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Abstract

The role of microRNAs (miRNAs) in cellular processes captured the attention of many
researchers, since their dysregulation is shown to affect the cancer disease landscape by
sustaining proliferative signaling, evading program cell death, and inhibiting growth
suppressors. Thus, miRNAs have been considered important diagnostic and prognostic
biomarkers for several types of tumors. Machine learning algorithms have proven to be
able to exploit the information contained in thousands of miRNAs to accurately predict
and classify cancer types. Nevertheless, extracting the most relevant miRNA expressions
is fundamental to allow human experts to validate and make sense of the results
obtained by automatic algorithms. We propose a novel feature selection approach, able
to identify the most important miRNAs for tumor classification, based on consensus on
feature relevance from high-accuracy classifiers of different typologies. The proposed
methodology is tested on a real-world dataset featuring 8,129 patients, 29 different
types of tumors, and 1,046 miRNAs per patient, taken from The Cancer Genome Atlas
(TCGA) database. A new miRNA signature is suggested, containing the 100 most
important oncogenic miRNAs identified by the presented approach. Such a signature is
proved to be sufficient to identify all 29 types of cancer considered in the study, with
results nearly identical to those obtained using all 1,046 features in the original dataset.
Subsequently, a meta-analysis of the medical literature is performed to find references to
the most important biomarkers extracted by the methodology. Besides known
oncomarkers, 15 new miRNAs previously not ranked as important biomarkers for
diagnosis and prognosis in cancer pathologies are uncovered. Such miRNAs, considered
relevant by the machine learning algorithms, but still relatively unexplored by
specialized literature, could provide further insights in the biology of cancer.

Author summary

MicroRNAs (miRNAs) are non-coding RNA molecules that regulate gene expression. In
the last years, the under and over expression of miRNAs has been related to the
diagnosis and prognosis of specific cancer types. While machine learning techniques can
efficiently exploit the information contained in thousands of miRNAs to detect the
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presence and typology of tumors, it is still fundamental to isolate the minimum possible
number of meaningful features, in order to allow human experts to validate the results.
We propose a new ensemble feature selection methodology, and we test it on a
real-world dataset, taken from The Cancer Genome Atlas (TCGA) database. The
considered dataset contains 1,046 miRNA expressions, data for 8,129 patients, with 29
classes of tumors. Feature selection is performed by considering the 100 most relevant
features emerging from the consensus between 8 state-of-the-art classifiers with high
accuracy on the dataset. Such list is shown to be sufficient to provide an unchanged
classification accuracy. Finally, the 50 most important features selected by our approach
are validated by human experts, resorting to a literature review. Interestingly, while
most of the selected miRNAs are known oncomarkers, a few appear still understudied,
and might thus represent promising leads for future research.

1 Introduction 1

Several studies have shown the properties of microRNA types (miRNAs) as oncogenes 2

and tumor suppressors [1–3]. Since then, many sophisticated techniques, such as 3

high-throughput technologies, microarray, mass spectrometry and especially the Next 4

Generation Sequencing (NGS), have been developed for their identification [4]. However, 5

it is clear that the development of computational tools is needed for the interpretation 6

of results from these high-throughput experiments [5]. Indeed, computational assisted 7

methods are used for the identification of miRNAs from different genome organisms, for 8

example in Caenorhabditis briggsae [6] and in Epstein-Barr virus (EBV or HHV4), a 9

member of the human herpesvirus (HHV) [7]. Furthermore, several computational 10

techniques can be applied to accurately predict miRNA expressions, as seen for example 11

in [8]. 12

Succeeding the earliest evidence of miRNA involvement in human cancer by Croce 13

and collaborators [9], various studies demonstrate that miRNA expression is deregulated 14

in human cancer through diverse mechanisms [10]. Additionally, in comparison to the 15

impractical and invasive methods currently used for cancer diagnosis [11,12], miRNA 16

biomarkers can be detected directly from biological fluids (such as blood, urine, saliva 17

and pleural fluid [13]), and they can also be used as biomarkers to detect tumors at an 18

early stage, which is extremely important for survival. For example, the 5-year survival 19

