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Abstract  10 

Cells respond to changing nutrient availability and external stresses by altering the 11 

expression of individual genes. Condition-specific gene expression patterns may 12 

provide a promising and low-cost route to quantifying the presence of various small 13 

molecules, toxins, or species-interactions in natural environments. However, whether 14 

gene expression signatures alone can predict individual environmental growth 15 

conditions remains an open question. Here, we used machine learning to predict 16 16 

closely-related growth conditions using 155 datasets of E. coli transcript and protein 17 

abundances. We show that models are able to discriminate between different 18 

environmental features with a relatively high degree of accuracy. We observed a small 19 

but significant increase in model accuracy by combining transcriptome and proteome-20 

level data, and we show that stationary phase conditions are typically more difficult to 21 

distinguish from one another than conditions under exponential growth. Nevertheless, 22 

with sufficient training data, gene expression measurements from a single species are 23 

capable of distinguishing between environmental conditions that are separated by a 24 

single environmental variable. 25 
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Introduction 26 

Environmental conditions across the planet vary in terms of their capacity to support 27 

microbial life. Further, individual environments can change rapidly over time, and these 28 

changes are likely to impact the composition of microbial communities and ecosystem 29 

functions in unpredictable ways [1,2]. Microbial species composition is partially 30 

indicative of environmental conditions, particularly with regard to the presence of 31 

individual specialist species that are well adapted to unique environments [3,4]. 32 

However, many bacterial species within a community are generalists that are capable of 33 

thriving in diverse environments and must therefore sense and respond to various 34 

environmental signals [5]. For instance, Escherichia coli grows inside the comparatively 35 

warm, nutrient rich digestive tract of host [6] organisms but spends another portion of its 36 

life-cycle exposed to harsh environmental conditions upon being excreted and before 37 

finding another host. The mere presence of generalist species in an environment may 38 

provide little value for understanding past or current environmental conditions because 39 

their varied gene expression repertoire permits growth across varied conditions [7]. 40 

 41 

On top of their native responses to external conditions, microbial cells can be 42 

engineered to act as sensors for a variety of environmental features via rational design 43 

of synthetic genetic circuits that may, for instance, cause the cells to fluoresce upon 44 

sensing of a particular small molecule [8]. Such applications can provide a useful, low-45 

cost diagnostic for monitoring environmental changes, but individual synthetic biology 46 

applications take time and resources to develop. Additionally, there is still a concern 47 

about releasing genetically engineered species into natural environments where they 48 

may act as low-cost sensors for pollutants or various environmental phenomena of 49 

interest [9]. 50 

 51 

To partially alleviate this concern, previous work has shown that the species 52 

composition of an environment can serve as a rapid and low-cost biosensor to indicate 53 

the presence of various contaminants according to the species abundances identified 54 
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via meta-genomic sequencing [3,10,11]. However, looking at the species composition 55 

alone fails to account for the fact that gene expression patterns of individual species—56 

particularly for generalists—may provide even higher resolution into the past and 57 

current chemical composition of environments. The extent to which gene expression 58 

patterns of individual generalist species can be used to discriminate between 59 

environmental conditions remains unknown.  60 

 61 

Combining different ‘omics’-scale technologies is likely to provide better discriminatory 62 

capability versus only monitoring mRNA abundances, for instance, but integrating 63 

datasets is challenging due to the biases of individual methods [12] and the inevitability 64 

of batch-level effects that occur when datasets are generated across multiple labs and 65 

platforms [13,14] . These problems are further exacerbated when considering the 66 

ultimate goal of detecting different environmental conditions in situ.  67 

 68 

Prior studies have looked into the question of predicting external conditions by using the 69 

cells’ internal variables [15,16]. Other studies have interrogated multi-omic datasets 70 

from different growth conditions to understand the function of regulatory networks, 71 

individual gene functions, and resource allocation strategies [7,17]. However, the main 72 

focus of many of these studies has been to understand differences in gene expression 73 

patterns across environmental conditions so as to provide insight into internal cellular 74 

