysis

374 SUPPLEMENTAL INFORMATION

375 Supplemental Information includes eight figures and seven tables.

376 AUTHOR CONTRIBUTIONS

- 377 Conceptualization and Methodology, M.F., Y.M., S.O. and S.K.;
- 378 Experiment, Y.K., Y.S., and S.F.;
- 379 Modeling and Simulation, M.F., and Y.M.;
- 380 Analysis, M.F., Y.M., M.K., S.U., H.K., H.I., K.K., S.O., S.I, S.K.;
- 381 Writing, M.F., Y.M., Y.K., and S.K.;
- 382 Supervision and Funding, S.I. and S.K.

383 ACKNOWLEDGEMENT

384 We thank fellow laboratory members for critical reading of the manuscript and for technical

385	assistance with the experiment and analysis. We thank Rika Sumita, Mina Shiguma, and Naomi
386	Isene for technical assistance. We thank Nancy R. Gough (BioSerendipity, LLC) for editing the
387	manuscript. The computations for this work were performed in part on the NIG supercomputer
388	system at ROIS National Institute of Genetics. This work was supported by the Creation of
389	Fundamental Technologies for Understanding and Control of Biosystem Dynamics
390	(JPMJCR12W3), CREST, of the Japan Science and Technology Agency (JST) and by the Japan
391	Society for the Promotion of Science (JSPS) KAKENHI Grant Number (17H06300, 17H6299,
392	18H03979). M.F. receives funding from a Grant-in-Aid for Challenging Exploratory Research
393	(16K12508). Y.K. receives funding from a Grant-in-Aid for Young Scientists (18K16578). S.U.
394	receives funding from a Grant-in-Aid for Scientific Research on Innovative Areas (16H01551)
395	and a Grant-in-Aid for Scientific Research on Innovative Areas (18H04801). H.K. receives
396	funding from a Grant-in-Aid for Scientific Research on Innovative Areas (16H06577). K.K.
397	receives funding from a Grant-in-Aid for Scientific Research (B) (15KT0021) and (C)
398	(15K00246), and a Grant-in-Aid for Scientific Research on Innovative Areas (16H01554). The
399	funders had no role in study design, data collection and analysis, decision to publish, or
400	preparation of the manuscript.

401

402 **REFERENCES**

- 403 Abdul-Ghani, M. a., Tripathy, D., DeFronzo, R.A., 2006. Contributions of beta-cell dysfunction
- 404 and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired
- 405 fasting glucose. Diabetes Care 29, 1130–9. doi:10.2337/diacare.2951130
- Adelhorst, K., Hedegaard, B.B., Knudsen, L.B., Kirk, O., 1994. Structure-activity studies of
 glucagon-like peptide-1. J. Biol. Chem. 269, 6275–8.
- 408 Alberti, K.G., Zimmet, P.Z., 1998. Definition, diagnosis and classification of diabetes mellitus
- and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional
 report of a WHO consultation. Diabet. Med. 15, 539–53.
- 411 doi:10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S
- 412 Antuna-Puente, B., Disse, E., Rabasa-Lhoret, R., Laville, M., Capeau, J., Bastard, J.-P., 2011.
- 413 How can we measure insulin sensitivity/resistance? Diabetes Metab. 37, 179–88.
- 414 doi:10.1016/j.diabet.2011.01.002
- 415 Bäck, T., Schwefel, H.-P., 1993. An Overview of Evolutionary Algorithms for Parameter
- 416 Optimization. Evol. Comput. 1, 1–23. doi:10.1162/evco.1993.1.1.1
- 417 Bell, G.I., Santerre, R.F., Mullenbach, G.T., 1983. Hamster preproglucagon contains the
- 418 sequence of glucagon and two related peptides. Nature 302, 716–8. doi:10.1038/302716a0
- Bergman, R.N., Ider, Y.Z., Bowden, C.R., Cobelli, C., 1979. Quantitative estimation of insulin
 sensitivity. Am. J. Physiol. 236, E667-77. doi:10.1172/JCI112886
- 421 Brubaker, P.L., Ohayon, E.L., D'Alessandro, L.M., Norwich, K.H., 2007. A mathematical
- 422 model of the oral glucose tolerance test illustrating the effects of the incretins. Ann.
- 423 Biomed. Eng. 35, 1286–1300. doi:10.1007/s10439-007-9274-1
- 424 Cahill, G.F., 2006. Fuel metabolism in starvation. Annu. Rev. Nutr. 26, 1–22.
- 425 doi:10.1146/annurev.nutr.26.061505.111258
- 426 Castillo, M.J., Scheen, A.J., Letiexhe, M.R., Lefèbvre, P.J., 1994. How to measure insulin
- 427 clearance. Diabetes. Metab. Rev. 10, 119–50.
- 428 Dalla Man, C., Camilleri, M., Cobelli, C., 2006. A system model of oral glucose absorption:
- 429 validation on gold standard data. IEEE Trans. Biomed. Eng. 53, 2472–8.
- 430 doi:10.1109/TBME.2006.883792

431	Dalla Man, C	C., Micheletto,	F., Sathananth	an, M., V	Vella, A.,	Cobelli, C	., 2016.	Model-Based
-----	--------------	-----------------	----------------	-----------	------------	------------	----------	-------------

- 432 Quantification of Glucagon-Like Peptide-1-Induced Potentiation of Insulin Secretion in
- 433 Response to a Mixed Meal Challenge. Diabetes Technol. Ther. 18, 39–46.
- 434 doi:10.1089/dia.2015.0146
- 435 Dalla Man, C., Piccinini, F., Basu, R., Basu, A., Rizza, R. a, Cobelli, C., 2013. Modeling
- 436 hepatic insulin sensitivity during a meal: validation against the euglycemic
- 437 hyperinsulinemic clamp. Am. J. Physiol. Endocrinol. Metab. 304, E819-25.
- 438 doi:10.1152/ajpendo.00482.2012
- Dalla Man, C., Raimondo, D.M., Rizza, R. a., Cobelli, C., 2007. GIM, Simulation Software of
 Meal Glucose--Insulin Model. J. Diabetes Sci. Technol. 1, 323–330.
- 441 doi:10.1177/193229680700100303
- 442 De Gaetano, A., Panunzi, S., Matone, A., Samson, A., Vrbikova, J., Bendlova, B., Pacini, G.,
- 443 2013. Routine OGTT: a robust model including incretin effect for precise identification of
- 444 insulin sensitivity and secretion in a single individual. PLoS One 8, e70875.
- 445 doi:10.1371/journal.pone.0070875
- 446 Edelstein, S.L., Knowler, W.C., Bain, R.P., Andres, R., Barrett-Connor, E.L., Dowse, G.K.,
- 447 Haffner, S.M., Pettitt, D.J., Sorkin, J.D., Muller, D.C., Collins, V.R., Hamman, R.F., 1997.
- 448 Predictors of progression from impaired glucose tolerance to NIDDM: an analysis of six
 449 prospective studies. Diabetes 46, 701–10.
- 450 Fujimoto, W., Miki, T., Ogura, T., Zhang, M., Seino, Y., Satin, L.S., Nakaya, H., Seino, S.,
- 451 2009. Niflumic acid-sensitive ion channels play an important role in the induction of
- 452 glucose-stimulated insulin secretion by cyclic AMP in mice. Diabetologia 52, 863–872.