rate for lung cancer is 5%, but an early diagnosis can boost it to almost 50% [14]. Thus, 20

miRNA expression profiles correlate with clinical variables, highlighting their potential 21

value as prognostic and/or diagnostic tools. 22

In such a context of increasing availability of data, it is of utmost practical 23

importance to build databases of miRNA expressions data for cancer research [15–19], 24

and also to extract features that could be used as cancer biomarkers [20–22]. For 25

example, miRNA hsa-mir-21 is mentioned as a marker for patients with squamous cell 26

lung carcinoma [23], with astrocytoma [24], breast cancer [25], and gastric cancer [26]. 27

Following this idea, the scientific community is currently looking for miRNA signatures, 28

representing the minimal number of miRNAs to be measured for discriminating between 29

different stages and types of cancer. 30

Current NGS technologies such as Applied Biosystems, SOLiD3,or HiSeq from 31

Illumina are able to extract thousands of components in genome sequences [27], and 32

traditional linear statistical analysis are not suited to manage such quantities of 33

measured elements with non-lineal relationships to extract meaningful features. Thus, a 34

suitable solution, is to use machine learning techniques for analysis, classification, and 35

relevant features extraction of miRNA data [28–30]. 36

Starting from a dataset containing 8,129 patients, 29 different types of cancer, and 37

1,046 different miRNA expressions, 8 state-of-the-art classifiers are used to extract the 38
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most relevant miRNAs to use as biomarkers for cancer classification. Typically, 39

classifiers trained on a dataset will not use the whole set of available features to 40

separate classes, but just a subset which could be ordered by relative importance, with 41

a different meaning given to the list by the specific technique. The top 100 biomarkers 42

in the list are then evaluated as a potential reduced signature for classification. Finally, 43

the top 50 miRNAs are compared to a meta-analysis of the medical literature, to 44

validate the results automatically produced by the machine learning algorithms. 45

Unsurprisingly, most of the miRNAs identified by the classifiers are also considered 46

important by the specialized literature: 15 of them, however, are still understudied, and 47

they could thus represent promising leads for future exploration. 48

The rest of the paper is organized as follows. The target dataset and the proposed 49

approach are detailed in Section 2. Experimental results are reported in Section 3, while 50

Section 4 concludes the paper. 51

2 Methods 52

The considered dataset, containing miRNA sequencing isoform values, is taken from the 53

Cancer Genome Atlas1. The database contains the information from 8,129 patients. 54

Using the next-generation sequencing miRNASeq BCGSC IlluminaHiSeq miRNASeq 55

Level 3, a total of 1,046 miRNA expression features for each case study are extracted. 56

In summary, the dataset that will be used in the following experiments has 29 types of 57

tumors, 1,046 miRNA features, and 8,129 patient samples. Information on the dataset 58

is summarized in Table 1. 59

Tumor Type Number of Samples Class
Adrenocortical carcinoma [ACC] 80 0

Bladder Urothelial Carcinoma [BLCA] 415 1
Breast invasive carcinoma [BRCA] 778 2

Cervical squamous cell carcinoma [CESC] 308 3
Cholangiocarcinoma [CHOL] 35 4
Esophageal carcinoma [ESCA] 47 5
FFPE Pilot Phase II [FPPP] 200 6

Head and Neck squamous cell carcinoma [HNSC] 45 7
Kidney Chromophobe [KICH] 488 8

Kidney renal clear cell carcinoma [KIRC] 66 9
Kidney renal papillary cell carcinoma [KIRP] 261 10

Lower Grade Glioma [LGG] 292 11
Liver hepatocellular carcinoma [LIHC] 530 12

Lung adenocarcinoma [LUAD] 374 13
Lung squamous cell carcinoma [LUSC] 458 14

Lymphoid Neoplasm Diffuse Large B-cell Lymphoma [DLBC] 341 15
Mesothelioma [MESO] 87 16

Pancreatic adenocarcinoma [PAAD] 179 17
Pheochromocytoma and Paraganglioma [PCPG] 184 18

Prostate adenocarcinoma [PRAD] 500 19
Sarcoma [SARC] 262 20

Skin Cutaneous Melanoma [SKCM] 452 21
Stomach adenocarcinoma [STAD] 399 22

Testicular Germ Cell Tumors [TGCT] 155 23
Thymoma [THYM] 514 24

Thyroid carcinoma [THCA] 124 25
Uterine Carcinosarcoma [UCS] 418 26

Uterine Corpus Endometrial Carcinoma [UCEC] 57 27
Uveal Melanoma [UVM] 80 28

Table 1. Dataset: Tumor type, class label, and number of samples per class.