mechanisms and pathways or to predict cellular level phenotypes such as specific 75 

growth rates. By contrast, few studies have focused on using the internal state of cells 76 

to predict external environmental conditions across a range of partially-overlapping 77 

conditions and cellular growth rates.  78 

 79 

Here, we are interested in determining whether gene expression patterns can 80 

discriminate between environmental conditions in the absence of prior knowledge about 81 

the role and function of individual genes. Our study leverages a large dataset of 82 

transcriptomic and proteomic measurements of E.coli growth under multiple distinct but 83 

closely-related conditions [18]. We use mRNA and protein composition data to train 84 
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machine learning models and find that highly similar environmental conditions can be 85 

discriminated with a relatively high degree of accuracy. We also investigate which 86 

conditions are more- and less-challenging to discriminate and find that prediction 87 

accuracies decrease substantially for stationary phase cells, indicating the importance 88 

of cellular growth for discriminating between conditions. Finally, we note that our 89 

accuracy remains limited by training set size such that our findings present a lower 90 

bound on the predictive power that is achievable given a greater availability of training 91 

data. 92 

 93 

Results 94 

Data structure and pipeline design 95 

We used a previously generated dataset of whole-genome E. coli mRNA and protein 96 

abundances, measured under 34 different conditions [18,19]. This dataset consists of a 97 

total of 155 samples, for which mRNA abundances are available for 152 and protein 98 

abundances for 105 (Fig 1). For 102 samples, both mRNA and protein abundances are 99 

available. The 34 different experimental conditions were generated by systematically 100 

varying four parameters. Here we further simplified the experimental conditions into a 101 

total of 16, by grouping similar conditions together (e.g., 100, 200, and 300mm Na+ 102 

were all labelled as “high Na”). For the remainder of this manuscript (unless otherwise 103 

noted) we use the term “growth condition” to refer to the four-dimensional vector of 104 

categorical variables defining growth phase (exponential, stationary, late stationary), 105 

carbon source (glucose, glycerol, gluconate, lactate), Mg2+ concentration (low, base, 106 

high), and Na+ concentration (base, high). The question we set out to answer is: to what 107 

extent are machine learning models capable of discriminating between these growth 108 

parameters given only knowledge of gene expression levels, provided as mRNA 109 

abundances, protein abundances, or both? 110 

 111 

We applied a general cross-validation strategy and first split samples into training and 112 

test datasets. We next used the training data to fit supervised models to the gene 113 
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expression data to maximize correct predictions of the labeled environmental 114 

conditions. At the training stage, we employed parameter tuning, which required a 115 

further subdivision of the training data to identify the optimal tuning parameters. Finally, 116 

we use the trained and tuned models to predict test set data and report prediction 117 

accuracy. To assess robustness of our results to the choice of training and test data, we 118 

repeated this procedure 60 times. Our pipeline is illustrated in Fig 2 and described in 119 

detail in the Materials and Methods.  120 

 121 

Growth conditions can be predicted accurately from both 122 

mRNA and protein abundances 123 

After constructing our analysis pipeline, we first asked whether there were major 124 

differences in the performance of different machine learning approaches. We tested four 125 

different machine learning models, three based on Support Vector Machines (SVMs) 126 

with different kernels (radial, sigmoidal, and linear) and the fourth using random forest 127 

classification. We trained models to predict [7,20] the entire four-dimensional condition 128 

vector at once for a given sample, and we used the multi-class macro F1 score [21] to 129 

quantify prediction accuracy. The F1 score is the harmonic mean of precision and recall. 130 

It approaches zero if either quantity approaches zero, and it approaches one if both 131 

quantities approach one (representing perfect prediction accuracy). We note that this 132 

score is highly conservative as it will classify a prediction as incorrect if a single variable 133 

is incorrectly predicted, even if the predictions for the remaining three variables of 134 

interest are correct. We assessed model performance during the tuning stage of our 135 

pipeline by recording which model had the best F1 score for each tuning run (S1 and S2 136 