453 doi:10.1007/s00125-009-1306-y

- 454 Gespach, C., Emami, S., Rosselin, G., 1984. Gastric inhibitory peptide (GIP), pancreatic
- glucagon and vasoactive intestinal peptide (VIP) are cAMP-inducing hormones in the
 human gastric cancer cell line HGT-1. Homologous desensitization of VIP receptor
- +50 numun gastre cancer cen me from 1. fromotogous desensitization of vir rece
- 457 activity. Biochem. Biophys. Res. Commun. 120, 641–9.
- 458 Hill, K., Caprihan, A., Kakalios, J., 1997. Bulk Segregation in Rotated Granular Material
- 459 Measured by Magnetic Resonance Imaging. Phys. Rev. Lett. 78, 50–53.
- 460 doi:10.1103/PhysRevLett.78.50
- Inagaki, N., Seino, Y., Takeda, J., Yano, H., Yamada, Y., Bell, G.I., Eddy, R.L., Fukushima, Y.,
 Byers, M.G., Shows, T.B., 1989. Gastric inhibitory polypeptide: structure and

463	chromosomal localization of the human gene. Mol. Endocrinol. 3, 1014-21.
464	doi:10.1210/mend-3-6-1014
465	Jiang, G., Zhang, B.B., 2003. Glucagon and regulation of glucose metabolism. Am. J. Physiol.
466	Endocrinol. Metab. 284, E671-8. doi:10.1152/ajpendo.00492.2002
467	Kabul, R.S.E., Kabul, E., Pratiwi, A., Setiawan, A.A., Dahlan, K., Kartono, A., 2015.
468	Mathematical Model of Glucose-Insulin System Using the Modified Oral Minimal Model
469	and the Incretin Effects. Int. J. Pharm. Pharm. Sci. 7, 451-454.
470	Kim, M., Oh, T.J., Lee, J.C., Choi, K., Kim, M.Y., Kim, H.C., Cho, Y.M., Kim, S., 2014.
471	Simulation of oral glucose tolerance tests and the corresponding isoglycemic intravenous
472	glucose infusion studies for calculation of the incretin effect. J. Korean Med. Sci. 29,
473	378-85. doi:10.3346/jkms.2014.29.3.378
474	Kimura, K., Tanida, M., Nagata, N., Inaba, Y., Watanabe, H., Nagashimada, M., Ota, T.,
475	Asahara, S., Kido, Y., Matsumoto, M., Toshinai, K., Nakazato, M., Shibamoto, T., Kaneko,
476	S., Kasuga, M., Inoue, H., 2016. Central Insulin Action Activates Kupffer Cells by
477	Suppressing Hepatic Vagal Activation via the Nicotinic Alpha 7 Acetylcholine Receptor.
478	Cell Rep. 14, 2362–74. doi:10.1016/j.celrep.2016.02.032
479	Miyawaki, K., Yamada, Y., Ban, N., Ihara, Y., Tsukiyama, K., Zhou, H., Fujimoto, S., Oku, A.,
480	Tsuda, K., Toyokuni, S., Hiai, H., Mizunoya, W., Fushiki, T., Holst, J.J., Makino, M.,
481	Tashita, A., Kobara, Y., Tsubamoto, Y., Jinnouchi, T., Jomori, T., Seino, Y., 2002.
482	Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat. Med. 8,
483	738–42. doi:10.1038/nm727
484	Murakami, Y., Koyama, M., Oba, S., Kuroda, S., Ishii, S., 2017. Model-based control of the
485	temporal patterns of intracellular signalingin silico. Biophys. physicobiology 14, 29-40.
486	doi:10.2142/biophysico.14.0_29
487	Nakagami, T., DECODA Study Group, 2004. Hyperglycaemia and mortality from all causes
488	and from cardiovascular disease in five populations of Asian origin. Diabetologia 47,
489	385-394. doi:10.1007/s00125-004-1334-6
490	Ohashi, K., Fujii, M., Uda, S., Kubota, H., Komada, H., Sakaguchi, K., Ogawa, W., Kuroda, S.,
491	2018. Increase in hepatic and decrease in peripheral insulin clearance characterize
492	abnormal temporal patterns of serum insulin in diabetic subjects. npj Syst. Biol. Appl. 4,
493	14. doi:10.1038/s41540-018-0051-6
494	Ohashi, K., Komada, H., Uda, S., Kubota, H., Iwaki, T., Fukuzawa, H., Komori, Y., Fujii, M.,
	29

495	Toyoshima,	Y., Sakaguchi,	K., Ogawa.	W., Kuroda,	S., 2015.	Glucose Homeostatic La	w:

- Insulin Clearance Predicts the Progression of Glucose Intolerance in Humans. PLoS One
 10, e0143880. doi:10.1371/journal.pone.0143880
- 498 Okuno, A., Tamemoto, H., Tobe, K., Ueki, K., Mori, Y., Iwamoto, K., Umesono, K., Akanuma,
- 499 Y., Fujiwara, T., Horikoshi, H., Yazaki, Y., Kadowaki, T., 1998. Troglitazone increases
- 500 the number of small adipocytes without the change of white adipose tissue mass in obese
- 501 Zucker rats. J. Clin. Invest. 101, 1354–61. doi:10.1172/JCI1235
- 502 Orskov, C., Wettergren, A., Holst, J.J., 1993. Biological effects and metabolic rates of
- glucagonlike peptide-1 7-36 amide and glucagonlike peptide-1 7-37 in healthy subjects are
 indistinguishable. Diabetes 42, 658–61.
- 505 Overgaard, R. V, Jelic, K., Karlsson, M., Henriksen, J.E., Madsen, H., 2006. Mathematical beta
 506 cell model for insulin secretion following IVGTT and OGTT. Ann. Biomed. Eng. 34,
- 507 1343–54. doi:10.1007/s10439-006-9154-0
- Parkes, D.G., Pittner, R., Jodka, C., Smith, P., Young, A., 2001. Insulinotropic actions of
 exendin-4 and glucagon-like peptide-1 in vivo and in vitro. Metabolism. 50, 583–589.
- 510 doi:10.1053/meta.2001.22519
- Pedersen, M.G., Dalla Man, C., Cobelli, C., 2011. Multiscale modeling of insulin secretion.
 IEEE Trans. Biomed. Eng. 58, 3020–3. doi:10.1109/TBME.2011.2164918
- 513 Polidori, D.C., Bergman, R.N., Chung, S.T., Sumner, A.E., 2016. Hepatic and Extrahepatic
- 514 Insulin Clearance Are Differentially Regulated: Results From a Novel Model-Based
- 515 Analysis of Intravenous Glucose Tolerance Data. Diabetes 65, 1556–64.
- 516 doi:10.2337/db15-1373
- 517 Preitner, F., Ibberson, M., Franklin, I., Binnert, C., Pende, M., Gjinovci, A., Hansotia, T.,
- 518 Drucker, D.J., Wollheim, C., Burcelin, R., Thorens, B., 2004. Gluco-incretins control
- insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. J.
 Clin. Invest. 113, 635–645. doi:10.1172/JCI200420518
- 521 Riz, M., Pedersen, M.G., Toffolo, G.M., Haschke, G., Schneider, H.-C., Klabunde, T., Margerie,
- 522 D., Cobelli, C., 2014. Minimal modeling of insulin secretion in the perfused rat pancreas: a
- 523 drug effect case study. Am. J. Physiol. Endocrinol. Metab.
- 524 doi:10.1152/ajpendo.00603.2013
- 525 Røge, R.M., Bagger, J.I., Alskär, O., Kristensen, N.R., Klim, S., Holst, J.J., Ingwersen, S.H.,
- 526 Karlsson, M.O., Knop, F.K., Vilsbøll, T., Kjellsson, M.C., 2017. Mathematical Modelling