As a baseline comparison, a preliminary analysis of the available data is performed, 60

1http://cancergenome.nih.gov/
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normalizing all the isoform expressions altogether and then quantifying the highest 61

expressed miRNAs for each cancer tumor type. Next, the top 50 most expressed 62

miRNAs for each tumor type are arranged in descending order. Finally, a coefficient 63∑N
i=1 coef = 1/posi where N is the number of tumor types in the dataset, that depends 64

on miRNA’s relative position, bringing the result displayed in Figure 1. 65

Fig 1. Top 50 most expressed miRNA types, across all cancer classes in the considered
dataset.

As the objective is to find and validate a reduced list of miRNAs to be used as a 66

signature, feature selection is to be performed on the dataset. Popular approaches to 67

feature selection range from univariate statistical considerations, to iterated runs of the 68

same classifier with a progressively reduced number of features, in order to assess the 69

contribution of the features to the overall result. As the considered case study is 70

particularly complex, however, relying upon simple statistical analyses or a single 71

classifier might not suffice. Following the idea behind ensemble feature selection [31–33], 72

we use multiple algorithms to obtain a more robust predictive performance. For this 73

purpose, we train a set of classifiers to then extract a sorted list of the most relevant 74

features from each. As, intuitively, a feature considered important by the majority of 75

classifiers in the set is likely to be relevant for our aim, the information from all 76

classifiers is then compiled to find the most common relevant features. 77

Starting from a thorough comparison of 22 different state-of-the-art classifiers on the 78

considered dataset presented in [34], in this work a subset of those classifiers is selected 79

considering both (i) high accuracy and (ii) a way to extract the relative importance of 80

the features from the trained classifier. After preliminary tests to set algorithms’ 81

hyperparameters, 8 classifiers are chosen, all featuring an average accuracy higher than 82

90% on a 10-fold cross-validation: 83

• BaggingClassifier [35] 84

• GradientBoostingClassifier [36] 85

• LogisticRegression [37] 86

• PassiveAggressiveClassifier [38] 87

• RandomForestClassifier [39] 88

• RidgeClassifier [40] 89

• SGDClassifier (Stochastic Gradient Descent on linear models) [41] 90

• SVC (Support Vector Machines Classifier with a linear kernel) [42] 91
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All considered classifiers are implemented in the scikit-learn Python toolbox [43]. 92

Overall, the selected classifiers fall into two broad typologies: those exploiting 93

ensembles of classification trees [44] (Bagging, GradientBoosting, RandomForest), 94

and those optimizing the coefficients of linear models to separate classes 95

(LogisticRegression, PassiveAggressive, Ridge, SGD, SVC). Depending on classifier 96

typology, there are two different ways of extracting relative feature importance. For 97

classifiers based on classification trees, the features used in the splits are counted and 98

sorted by frequency, from the most to the least common. For classifiers based on linear 99

models, the values of the coefficients associated to each feature can be used as a proxy 100

of their relative importance, sorting coefficients from the largest to the smallest in 101

absolute value. As the two feature extraction methods return heterogeneous numeric 102

values, only the relative sorting of features provided by each classifier is considered. We 103

arbitrarily decide to extract the top 100 most relevant features, so we assign to each 104

feature f a simple score Sf = Nt/Nc, where Nt is the number of times that specific 105

features appears among the top 100 of a specific classifier instance, while Nc is the total 106

number of classifiers instances used; for instance, a feature appearing among the 100 107

most relevant in 73% of the classifiers used would obtain a score Sf = 0.73. In order to 108

increase the generalizability of our results, each selected classifier is run 10 times, using 109

a 10-fold stratified cross-validation, so that each fold preserves the percentage of 110

samples of each class of the original dataset. Thus, Nc = 80 (8 types of classifiers, run 111