Figs). At the tuning stage, we found that the SVM model with a radial kernel clearly 137 

outcompeted the other models when fit to mRNA data, and the random forest model 138 

outcompeted the other models when fit to protein data (Table 1). 139 

 140 

We next compared the F1 scores for model predictions applied to the test set. When 141 

using mRNA abundance data alone, the distribution of F1 scores from our 60 142 
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 6 

independent replications were centered around a value of 0.7 (Fig 3). The F1 score 143 

distributions were virtually identical for the three SVM models and were somewhat lower 144 

for the random forest model. Model performance on test data using only protein 145 

abundance measurements was slightly worse than those achieved with mRNA 146 

abundance data. However, it is important to note that the protein abundance data 147 

contains fewer conditions overall, which may partially explain the decreased predictive 148 

accuracy of the protein-only model—a point to which we return to later. 149 

 150 

In addition to assessing the overall predictive power using F1 scores, we also recorded 151 

the percentage of times specific growth conditions were accurately or erroneously 152 

predicted, and we report these results in the form of a confusion matrix (Fig 4). Here, 153 

the column headings at the top show the predicted condition from the model on the test 154 

set and the rows show the true experimental condition. The numbers and shading in the 155 

interior of the matrix represent the percentage of cases that a given experimental 156 

condition was predicted to be a certain growth condition. The numbers within each row 157 

add up to 100. The large numbers/dark colorings along the diagonal highlight the high 158 

percentage of true positive predictions whereas any off-diagonal elements represent 159 

incorrect predictions. We found that the erroneous off-diagonal predictions are partially 160 

driven by the uneven sampling of different conditions in the original dataset. Even 161 

though we used sample-number-adjusted class weights in all fitted models, we 162 

observed a trend of increasing fractions of correct predictions with increasing number of 163 

samples available under training (S3 Fig).  164 

 165 

As we previously noted, the F1 score quantifies accuracy by only considering perfect 166 

predictions (i.e. when all 4 features are correctly predicted). A sample that is incorrectly 167 

classified for all four factors is thus treated the same as one that only differs from the 168 

true set of features by a single incorrect factor. In practice, we observed that the 169 

majority of incorrect predictions differed from their true condition vector by only a single 170 

value (S4 Fig).  171 

 172 
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Joint consideration of mRNA and protein abundances 173 

improves model accuracy 174 

We next asked whether predictions could be improved by simultaneously considering 175 

mRNA and protein abundances. To address this question, we limited our analysis to the 176 

subset of 102 samples for which both mRNA and protein abundances were available, 177 

and ran our analysis pipeline for mRNA abundances only, protein abundances only, and 178 

for the combined dataset containing both mRNA and protein abundances. For all four 179 

machine-learning algorithms, protein abundances yielded significantly better predictions 180 

than mRNA abundances (Fig 5, Table 2). This is in contrast to Fig 3, where we saw 181 

increased accuracy using mRNA abundance data. However, as previously noted, our 182 

dataset contains a larger number mRNA abundance samples, which results in a larger 183 

amount of training data. When compared on the same exact conditions—as depicted in 184 

Fig 5—protein abundance data appears to be more valuable for discriminating between 185 

different growth conditions. Notably, the combined dataset consisting of both mRNA and 186 

protein abundance measurements yielded the best overall predictive accuracy, 187 

irrespective of machine-learning algorithm used (Fig 5, Table 2). 188 

 189 

When considering the confusion matrices for the three scenarios (mRNA abundance, 190 

protein abundance, and combined), we found that many of the erroneous predictions 191 

arising from mRNA abundances alone were not that common when using protein 192 

abundances and vice versa (S5 and S6 Figs). For example, when using mRNA 193 

abundances, many conditions were erroneously predicted as being exponential phase, 194 

glycerol, base Mg2+, base Na+, or as stationary phase, glucose, base Mg2+, high Na+; 195 

these particular predictions were rare or absent when using protein abundances. By 196 