of Glucose-Dependent Insulinotropic Polypeptide and Glucagon-like Peptide-1 following
Ingestion of Glucose. Basic Clin. Pharmacol. Toxicol. 38, 42-49. doi:10.1111/bcpt.12792
Ruud, J., Steculorum, S.M., Brüning, J.C., 2017. Neuronal control of peripheral insulin
sensitivity and glucose metabolism. Nat. Commun. 8, 15259. doi:10.1038/ncomms15259
Salinari, S., Bertuzzi, A., Mingrone, G., 2011. Intestinal transit of a glucose bolus and incretin
kinetics: a mathematical model with application to the oral glucose tolerance test. Am. J.
Physiol. Endocrinol. Metab. 300, E955-65. doi:10.1152/ajpendo.00451.2010
Sano, T., Kawata, K., Ohno, S., Yugi, K., Kakuda, H., Kubota, H., Uda, S., Fujii, M., Kunida,
K., Hoshino, D., Hatano, A., Ito, Y., Sato, M., Suzuki, Y., Kuroda, S., 2016. Selective
control of up-regulated and down-regulated genes by temporal patterns and doses of
insulin. Sci. Signal. 9, ra112. doi:10.1126/scisignal.aaf3739
Schofield, C.J., Sutherland, C., 2012. Disordered insulin secretion in the development of insulin
resistance and Type 2 diabetes. Diabet. Med. 29, 972–9.
doi:10.1111/j.1464-5491.2012.03655.x
Schulze, M.B., Liu, S., Rimm, E.B., Manson, J.E., Willett, W.C., Hu, F.B., 2004. Glycemic
index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger
and middle-aged women. Am. J. Clin. Nutr. 80, 348-356. doi:10.1093/ajcn/80.2.348
Seino, Y., Fukushima, M., Yabe, D., 2010. GIP and GLP-1, the two incretin hormones:
Similarities and differences. J. Diabetes Investig. 1, 8–23.
doi:10.1111/j.2040-1124.2010.00022.x
Stumvoll, M., Mitrakou, A., Pimenta, W., Jenssen, T., Yki-Jarvinen, H., Van Haeften, T., Renn,
W., Gerich, J., 2000. Use of the oral glucose tolerance test to assess insulin release and
insulin sensitivity. Diabetes Care 23, 295-301. doi:10.2337/diacare.23.3.295
Takeda, J., Seino, Y., Tanaka, K., Fukumoto, H., Kayano, T., Takahashi, H., Mitani, T., Kurono,
M., Suzuki, T., Tobe, T., 1987. Sequence of an intestinal cDNA encoding human gastric
inhibitory polypeptide precursor. Proc. Natl. Acad. Sci. U. S. A. 84, 7005-8.
doi:10.1073/pnas.84.20.7005
Tholen, D.W., Kallner, A.J., Kennedy, W., Krouwer, J.S., Meier, K., 2004. Evaluation of
Precision Performance of Quantitative Measurement Methods; Approved Guideline.
Thorens, B., 2011. Brain glucose sensing and neural regulation of insulin and glucagon
secretion. Diabetes. Obes. Metab. 13 Suppl 1, 82-8.
doi:10.1111/j.1463-1326.2011.01453.x

559 Tietz, N. (Ed.), 1990. Clinical Guide to Laboratory Tests, 2nd Edition. WB Saunders,

560 Philadelphia.

- 561 Tijssen, P., 1985. Practice and theory of enzyme immunoassays. Elsevier, Amsterdam, NY.
- 562 Tura, a, Ludvik, B., Nolan, J.J., Pacini, G., Thomaseth, K., 2001. Insulin and C-peptide
- secretion and kinetics in humans: direct and model-based measurements during OGTT.
 Am. J. Physiol. Endocrinol. Metab. 281, E966-74.
- Vollmer, K., Holst, J.J., Baller, B., Ellrichmann, M., Nauck, M. a, Schmidt, W.E., Meier, J.J.,
- 2008. Predictors of incretin concentrations in subjects with normal, impaired, and diabetic
 glucose tolerance. Diabetes 57, 678–87. doi:10.2337/db07-1124
- 568 Yamauchi, T., Kamon, J., Waki, H., Murakami, K., Motojima, K., Komeda, K., Ide, T., Kubota,
- 569 N., Terauchi, Y., Tobe, K., Miki, H., Tsuchida, A., Akanuma, Y., Nagai, R., Kimura, S.,
- 570 Kadowaki, T., 2001. The mechanisms by which both heterozygous peroxisome
- 571 proliferator-activated receptor gamma (PPARgamma) deficiency and PPARgamma
- agonist improve insulin resistance. J. Biol. Chem. 276, 41245–54.
- 573 doi:10.1074/jbc.M103241200

574

576 STAR★Methods

577 KEY RESOURCE TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Software and Algorithms		
Ordinary Differential Equation Simulations and	Mathworks	RRID:SCR_001622
Analysis - MATLAB		

578 METHOD DETAILS

- 579 A. Experiment
- 580 A.1. Subjects
- 581 The subjects' profiles are as shown in Table S7. All subjects are healthy, and signed informed
- 582 consent.

583 A.2. Blood Sampling Experiment

584 For oral glucose tolerance test, a glucose solution containing 25 g, 50 g or 75 g glucose was

585 orally ingested after a 10-hour fasting, and blood samples were obtained at the times indicated

- 586 in the figures from the cutaneous vein of the forearm. Blood samples were obtained from the
- 587 cutaneous vein of the forearm. Blood collection on fasting was performed twice and then a

588	glucose solution containing 25 g, 50 g or 75 g glucose was orally ingested. The ingestion
589	method was rapid within a minute (bolus ingestion), and continuous over the course of 2 hours
590	(2 h-continuous ingestion). For continuous ingestion, we connected the tube to noncontact
591	microdispenser robot (Mr. MJ; MECT Corporation) (Sano et al., 2016) and glucose solution was
592	ingested from tube. To equalize the volume of ingested glucose solution, glucose solution,
593	TRELAN-G75 (AJINOMOTO), was diluted with distilled water into a total volume 225 ml.
594	Each amount of glucose and delivery paradigm was tested with each subject in experiments
595	separated by at least 1 month. Blood was rapidly centrifuged, plasma glucose and hormone
596	concentrations expect for GIP were measured according to the methods with LSI Medience Co.,
597	Ltd. Plasma glucose was measured by enzymatic methods (IATRO LQ GLU). Plasma insulin
598	and Serum C-peptide was measured by Chemiluminescent Immunoassay (Tholen et al., 2004;
599	Tietz, 1990). Plasma intact GLP-1 and Plasma intact GIP were measured by ELISA kits
600	(#EGLP-35K, Merck, Billerica, MA or #27201, Immuno-Biological Laboratories, Gunma,
601	Japan, respectively) (Miyawaki et al., 2002; Tijssen, 1985). For simplicity, we refer to plasma
602	glucose, plasma insulin, serum C-peptide, plasma intact GIP, and plasma intact GLP-1 as blood
603	glucose, insulin, C-peptide, GIP, and GLP-1, respectively.