10 times each). The complete procedure is summarized by Algorithm 1. 112

Finally, the top 50 features obtained in this way are validated with a meta-analysis 113

of the relevant literature. In a first step, reviews of miRNA types related to cancer are 114

inspected for the presence of the extracted features. Subsequently, the PubMed 115

database is interrogated for references containing the identified miRNA types 2, and the 116

results are later manually analyzed by the authors. 117

3 Results and Discussion 118

Table 2 compares the classification accuracy of each classifier using the full 1,046 119

features, with the accuracy obtained by the same classifier using a signature composed 120

by selected 100 features. It is interesting to notice how the accuracy is, for most cases, 121

unchanged, providing empirical evidence that a 100-miRNA signature is enough to 122

obtain good classification results. 123

Figure 2 shows a heatmap comparing the relative frequency of the overall top 100 124

most frequent features, for each considered classifier. As expected, not all classifiers use 125

the same features to separate the types of cancer, and thus using their consensus proves 126

to be more robust than just relying upon a single algorithm. It is interesting to notice 127

that while the overall most common biomarkers appear among the top for each 128

classifier, some classifiers make use of only a few. For example, BaggingClassifier 129

and RidgeClassifier do not use the vast majority of the features exploited by others 130

to discriminate between classes. A further difference between the two is that features 131

used by BaggingClassifier that are also appearing in the top 100 are clearly 132

important for the classifier, being used in almost 100% of its 10 runs; while it is 133

noticeable how RidgeClassifier probably bases its discrimination on features that do 134

not appear among the top 100. This also explains the drop in performance when 135

RidgeClassifier is forced to use the top 100 features; while BaggingClassifier 136

seems to be overall unaffected by the restriction (see Table 2). One classifier, SVC, even 137

slightly increases its average accuracy, probably due to the fact that the search space 138

defined by the 100-feature signature is easier to explore for its optimization procedure. 139

2Query performed on January 20th, 2018, on https://www.ncbi.nlm.nih.gov/pubmed/. The query
used is (<mir-number>[TEXT WORD]) AND ((cancer[TEXT WORD]) OR (tumor[TEXT WORD])).
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Algorithm 1: Extracting the 100 most relevant features from the consid-
ered medical dataset.

1 Normalize dataset by feature;
2 Divide dataset in N folds;
3 Select K classifiers;
4 for each fold n of N do
5 for each classifier k of K do

Train classifier kn on all folds minus n, using all features;
Test classifier kn on fold n;
Obtain sorted list lkn of features from kn;
Assign weight wfnk to each f of the 1,046 features;

6 for each feature f of F do
if f is among the top 100 features in lkn then

wfnk = 1
else

wfnk = 0

7 Nc = N ·K;
8 for each miRNA feature f do

Nt =
∑N

n

∑K
k wfnk;

Sf = Nt/Nc;

9 Select 100-feature signature, from features with highest Sf ;
10 for each fold n of N do
11 for each classifier k of K do

Train classifier kn on all folds minus n, using signature;
Test classifier kn on fold n;

12 Compare performance of classifiers using all features and signature;

Table 2. Classifiers used in the experiments. For each classifier, the average accuracy
and corresponding standard deviation on a 10-fold cross validation are reported, for
both the complete dataset (1,046 features) and the 100 features that have been selected
as the most relevant. In the case a classifier is not using standard values for its
hyperparameters, the relevant variations are summarized in the corresponding column.