contrast, when using protein abundances, several conditions were erroneously 197 

predicted as being stationary phase, glycerol, base Mg2+, base Na+, and these 198 

predictions were virtually absent when using mRNA abundance data. For predictions 199 

made from the combined dataset, erroneous predictions unique to either mRNA or 200 

protein abundances were generally suppressed, and only those predictions that arose 201 
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 8 

for both mRNA and protein abundances individually remained present in the combined 202 

dataset (S7 Fig).  203 

 204 

Prediction accuracy differs between environmental features 205 

We also assessed the sources of inaccuracy in our models. As previously noted, the 206 

majority of incorrect predictions differed by only a single factor. The environmental 207 

features that accounted for most of these single incorrect predictions were Mg2+ 208 

concentration for the protein-only data and carbon sources for mRNA-only data. 209 

Moreover, growth phase (e.g. exponential, stationary, late-stationary) is not strictly an 210 

environmental variable and using this as a feature may partially skew our results if the 211 

goal is to predict strictly external conditions. 212 

 213 

We thus trained and tested separate models using only exponential or only stationary 214 

phase datasets and asked to what extent these models could predict the remaining 3 215 

environmental features (carbon source, [Mg2+], and [Na+]). We found that prediction 216 

accuracy was consistently better for models trained on exponential-phase samples 217 

compared to models trained on stationary-phase samples, irrespective of the machine-218 

learning algorithm used or the data source (mRNA, protein abundances, or both) (Fig 219 

6). This observation implies that E. coli gene expression patterns during stationary 220 

phase are less indicative of the external environment compared to cells experiencing 221 

exponential growth.  A notable caveat is that we have fewer stationary phase samples 222 

and this decrease in accuracy may partially be due to the size of the training dataset.  223 

Even despite the lower accuracies, however, predictive accuracy from models trained 224 

solely on stationary phase cells was still much higher than random expectation, 225 

illustrating that quiescent cells retain a unique signature of the external environment for 226 

the conditions studied.  227 

 228 

To better understand which conditions were the most problematic to predict, we 229 

constructed models to predict only individual features rather than the entire set of 4 230 
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 9 

features. When making predictions based on mRNA abundances only, models were 231 

most accurate in predicting growth phase and least accurate for carbon source, with 232 

Mg2+ and Na+ concentration falling between these two extremes. By contrast, when 233 

making predictions based on protein abundances, the most predictable feature was 234 

carbon source, the least predictable was Mg2+ concentration, and Na+ concentration 235 

and growth phase fell in-between these two extremes (Fig 7, S8 Fig). Finally, for the 236 

combined mRNA and protein abundance dataset, we found that accuracy for carbon 237 

source and Mg2+ concentration generally fell between the accuracies observed using 238 

mRNA and protein abundances individually. By contrast, accuracies for the Na+ 239 

concentration and growth phase were generally as good as—or better than—the 240 

prediction accuracies of the individual datasets (S9 Fig). Together, these findings 241 

highlight that mRNA and protein abundances differ in their ability to discriminate 242 

between particular environmental conditions. 243 

 244 

Model validation on external data 245 

The samples that we studied throughout this manuscript are fairly heterogeneous and 246 

were collected by different individuals over a span of several months/years. However, 247 

different sample types were still analyzed within the same labs, by the same protocols, 248 

and thus may be more consistent than one might expect from data collected and 249 

analyzed independently by different labs—which would be an ultimate goal of future 250 

applications of this methodology. We thus applied our best-fitting protein abundance 251 

model to analyze protein data with similar conditions that was independently collected 252 

and analyzed [7]. Since this external dataset did not contain measurements for all of the 253 

4196 proteins that we measured and constructed our model on, we tested two 254 

alternative approaches of applying our model to the external data. For the first 255 

approach, we filled the missing parts of the external data with the median values of our 256 

in-house data before making predictions. In the second approach, we restricted our 257 

training dataset to only include proteins that appeared in the external validation data set. 258 