604 A.3. Validation Experiment

605	For the validation experiment of the minimization pattern, we employed the same method as
606	described in A.2 for the subject #1, and a Freestyle Libre continuous glucose monitoring system
607	(FGM; Abbott Diabetes Care) for subjects #2 and #3. FGM reduces the invasive burden on the
608	subjects because the subjects wear a sensor rather than requiring an indwelling needle for blood
609	glucose monitoring. We performed the experiment after the subject had worn the sensors for at
610	least two days. Each subject wore three sensors, and bolus ingestion, continuous ingestion for 1
611	hour, ingestion of minimization pattern were carried out using the same sensors within two
612	weeks. The results of the three sensors were averaged for each paradigm. Because FGM
613	measures glucose level of the interstitial fluid rather than glucose level in the blood, the
614	measured value reflects a delay of about 5 to 20 minutes (Figure S3) compared with the values
615 616	obtained by blood collection. <i>A.4. Ethics Committee Certification</i>
010	A.4. Luncs committee certification
617	We complied with Japan's Ethical Guidelines for Epidemiological Research, and the study as
618	approved by the ethics committees of the Life-Science Committee of the University of Tokyo

619 (16-265). Subjects were recruited by the related law.

620 B. Model and Analysis

- 622 For each subject, we estimated parameters that reproduce the time course data of blood
- 623 glucose, insulin, C-peptide, intact GIP, and intact GLP-1 of six glucose ingestion patterns,
- 624 combinations of three doses (25 g, 50 g, and 75 g) and given by bolus and 2 h-continuous
- 625 ingestion, using the following model (Equations 1–21, Table 1).

$$\frac{dIntest_{G}}{dt} = v_{1} - v_{6}, \#(Equation 1)$$

$$\frac{dGIP}{dt} = v_{2} + v_{3}, \#(Equation 2)$$

$$\frac{dGLP1}{dt} = v_{4} + v_{5}, \#(Equation 3)$$

$$\frac{dRa_{GutG}}{dt} = v_{6} - v_{7}, \#(Equation 4)$$

$$\frac{dG}{dt} = \frac{v_{7}}{V} + v_{8} - v_{9}, \#(Equation 5)$$

$$\frac{dI}{dt} = v_{10} - v_{11}, \#(Equation 6)$$

$$\frac{dCP}{dt} = v_{10} - v_{12}, \#(Equation 7)$$

$$\frac{dX}{dt} = \frac{v_{11}}{k_{11}} - v_{13}, \#(Equation 8)$$

626 Equations 1-8 indicate differential equations reproducing time developments of glucose amount

627 in the intestine $Intest_{G}$ [g], GIP level GIP [pM], GLP-1 level GLP1 [pM], rate of appearance

of ingested glucose amount into the blood
$$Ra_{GutG}$$
 [g/min], blood glucose level *G* [mg/dL],
insulin level *I* [pM], C-peptide *CP* [pM], and the insulin level acting on the regulation of
glucose *X* (denoted as effective insulin concentration at target organs hereafter). Each variable
is controlled by fluxes v_i { $i = 1, ..., 13$ }. However, in Equation 5, v_7 was divided by the
constant *V* to convert the ingested glucose amount into the blood glucose level. Also in
Equation 8, v_{11} was divided by k_{11} to render *X* dimensionless. Rendering *X* dimensionless
enables the elimination of redundant parameters, and improves the accuracy of parameter

635 estimation. The fluxes v_i are given by

 $v_1 = Glucose, #(Equation 9)$

$$v_2 = \frac{k_2 \ Intest_G}{K_2 + Intest_G}, \#(Equation \ 10)$$

 $v_3 = k_3 (GIP_B - GIP), #(Equation 11)$

$$v_4 = \frac{k_4 \, Intest_G}{K_4 + Intest_G}, \#(Equation \ 12)$$

 $v_5 = k_5 (GLP1_B - GLP1), #(Equation 13)$

$$v_6 = \frac{k_6 \ Intest_G}{K_6 + Intest_G}, \#(Equation \ 14)$$

 $v_7 = k_7 Ra_{GutG}$, #(Equation 15)

$$v_8 = \frac{k_8}{K_8 + X}$$
, #(Equation 16)

$v_9 = k_9 G X$, #(Equation 17)

 $v_{10} = k_{10}(G + a GIP + b G GIP + c GLP1 + d G GLP1), #(Equation 18)$

$$v_{11} = \frac{k_{11} I}{K_{11} + I}, #(Equation 19)$$

 $v_{12} = k_{12} CP$, #(Equation 20)

$$v_{13} = k_{13} X$$
, #(Equation 21)

636 (Table 1, Figure 3).

637 v_1 indicates the influx of ingested glucose into the intestine, given by dose of glucose ingestion

638 divided by the time duration of ingestion Δt , otherwise 0 (Equation 22). For rapid ingestion,

such as bolus ingestion, or for the ingestion of minimization pattern, Δt is assumed as 0.5

640 [min]. For example, in the case of 50 g bolus,

 $Glucose = \begin{cases} dose/\Delta t = 50/0.5 = 100, & 0 \le t < 0.5 \\ 0, & otherwise \end{cases}$. #(Equation Error! Bookmark not defined.)

641 v_2 indicates the secretion of GIP depending on the glucose amount in the intestine (*Intest_G*).

 v_3 indicates absorption of GIP by the intestine and entry into the blood, which is proportional

643 to GIP subtracted by its basal GIP_B . At steady state without glucose ingestion, GIP

- 644 converges to GIP_B . v_4 indicates the secretion of GLP-1 depending on the glucose amount in
- 645 the intestine. v_5 indicates the absorption of GLP-1 proportional to GLP1 subtracted by its

646	basal $GLP1_B$. At the steady state without glucose ingestion, $GLP1$ converges to $GLP1_B$. v_6
647	indicates the flow of glucose from the intestine to the rate of appearance (Ra_{GutG}) . With bolus
648	ingestion, this flow can be regarded as constant because of the large amount of glucose in the
649	intestine (Brubaker et al., 2007). Therefore, we assumed that this flux is given by the
650	Michaelis-Menten equation, which saturates when the glucose amount is large. v_7 indicates the
651	flow of glucose from the rate of appearance into the blood, which is proportional to the rate of
652	appearance of ingested glucose amount. v_8 indicates the flow of glucose production from the
653	liver into the blood, given by an inhibitory Michaelis-Menten equation, which decreases as the
654	amount of effective insulin X increases. v_9 indicates the glucose uptake from the blood to the
655	periphery and is given by the product between blood glucose level G and effective insulin X .
656	v_{10} indicates the secretion of insulin. In this study, the actions of GIP and GLP-1 on insulin
657	secretion were represented as independent actions of each incretin and as cooperative actions
658	with blood glucose. By incorporating the parameters $(a, b, c, and d$ in Equation 18), we could
659	relate insulin secretion to cooperative or independent actions using AIC (Akaike Information
660	Criteria) to select the model that best fit the data (Table S1, S2). v_{11} indicates the flow of
661	insulin <i>l</i> into target organs, such as liver and muscle, leading to effective insulin <i>X</i> . v_{12}