Classifier
Accuracy (10-fold CV)

Feature extraction method Hyperparameters1,046 features 100 features
avg std avg std

BaggingClassifier 0.9123 0.0039 0.9104 0.0087 Decision Trees n estimators=300
GradientBoostingClassifier 0.9411 0.0116 0.9414 0.0100 Decision Trees n estimators=300

LogisticRegression 0.9308 0.0061 0.9461 0.0071 Coefficients -
PassiveAggressiveClassifier 0.9175 0.0085 0.9107 0.0068 Coefficients -

RandomForestClassifier 0.9324 0.0082 0.9299 0.0078 Decision Trees n estimators=300
RidgeClassifier 0.9064 0.0081 0.8430 0.0107 Coefficients -
SGDClassifier 0.9160 0.0105 0.9176 0.0077 Coefficients -

SVC 0.9314 0.0068 0.9546 0.0043 Coefficients Linear kernel
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Fig 2. Heatmap with the frequency of the overall top 100 most frequent features,
divided by classifier. Features are sorted by frequency, from left to right.

The top 50 features extracted, reported in Table 4, are then validated through a 140

meta-analysis of the specialized literature. The proposed meta-analysis is mainly based 141

on two surveys of miRNA biomarkers, Muller et al. [1], and Ferracin et al. [2], plus 150 142

papers obtained through a PubMed query and later manually inspected by the authors. 143

Of the top 50 features, 15 (hsa-mir-10a, hsa-mir-21, hsa-mir-22, hsa-mir-30d, 144

emphhsa-mir-106a, hsa-mir-126, hsa-mir-141, hsa-mir-143, hsa-mir-200b, hsa-mir-200c, 145

hsa-mir-203, hsa-mir-205, hsa-mir-210, hsa-mir-375, and hsa-let-tc) are mentioned 146

either for cancer diagnosis, prediction, or prognosis by Muller [3], and can be measured 147

by body fluids. Ferracin [2] mentions a total of 10, with 6 not appearing in [3]: 148

hsa-let-7b, hsa-let-7f-1, hsa-let-7i, hsa-mir-29c, and hsa-mir-145. In total, 21 miRNAs 149

identified by the proposed approach are found among the two surveys. 150

The most important result of this work is that several miRNAs types highly ranked 151

by the classifiers appear to be still understudied in literature. Table 3 reports a 152

summary of the literature meta-analysis, from which it clearly emerges that 15 of the 153

miRNA types appear in less than 50 references connected to cancer from the PubMed 154

query: strikingly, hsa-135-a-1 appears only once, and hsa-103-1 only twice, while both 155

are considered important by more than 60% of the classifiers. These two miRNAs could 156

thus represent promising leads for future research. Interestingly, only 25 of the miRNA 157

types found by the proposed machine learning approach also appear among the most 158

expressed in the baseline analysis summarized in Figure 1, and only 4 (hsa-mir-9-1, 159

hsa-mir-28, hsa-mir-103-1, and hsa-mir-199b) are both overexpressed and understudied, 160

suggesting that simple statistical approaches might not be enough to extract meaningful 161

information from such complex data. 162

hsa-mir-21, mentioned in both surveys, is also the most commonly overexpressed 163

miRNA for all classes of tumors in the statistical analysis summarized by Figure 1. 164

hsa-mir-10b, the feature with the highest Sf score, while not appearing in the surveys, 165

is currently under clinical trials as oncomarker for Glioma [45], and it is mentioned in a 166

recent article as possible oncomarker [46]. hsa-mir-135a-1 and hsa-mir-135a-2, located 167

inside chromosomes 3 and 12, respectively, generate the same mature active 168

sequence [47]. hsa-mir-9-1, hsa-mir9-2, and hsa-mir9-3, generate the oncogenic 169

hsa-mir-9 [48]. hsa-mir-944 at the moment is known to decrease malignant features in 170

gastric [49], colorectal [50] and endometrial [51] cancers. 171

We envision that understudied miRNAs could play a key role in the biology of 172

cancer. On the other hand, the presence of single-nucleotide polymorphism (SNP) could 173

affect miRNA biology due to alterations in the miRNA maturation process, their 174
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structure, and expression levels. From these, creation and loss of miRNA targeted sites 175

by SNPs is the most inspected area [52,53]. However, the miRNA-mediated oncogenic 176

transcriptional landscape could be a consequence of the SNPs presence in the seed 177

region of mature miRNAs [54], that is involved in the molecular recognition with its 178

targeted mRNAs. Although the presence of SNPs in seed regions seems to be negatively 179

selected [55], in a pathological condition as cancer, it would be interesting to perform 180

further measurements to determine whether any miRNA-related SNPs is contained in 181

miRNA signature we propose. The complete list of the 100 extracted features is in 182