These two approaches lead to comparable results (Fig 8). Notably, our model made 259 
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 10 

mostly correct predictions on this dataset. The model was most accurate at 260 

distinguishing between different growth phase data, and moderately accurate at 261 

distinguishing Na+ concentration and carbon source. The external data did not have 262 

variation in Mg2+ levels, however, and our model incorrectly predicted several samples 263 

to have high Mg2+. 264 

 265 

Discussion 266 

Our central goal in this manuscript was to determine whether gene expression 267 

measurements from a single species of bacterium are sufficient to predict environmental 268 

growth conditions. We analyzed a rich dataset of 152 samples for mRNA data and 105 269 

samples for protein data across 16 distinct laboratory conditions as a proof-of-concept. 270 

We could show that E. coli gene expression is responsive to external conditions in a 271 

measurable and consistent way that permits identification of external conditions from 272 

gene signatures alone using supervised machine learning techniques. While E. coli is a 273 

well-characterized species, our analysis relies on none of this a priori knowledge. It is 274 

thus likely that increasing the number and diversity of training samples and conditions 275 

will produce further improvements in accuracy and discrimination between a wider array 276 

of conditions.  277 

 278 

Interestingly, we found that consideration of mRNA and protein datasets alone are 279 

sufficient to produce accurate results, but that joint consideration of both datasets 280 

results in superior predictive accuracy. This finding implies that post-transcriptional 281 

regulation is at least partially controlled by external conditions, which has been 282 

observed by previous studies that have investigated multi-omics datasets [12,20,22,23]. 283 

Such regulation may result from post-translational modifications [24], stress coping 284 

mechanisms [25], differential translation of mRNAs, or protein-specific degradation 285 

patterns. 286 

 287 
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An important finding that we discovered was that cellular growth phase places limits on 288 

the predictability of external conditions, with stationary phase cells being particularly 289 

difficult to distinguish from one another irrespective of their external conditions. A 290 

possible explanation for this behavior might be associated with endogenous 291 

metabolism, whereby stationary phase cells start to metabolize surrounding dead cells 292 

instead of the provided carbon source. This new carbon source, which is independent of 293 

the externally provided carbon source, may suppress the differences between the cells 294 

in different external carbon source environments [26,27]. Another reason for this 295 

behavior might be related to strong coupling between gene expression noise and 296 

growth rate. Multiple studies have concluded that lower growth rates are associated with 297 

higher gene expression noise, which might be a survival strategy in harsh environments 298 

[28]. Negative correlations between population average gene expression and noise 299 

have been shown for E. coli and Saccharomyces cerevisiae, lending support for this 300 

theory [29,30]. Finally, we note that stationary phase cells have likely depleted the 301 

externally supplied carbon sources after several weeks of growth. The similarity of 302 

stationary phase cells to other stationary phase cells may be a consequence of them 303 

inhabiting more similar chemical environments to one another compared to during 304 

exponential growth where nutrient concentrations are more varied across conditions. 305 

Nevertheless, discrimination of external environmental factors in stationary phase cells 306 

was still much better than random—indicating that these populations continue to retain 307 

information about the external environment despite their overall quiescence.  308 

 309 

A relevant finding to emerge from our study is that different features of the environment 310 

may be more or less easy to discriminate from one another and this discrimination may 311 

depend on which molecular species is being interrogated. Growth phase, for instance, 312 

can be reliably predicted from mRNA concentrations but similar predictions from protein 313 

concentrations were less accurate. A possible explanation for this observation is the fact 314 

that mRNAs and proteins have different life-cycles [19,31]. Given the comparably slow 315 

degradation rates of proteins, a large portion of the stationary phase proteome is likely 316 

to have been transcribed during exponential phase growth. As another example, carbon 317 
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sources can be reliably predicted from protein concentrations, but the accuracy of 318 

carbon source predictions from models trained on mRNA concentrations was more 319 

limited.  Carbon assimilation is known to be regulated by post-translational regulation 320 