662 indicates inactivation of C-peptide CP and decreases in proportion to CP itself.
$$v_{13}$$
 indicates

- 664 For the model, parameters were estimated for each subject. Here, the estimated parameters
- are the 18 parameters of k_2 , k_3 , k_4 , k_5 , k_6 , k_7 , k_8 , k_{10} , K_2 , K_4 , K_6 , K_8 , K_{11} , V, a, b, c and d; and
- six initial levels of GIP(0), GLP1(0), G(0), I(0), CP and X(0). Using the variables, and
- assuming $Duod_G$, Ra_{GutG} , GIP, GLP1, G, I, X, and CP are at steady state before ingestion,

other initial conditions and parameters were determined by estimated parameters and initial

669 values, given by

$$Ingest_{G}(0) = 0, #(Equation 23)$$

$$Ra_{GutG}(0) = 0, \#(Equation 24)$$

$$k_9 = \frac{k_8}{G(0) \cdot X(0) \cdot (X(0) + K_8)}, \#(Equation \ 25)$$

 $k_{11} = k_{10} \frac{K_{11} + I(0)}{I(0)} (G(0) + a GIP(0) + b G(0)GIP(0) + c GLP1(0) + d G(0)GLP1(0)), #(Equation 26)$ $k_{12} = \frac{k_{10}}{CP(0)} (G(0) + a GIP(0) + b G(0)GIP(0) + c GLP1(0) + d G(0)GLP1(0)), #(Equation 27)$ $k_{13} = \frac{I(0) (I(0) + K_{11})}{V(0)}, #(Equation 28)$

 $GIP_B = GIP(0), #(Equation 29)$

 $GLP1_B = GLP1(0). \#(Equation 30)$

- 670 These parameters are different between subjects, but the same for each subject for each
- 671 experimental paradigm (dose and duration and ingestion). This means that the state for each
- subject does not change during this study. For time development, we used CVODE in Matlab's
- 673 Systems biology toolbox.
- We used the residual sum of squares as the objective function so that the residual between the
- 675 experimental value and the simulation value is reduced, given by

$$RSS = \sum_{i} \sum_{k} \sum_{t} \left[\frac{x_{i,k}^{sim}(t) - x_{i,k}^{exp}(t)}{\max_{t} x_{i,k}^{exp}(t) - \min_{t} x_{i,k}^{exp}(t)} \right]^{2} . \# (Equation 31)$$

 $x_{i,k}^{sim}(t)$ and $x_{i,k}^{exp}(t)$ indicate the simulation values and the experimental values of molecular 676 677 $k \in \{G, I, CP, GLP1, GIP\}$ species time in the experiment at t 678 $i \in \{25B, 25C, 50B, 50C, 75B, 75C\}$, for which each experiment is denoted by the ingestion dose 679 and the initial letters of the duration of ingestion, 25 g-bolus ingestion, 25B and for 75 g-2 680 h-continuous, 75C. To avoid the influences of the differences in the absolute quantities of the 681 molecules, we normalized the difference between the simulation value and the experimental 682 value by the difference between the maximum value and the minimum value of the experiment. 683 We performed parameter estimation for global optimal solution using Evolutionary

684 programming (Bäck and Schwefel, 1993) for 40 trials with a parent number of 5000 and a

- 685 generation number of 5000, then we obtained a local optimal solution using the simplex search
- 686 method (Matlab fminsearch). We implemented all programs using Matlab 2015a and performed
- 687 parameter estimation using 2.6 GHz CPU (Xeon E5 2670) at the National Institute of Genetics
- 688 (NIG), Supercomputer System of Research Organization of Information and System (ROIS).

689 B.2. Model Selection

- 690 Using parameters of a, b, c and d in Equation 18, which indicate contributions to insulin
- 691 secretion of incretins as independent actions of each incretin and cooperative actions with
- 692 glucose, we considered the multiple models shown in Table S1.
- 693 We performed the parameter estimation of each of the above models using *RSS* of Equation
- 694 31 for each subject. Here, we assumed that each residual of the simulation value and the
- 695 experiment value in Equation 31 follows a normal distribution. Among the models to be
- 696 compared, the sum N of the numbers of data of each variable measured in the experiment is
- 697 the same. Therefore, AIC (Akaike Information Criteria), which is a criterion of model selection
- 698 can be calculated for each model, given by

 $AIC = N \log(RSS) + 2K.\#(Equation 32)$

699 We employed a model that minimizes AIC for each subject as a model representing the

700	dynamics of blood molecules in the subject. For the models not including GLP-1 of subjects #1
701	and #3 as mentioned below, we also calculated AIC for each model similar to those including
702	GLP-1.
703	The selected models for each subject were distinct (Table 2, Table S1, S2). For subject #1,
704	the best model had no influence of GLP-1 and both an independent action and cooperative
705	action with glucose for GIP (Table S2, $c = d = 0$), indicating that the insulin secretion of
706	subject #1 is independent of GLP-1. For subject #2, the best model had an independent action
707	of GIP and a cooperative action of GLP-1 with glucose (Table S2, $b = c = 0$), indicating that
708	the insulin secretion of subject #2 depends on both GIP and GLP-1. For subject #3, the best
709	model had only the cooperative action of GIP with glucose (Table S2, $a = c = d = 0$),
710	indicating that the insulin secretion of subject #3 is independent of GLP-1. In each subject
711	model, time course data of each blood glucose and hormones were approximately reproduced
712	(Figure 3B, Figure S2, S3).
713	In the selected models of subjects #1 and #3, insulin secretion did not depend on GLP-1,
714	therefore, we performed parameter estimation and model selection using models that did not
715	include GLP-1 by removing Equation 3. Insulin secretion using the best fitting of these models

716 for both subjects #1 and #3 included the term of independent action of blood glucose and the

717 cooperative term of blood glucose and GIP (Table S3, a = 0). We used these models for

718 subjects #1 and #3.

719 **B.3. Estimation of Minimization Patterns**

720 We set the oral glucose u(t) as a function of time t [min] according to the following

721 constraint condition. First, glucose was orally ingested at intervals of 5 min from 0 min to 60

min. Here, we defined u_s [g] as the dose of ingestion at the minute s [min] (s = 0, 5, ..., 60)

and $u_{0:60}$ as the temporal pattern of oral glucose ingestion, given by

$$u_{0:60} = [u_0, u_5, \dots, u_{60}]$$
. #(Equation 33)

Also, we set the total dose of glucose ingestion at 50 g, *i.e.* $\sum_{s} u_s = 50$ [g], each dose at s is

the integer value with unit of 1 g, *i.e.* $u_s \in \mathbb{Z}$, $u_s \ge 0$, and at least 1 g is ingested at 0 min to

start the ingestion, *i.e.* $u_0 \ge 1$. We assumed that ingestion at each time is taken over 0.5 min,

and convert $u_{0:60}$ to *Glucose* instead of Equation 9, given by

$$Glucose(t) = \begin{cases} u_s/0.5 & t_i \le t < t_i + 0.5, \\ 0 & otherwise \end{cases} \quad t_i \in \{0, 5, \dots, 60\}. \ \#(Equation 34)$$

728

729 Next, we expressed a nonlinear ordinary differential equation model (Equations 1–8)

730 describing the dynamics of the glucose metabolism system, given by

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(u(t), \mathbf{x}(t); \boldsymbol{\theta}), \#(Equation 35)$$
$$\mathbf{x}(0) = \mathbf{x}^{init}, \#(Equation 36)$$