Annex A. 183

Table 3. miRNA types identified by the machine learning feature extraction,
appearing in less than 50 references connected to cancer in a PubMed query.

miRNA type References related to cancer References NOT related to cancer
hsa-mir-9-1 36 8

hsa-mir-190b 8 9
hsa-mir-9-3 20 9

hsa-mir-1247 14 8
hsa-mir-490 39 20

hsa-mir-135a-1 1 2
hsa-mir-944 16 3

hsa-mir-103-1 2 2
hsa-mir-584 23 16
hsa-mir-202 43 51

hsa-mir-199b 45 63
hsa-mir-194-2 2 3
hsa-mir-101-2 8 4
hsa-mir-135a-2 1 1

hsa-mir-28 47 65

4 Conclusions 184

miRNAs regulate the transcriptional landscape in a fine-tuning way. Alterations in 185

miRNA expression profiles have serious consequences for several diseases, such as cancer. 186

Since ectopic modulation of specific miRNAs could compromise the hallmarks of cancer, 187

it has been proposed that cancerous miRNAs could be modulated by microRNA-based 188

therapies. In this sense, several efforts had been achieved to generate scaffold-mediated 189

miRNA-based delivery systems, thus exploiting the miRNA-mediated therapeutic 190

potential. On the other hand, the altered miRNA expression profile present in cancer 191

could be used as prognostic and/or diagnostic marker. In this respect, it has been 192

stated that several miRNA signatures correlate with clinical outcomes, highlighting the 193

need of a miRNA-based clinical decision-making tool. In this paper, we develop a new 194

machine learning approach to obtain a robust, reduced miRNA signature, from a 195

dataset containing 29 different types of cancer. A further meta-analysis of literature to 196

validate the miRNA signature shows both well-known oncogenic and underestimated 197

miRNA types. The results of this work could potentially be used to uncover new, 198

promising leads of research for a better understanding of miRNA behavior. 199

Furthermore, personal-directed anti-tumoral therapy could be achieved by measurement 200

of a specific, minimal miRNA signature, as proposed in this work. 201
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Table 4. Table comparing the top 50 most frequent features extracted by the machine
learning algorithms with existing biomarkers references in literatures. miRNAs
highlighted in gray are proposed as promising venues of research, as they only appear in
less than 50 references connected to cancer in literature, according to the PubMed query
performed in this study. miRNAs marked with * show considerable overexpression along
all classes of tumors, as reported in Figure 1.

miRNA type Sf Mentioned in [3] Mentioned in [2] Other References
hsa-mir-10b* 1.00 [56]
hsa-mir-126* 0.96 Diagnostic [57]
hsa-mir-10a* 0.90 Diagnostic [58]
hsa-mir-9-2* 0.88 Diagnostic/Prognostic [59]
hsa-mir-30a* 0.88 [60]
hsa-mir-9-1* 0.88 [61]
hsa-mir-375* 0.88 [62]
hsa-mir-21* 0.88 Diagnostic/Predictive Oncogene [63]
hsa-mir-125a 0.86 Tumor Suppressor [64]
hsa-mir-143* 0.85 Diagnostic Tumor Suppressor [65]
hsa-mir-122 0.84 [66]

hsa-let-7i 0.84 Tumor Suppressor [67]
hsa-mir-200c* 0.75 Diagnostic [68]
hsa-mir-196b 0.75 [69]
hsa-mir-22* 0.75 Diagnostic [58]
hsa-mir-145* 0.75 Tumor Suppressor [70]
hsa-mir-205* 0.75 Diagnostic [71]
hsa-mir-30d* 0.74 Diagnostic/Prognostic [72]
hsa-mir-210 0.74 Diagnostic/Predictive Oncogene [73]

hsa-mir-148a* 0.74 [74]
hsa-mir-193a 0.74 [75]
hsa-mir-190b 0.73 [76]
hsa-mir-9-3 0.69 [61]
hsa-let-7c* 0.69 Diagnostic Tumor Suppressor [77]