731

where \mathbf{x} indicates a state variable, \mathbf{x}^{init} indicates an initial state, $\boldsymbol{\theta}$ is a parameter set, and \mathbf{f} is a nonlinear function. These types and values of \mathbf{x} , \mathbf{x}^{init} , $\boldsymbol{\theta}$, and \mathbf{f} are different among subjects, because the selected models of subjects and parameters are different among subjects (see STAR Methods B.2). Each subject has one set of \mathbf{f} , \mathbf{x}^{init} , and $\boldsymbol{\theta}$. $\mathbf{x}(0:T)$. The temporal pattern of \mathbf{x} from t = 0 to t = T with the temporal pattern of oral glucose ingestion $\mathbf{u}_{0:60}$ can be obtained by the deterministic numerical simulation of this mathematical model Sim, given by $\mathbf{x}(0:T) = Sim(\mathbf{u}_{0:60}, \mathbf{x}^{init}, \boldsymbol{\theta}, \mathbf{f}, T)$. #(Equation 37)

To design a temporal pattern of oral glucose ingestion that minimizes the peak value of blood glucose level, we formulated as an optimization problem. Defining the peak value of blood glucose level in the time course x(0:T) as $G_{Max}(x(0:T))$ and setting the objective function of the optimization problem to be $J(G_{Max}(x(0:T)))$, we set the objective functions for

designing the temporal patterns of oral glucose ingestion that minimizes the peak value of blood

744 glucose level, given by

$$J(G_{Max}(\mathbf{x}(0:T))) = G_{Max}(\mathbf{x}(0:T)). \#(Equation 38)$$

745 Under these settings, the optimization problem of designing the oral glucose ingestion pattern

can be expressed as follows for minimizing the peak value of blood glucose level, given by

$$\underset{\boldsymbol{u}_{0:60}}{\operatorname{argmin}} J\left(G_{Max}(\boldsymbol{x}(0:T))\right) = \underset{\boldsymbol{u}_{0:60}}{\operatorname{argmin}} J\left(G_{Max}\left(Sim(\boldsymbol{u}_{0:60}, \boldsymbol{x}^{init}, \boldsymbol{\theta}, \boldsymbol{f}, T)\right)\right). \#(Equation 39)$$

748 We numerically solved this optimization problem by following evolutionary programming. 749 Each individual has an oral glucose ingestion pattern. After initialization of the oral glucose 750 ingestion pattern of each individual, the algorithm outputs the oral glucose ingestion pattern that 751 minimizes the objective function value by repeating (i) the mutation steps through which a new 752 oral glucose ingestion pattern for each individual is proposed, and (ii) the selection steps 753 through which individual (and thus new pattern) are selected based on the value of the objective 754 function. Denoting the total number of individuals as N, the n^{th} individual of the oral glucose 755

ingestion pattern $u_{0:60}$ as u_n , and simplifying the objective function as $J(u_n)$, the algorithm

757 is as follows:

758	1.	(<i>Initialization</i>) For each individual $n = 1,, N$, u_n is initialized and u_n that minimizes
759		$J(\boldsymbol{u}_n)$ is stored as \boldsymbol{u}^* .
760	2.	Repeat the following procedure (a)–(c) K times
761		a. (<i>Mutation</i>) For each individual $(n = 1,, N)$, copy and mutate u_n to generate a
762		new individual u'_n . Update u^* as $u^* \leftarrow u'_n$ if $J(u^*) > J(u'_n)$.
763		b. (<i>Selection</i> 1) For each of $2N$ individuals that consist of the original individuals and
764		the new individuals generated at (a), obtain the evaluation value by the following
765		procedure.
766		i. Select an individual sequentially as u_m .
767		ii. Select an M individuals randomly except for \boldsymbol{u}_m (duplication possible) as
768		$u_{m_i} (i = 1,, M).$
769		iii. Obtain the evaluation value defined by the number of u_{m_i} with $J(\boldsymbol{u}_{m_i}) >$
770		$J(\boldsymbol{u}_m).$
771		c. (Selection 2) Sort the individuals in order of the evaluation value, and the top N
772		individuals are selected and used in the next step.

773 3. Output **u**^{*}.

- In terms of evolutionary programming, step 1 is initialization, step 2-a is mutation, and steps 2-b
- and 2-c are selection. Because the intersection of oral glucose ingestion patterns is complicated
- by the constraint of 50 g total ingestion dose, this algorithm does not include intersection.
- 777 Details of initialization and mutation are as follows: In initialization, to avoid bias of an
- initial value, N individuals consist of an individual with a 50 g bolus ingestion, an individual
- with 1 g ingestion at 0 min and the remaining 49 g ingestion at 60 min, and other random
- patterns. The random pattern was generated by distributing 49 g glucose randomly with equal
- 781 probability at each time point and the remaining 1 g ingestion at 0 min. For the mutation, a new
- 782 oral glucose ingestion pattern was suggested by repeating operations that transfer 1 g of glucose
- from one time point to another randomly. Specific operations are as follows.
- 1. Subtract 1 g of glucose at time 0 min
- 785 2. Repeat the following procedure (a) and (b) *L* times
- 786 a. Randomly select the source and destination time points of glucose with equal787 probability.
- b. If the ingestion glucose at the source time point contains more than 1 g, transfer 1 g of

glucose from the source time point to the destination time point.

- 790 3. Add 1 g of glucose at time 0 min
- 791 In the deterministic numerical simulation *Sim*, we employed the Euler method with a time
- step width of 0.001 [min] to shorten the calculation time. We also set T = 480 [min].
- In the evolutionary programming, we set the number of individuals as N = 500, the number
- of generation except initialization generation as K = 500, the number of transfers of glucose in
- one mutation L to decrease from L = 20 by 1 every 25 generations, and the number of
- individuals for calculation of evaluation value in selection as M = N/5 = 100. According to
- this algorithm and these settings, we calculated the optimal ingestion pattern for 5 trials and
- obtained the pattern that produced the smallest objective function. Note that we obtained the
- same minimization pattern for each subject multiple times for multiple trials (all trials in subject
- 800 #1 and #2, 2 trials in subject #3).

801 **B.4. Coarse Graining of Minimization Pattern**

We coarse-grained the minimization pattern into three periods: a start time (0 min) of the first bolus ingestion, a continuous-like intermediate period, and an end time of the ingestion (Figure

5A, upper panel). The coarse-grained pattern was characterized by 5 parameters: the dose of

ingested glucose at 0 min
$$u_0$$
 [g], the start time of the intermediate period t_s [min], the
duration of intermediate period Δt [min], the dose of ingested of glucose at the end time u_T
[g], and the end time of the ingestion T [min]. Similar to Figure 4, t_s and Δt are multiples of
5 [min]. During the intermediate period (t_s to $t_s + \Delta t$), the dose of glucose, determined by
subtracting u_0 and u_T from 50 g, is equally distributed every 5 minutes. The dose of
ingestion during intermittent period is not limited to an integer. These are described as follows:

 $u_0 \in \{1, 2, \dots, 50\}, \#(Equation \ 41)$

 $u_T \in \{0, 1, \cdots, 50 - u_0\}, \#(Equation \ 42)$

 $t_s \in \{5, 10, \dots, 55\}, \#(Equation \ 43)$

 $\Delta t \in \{0, \cdots, T - t_s - 5\}, \#(Equation \ 44)$

811 and Equation 22 is replaced by

$$Glucose = \begin{cases} \frac{u_0/0.5, & 0 \le t < 0.5}{50 - u_0 - u_T} \\ \frac{\Delta t/5 + 1}{\Delta t/5, + 1} \\ u_T/0.5, & T \le t < T + 0.5 \\ 0 & otherwise \end{cases} \\ (Equation 45)$$

813

814 Figure Legends

815 Figure 1. Study diagram.

816 Three subjects orally ingested glucose with 3 doses 75 g, 50 g and 25 g in 2 durations of bolus 817 and 2 h-continuous ingestion. Time course data of blood glucose level, insulin level, C-peptide 818 level, GIP level, and GLP-1 levels were obtained (Figure 2). We constructed models of the 819 dynamics of these blood hormones and glucose for each subject as a forward problem (Figure 3). 820 Using the models, we predicted the minimization pattern, the glucose ingestion pattern 821 minimizing the peak value of blood glucose level for the ingestion of 50 g glucose within 60 822 min as an inverse problem, and validated the pattern experimentally (Figure 4). To explore key 823 parameters of the minimization pattern, we performed coarse-grain analysis (Figure 5).

824

Figure 2. Time course data of blood glucose level and blood hormones in subject #1 by glucose ingestion.

827 (A, B) Blood glucose. (C, D) insulin. (E, F) C peptide. (G, H) intact GIP. (I, J) intact GLP-1. (A,

C, E, G, I) Bolus ingestion. (B, D, F, H, J) 2 h-continuous ingestion. The doses are indicated inpanel A.

830

831 Figure 3. The blood glucose control model.

(A) Model diagram. The letters in the circle indicate the variables of the model, the arrows
indicate the flow of molecules, the red lines indicate activation, and the blue line indicates
suppression (see STAR Methods B.1). The best fitting models for subjects #1 and #3 lack the
GLP1 components. (B) Temporal patterns of hormones. The blue lines indicate the temporal
patterns of simulations, and the red circles indicate the time course data of experiments. The
dose and ingestion pattern are indicated at the top.

838

839 Figure 4. Optimal Patterns minimizing the peak value of blood glucose level.

(A) Minimization patterns for glucose ingestion that minimize the peak value of blood glucose

841 level in subject #1, #2, and #3. (B) Temporal patterns of blood glucose simulated from ingestion

842 of glucose according to the minimization pattern (red line), bolus ingestion (black solid line), or

843 1 h-continuous ingestion (black broken line). The peak values achieved for each ingestion

pattern are marked with dashed horizontal lines. (C) Time course data of blood glucose level by the ingestion of the minimization pattern (red line and points and square symbols), the bolus ingestion (black solid line and open circles), and 1 h-continuous (black broken line and x symbols). The peak values achieved for each ingestion pattern are marked with dashed horizontal lines.

849

850 Figure 5. Coarse-grain analysis of minimization pattern.

(A) Coarse-grained minimization pattern characterized by 5 parameters, the dose of ingested glucose at 0 min u_0 , the start time of the intermediate period t_s , the duration of intermediate

glucose at 0 min u_0 , the start time of the intermediate period t_s , the duration of intermediate period Δt , the dose of ingested of glucose at the end time u_T , and the end time of the ingestion

- 854 T (B) T-dependency of u_0 , u_{60} , t_s , and Δt that realize the minimum value of peak value of
- blood glucose level for each subject..

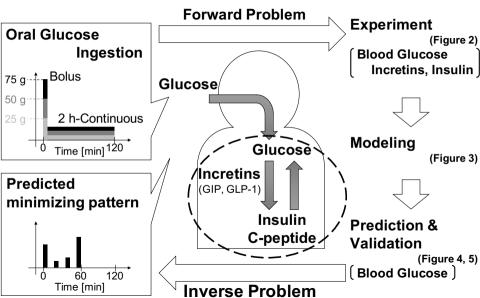
857 Tables

858 Table 1. Equations in the ordinary differential equation models. The estimated parameters are the 18 parameters of $k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_{10}, K_2, K_4, K_6, K_8, K_{11}, V, a, b, c$, and d. 859 the models with initial concentrations from 860 Simulations started of GIP(0), GLP1(0), G(0), I(0), CP, and X(0). Using the variables, and assuming 861 $Duod_G$, Ra_{GutG} , GIP, GLP1, G, I, X, and CP are at steady state before ingestion, other initial 862 conditions and parameters, $Ingest_G(0), Ra_{GutG}(0), k_9, k_{11}, k_{12}, k_{13}, GIP_B$, and $GLP1_B$, were 863 864 determined by estimated parameters and initial values (Equations 23-30).

Equation	Definition
$\frac{dIntest_{G}}{dt} = v_{1} - v_{6}, \#(\text{Equation Error! Book})$	Change in glucose amount in the intestine $Intest_G$ [g] over time
$\frac{dGIP}{dt} = v_2 + v_3, \#(\text{Equation Error! Bookm})$	Change in GIP concentration <i>GIP</i> [pM] over time
$\frac{dGLP1}{dt} = v_4 + v_5, \#(\text{Equation Error! Bookm})$	ChangeinGLP-1concentrationGLP1[pM]concentrationver time
$\frac{dRa_{GutG}}{dt} = v_6 - v_7, \#(\text{Equation Error! Books})$	Change in the rate of appearance of ingested glucose in the blood Ra_{GutG} [g/min]
$\frac{dG}{dt} = \frac{v_7}{V} + v_8 - v_9, \#(\text{Equation Error! Bookr})$	Change in blood glucose concentration <i>G</i> [mg/dL];
	constant <i>V</i> converts ingested glucose amount into blood glucose concentration
$\frac{dI}{dt} = v_{10} - v_{11}, \#(\text{Equation Error! Bookma})$	Change in blood insulin concentration <i>I</i> [pM]
$\frac{dCP}{dt} = v_{10} - v_{12}, \#(\text{Equation Error! Bookm})$	ChangeinC-peptideconcentrationCP[pM]
$\frac{dX}{dt} = \frac{v_{11}}{k_{11}} - v_{13}, \#(\text{Equation Error! Bookmatication})$	Changeininsulinconcentrationactingat target

	7
	organs to regulate glucose
	concentration in the blood X
	[dimensionless]
$v_1 = Glucose$, #(Equation Error! Bookma	Influx of ingested glucose into
	the intestine
k_2 Intest _G	Ingested glucose-dependent
$v_2 = \frac{k_2 \ Intest_G}{K_2 + Intest_G}$, #(Equation Error! Bookr	secretion of GIP by the
	intestine
$v_3 = k_3 (GIP_B - GIP)$, #(Equation Error! Bool	Absorption of GIP by the
	intestine and entry into the
	blood
k_4 Intest _G	Ingested glucose-dependent
$v_4 = \frac{k_4 Intest_G}{K_4 + Intest_G}$, #(Equation Error! Bookr	secretion of GLP-1 by the
	intestine
$v_5 = k_5 (GLP1_B - GLP1), #(Equation Error! Bo$	Absorption of GLP-1 by the
	intestine and entry into the
	blood
k ₆ Intest ₆	Absorption of ingested glucose
$v_6 = \frac{k_6 \ Intest_G}{K_6 + Intest_G}$, #(Equation Error! Bookr	from intestine into rate of
	appearance for continuous
	ingestion
$v_7 = k_7 Ra_{GutG}$, #(Equation Error! Bookma	Absorption of ingested glucose
	from rate of appearance into
	blood for bolus
k ₈	Flow of glucose produced by
$v_8 = \frac{k_8}{K_8 + X}$, #(Equation Error! Bookman	the liver into the blood
$v_9 = k_9 G X$, #(Equation Error! Bookmar	Glucose uptake from the blood
	into the periphery
$v_{10} = k_{10}(G + a GIP + b G GIP + c GLP1)$	Insulin secretion; a ,
$V_{10} = k_{10}(0 + u \text{d} M + b \text{d} \text{d} M + c \text{d} M + c \text{d} M + c \text{d} M$ (Equation Error! Bookmark not d	independent action of GIP; b,
	cooperative action of GIP with
	glucose; c , independent action
	Success, c, macpendent action

	of GLP-1; d, cooperative
	action of GLP-1 and glucose
$v_{11} = \frac{k_{11} I}{K_{11} + I}$, #(Equation Error! Bookma	Flow of insulin into target organs
$v_{12} = k_{12} CP$, #(Equation Error! Bookman	Inactivation of C-peptide
$v_{13} = k_{13} X$, #(Equation Error! Bookmar	Binding of insulin to target
	cells


Table 2. Properties of the models. The ODE model has 16 parameters. The roles of the

867 incretins in each subject's best fitting full model are shown, along with the predicted peak of

- 868 blood glucose concentrations achieved with the minimization. The values of the parameters of
- the coarse-grained models that produced the peak value of blood glucose level for each subject
- are indicated.

	ODE model	Course-grained minimization
		pattern
Subject #1	Cooperative effect of GIP with glucose	$u_0 = 17 [g]$
		$u_{60} = 24 [g]$
	Minimization pattern: peak value of blood	$t_s = 30 [min]$
	glucose level = 173.95 mg/dL	$\Delta t = 0 [\min]$
		Peak value of blood glucose
		level = 174.07 mg/dL
Subject #2	Independent effect of GIP	$u_0 = 7 [g]$
	Cooperative effect of GLP-1 with glucose	$u_{60} = 34 [g]$
		$t_s = 20 [min]$
	Minimization pattern: peak value of blood	$\Delta t = 20$ [min]
	glucose level = 112.36 mg/dL	Peak value of blood glucose
		level = 112.43 mg/dL
Subject #3	Cooperative effect of GIP with glucose	$u_0 = 6 [g]$
		$u_{60} = 31 [g]$
	Minimization pattern: peak value of blood	$t_s = 20 [min]$
	glucose level = 125.14 mg/dL	$\Delta t = 30 \text{ [min]}$
		Peak value of blood glucose
		level = 125.75 mg/dL

Figure 1

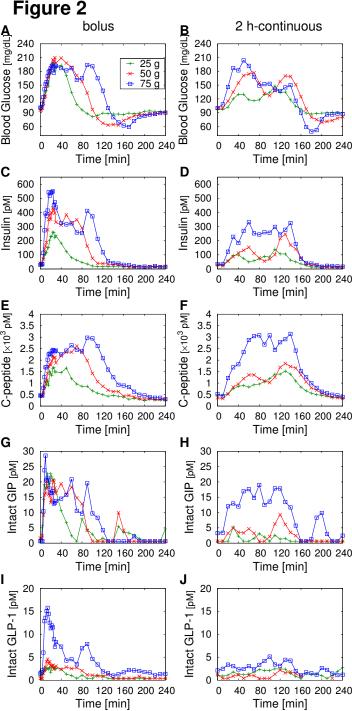
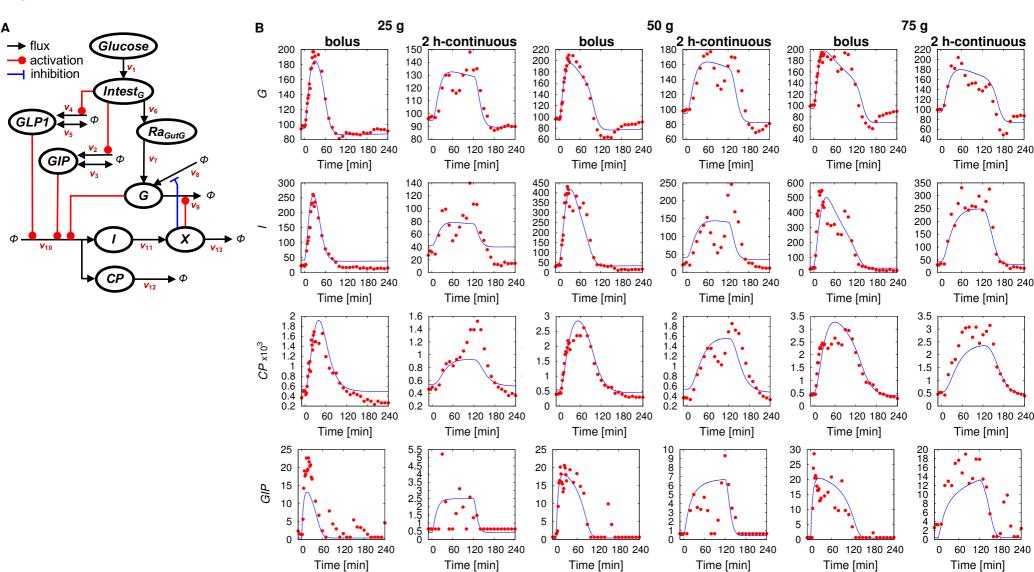
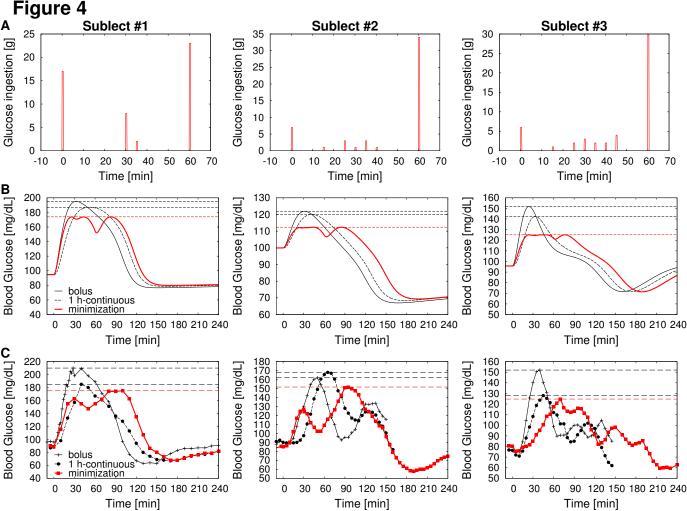
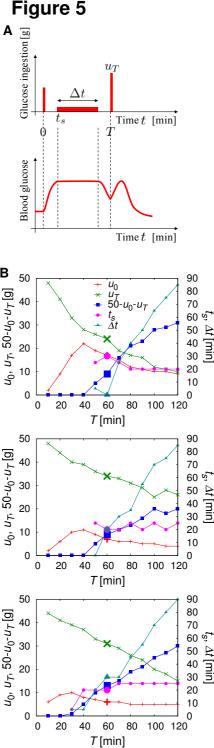





Figure 3