hsa-mir-1247 0.66 [78]
hsa-mir-490 0.66 [79]
hsa-mir-141 0.65 Diagnostic/Prognostic [80]
hsa-mir-19a 0.63 [81]
hsa-mir-503 0.63 [82]

hsa-mir-135a-1 0.63 [83]
hsa-mir-944 0.63 [84]
hsa-mir-203* 0.63 Diagnostic [85]
hsa-let-7b* 0.61 Tumor Suppressor [86]

hsa-mir-103-1* 0.61 [87]
hsa-mir-584 0.6 [88]
hsa-mir-152 0.59 [89]
hsa-mir-30e* 0.59 [90]
hsa-mir-106a 0.58 Diagnostic [91]
hsa-mir-183* 0.58 [81]
hsa-let-7f-1 0.58 Tumor Suppressor [92]
hsa-mir-202 0.56 [93]

hsa-mir-199b* 0.56 [94]
hsa-mir-200b 0.56 Diagnostic [95]
hsa-mir-194-2 0.54 [96]
hsa-mir-29c* 0.54 Tumor Suppressor [97]
hsa-mir-30b 0.53 [72]

hsa-mir-101-2 0.53 [98]
hsa-mir-192* 0.53 [99]

hsa-mir-135a-2 0.51 [100]
hsa-mir-28* 0.51 [101]
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Annex A 208

List of the top 100 most relevant features identified by the proposed methodology, in 209

order of importance: hsa-mir-10b, hsa-mir-126, hsa-mir-10a, hsa-mir-9-2, hsa-mir-30a, 210

hsa-mir-9-1, hsa-mir-375, hsa-mir-21, hsa-mir-125a, hsa-mir-143, hsa-mir-122, hsa-let-7i, 211

hsa-mir-200c, hsa-mir-196b, hsa-mir-22, hsa-mir-145, hsa-mir-205, hsa-mir-30d, 212

hsa-mir-210, hsa-mir-148a, hsa-mir-193a, hsa-mir-190b, hsa-mir-9-3, hsa-let-7c, 213

hsa-mir-1247, hsa-mir-490, hsa-mir-141, hsa-mir-19a, hsa-mir-503, hsa-mir-135a-1, 214

hsa-mir-944, hsa-mir-203, hsa-let-7b, hsa-mir-103-1, hsa-mir-584, hsa-mir-152, 215

hsa-mir-30e, hsa-mir-106a, hsa-mir-183, hsa-let-7f-1, hsa-mir-202, hsa-mir-199b, 216

hsa-mir-200b, hsa-mir-194-2, hsa-mir-29c, hsa-mir-30b, hsa-mir-101-2, hsa-mir-192, 217

hsa-mir-135a-2, hsa-mir-28, hsa-mir-211, hsa-mir-200a, hsa-mir-598, hsa-mir-1-2, 218

hsa-mir-95, hsa-mir-99a, hsa-mir-378, hsa-mir-194-1, hsa-mir-199a-1, hsa-mir-15a, 219

hsa-mir-155, hsa-mir-107, hsa-mir-190, hsa-let-7f-2, hsa-mir-3678, hsa-mir-182, 220

hsa-mir-142, hsa-mir-146a, hsa-mir-34a, hsa-mir-181b-1, hsa-mir-885, hsa-mir-130a, 221

hsa-mir-3613, hsa-mir-204, hsa-mir-340, hsa-mir-221, hsa-mir-7-3, hsa-mir-135b, 222

hsa-mir-1976, hsa-mir-27b, hsa-mir-934, hsa-mir-708, hsa-let-7g, hsa-mir-196a-1, 223

hsa-mir-146b, hsa-mir-199a-2, hsa-mir-1245, hsa-mir-328, hsa-mir-124-2, hsa-let-7a-3, 224

hsa-let-7d, hsa-mir-139, hsa-let-7e, hsa-mir-101-1, hsa-mir-374b, hsa-mir-223, 225

hsa-mir-335, hsa-mir-124-1, hsa-mir-125b-1, hsa-mir-23a. 226
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