[32–34], which may be a possible reason for this finding (Fig 7, S9 Fig). 321 

 322 

Despite the fact that we investigated over 150 samples spanning 16 unique conditions, 323 

a limitation of our work and conclusions is nevertheless sample size (though our study 324 

is comparable to or larger than similar multi-conditional transcriptomic and/or proteomic 325 

studies [7,35–37]). The comparison between all of our data with the more limited set 326 

that includes only the intersection of samples for which we have both mRNA and protein 327 

abundance data (Fig 4 compared to S5 and S6 Figs) indicates that prediction accuracy 328 

decreases as the size of our training sets get smaller. This trend indicates that our 329 

training set sizes are still ultimately limiting model accuracy. A second possible issue 330 

with our study is associated with sample number bias [38–40]. We made corrections 331 

with weight factors [41,42] and displayed the multi-class macro F1 score [43] to account 332 

for the fact that some conditions contained more samples, but the predictability of 333 

individual conditions nevertheless increased with the number of training samples for that 334 

particular condition (S3 Fig).  This finding again highlights that increasing training data 335 

will likely result in higher prediction accuracy.  336 

 337 

Our study is a proof-of-principle towards the goal of using gene expression patterns of 338 

natural species as a rapid and low-cost method for assessing environmental conditions. 339 

Other research has shown that the species repertoire, derived from meta-genomic 340 

sequencing, may be useful for determining the presence of particular contaminants [3]. 341 

Our findings suggest that further incorporation of species-specific gene expression 342 

patterns can likely improve the accuracy of such methods. While genetically engineered 343 

strains may play a similar role as environmental biosensors, our study highlights that—344 

with enough training data—the molecular composition of natural populations may 345 

provide sufficient information to accurately resolve past and present environmental 346 

conditions.  347 
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Materials and Methods 348 

Data preparation and overall analysis strategy 349 

We used a set of 155 E. coli samples previously described [18,19]. Throughout this 350 

study, we used different subsets of these samples in different parts of the analysis. For 351 

“mRNA only” and “protein only” analyses we used all 152 samples with mRNA 352 

abundances and all 105 samples with protein abundances, respectively. For 353 

performance comparison of machine learning models between mRNA and protein 354 

abundances we used the subset of 102 samples that have both mRNA and protein 355 

abundance data. After selecting appropriate subsets of the data for a given analysis, we 356 

added abundances from technical replicates, normalized abundances by size factors 357 

calculated via DeSeq2 [44], and applied a variance stabilizing transformation [45,46] 358 

(VST). 359 

 360 

For each separate analysis, we divided the data into two subsets, (i) the training & tune 361 

set and (ii) the test set, using an 80:20 split (Fig 2). This division was done semi-362 

randomly, such that our algorithm preserved the ratios of different conditions between 363 

the training & tune and the test subsets. We retained the condition labels in the training 364 

& tune data (thus our learning was supervised) but we discarded the sample labels for 365 

the test set. We then applied frozen Surrogate Variable Analysis [47] (fSVA) to remove 366 

batch effects from the samples. This algorithm can correct for batch effects in both the 367 

training & tune and the test data, without knowing the labels of the test data. After fSVA, 368 

we used principal component analysis [48] (PCA) to define the principal axes of the 369 

training & tune set and then rotated the test data set with respect to these axes. We 370 

then picked the top 10 most significant axes in the training & tune dataset for learning 371 

and prediction. Finally, we trained and tuned our candidate machine learning algorithms 372 

with the dimension reduced training & tune dataset and then applied those trained and 373 

tuned algorithms on the dimension-reduced test dataset to make predictions. This entire 374 

procedure was repeated 60 times for each separate analysis (Fig 2). 375 

 376 
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We used four different machine learning algorithms: SVM models with (i) linear, (ii) 377 

radial, and (iii) sigmoidal kernels, and (iv) random forest models.  We used the R 378 

package e1071 [49] for implementing SVM models and the R package randomForest 379 

[50] for implementing random forest models. SVMs with radial and sigmoidal kernels 380 

were set to use the c-classification [51] algorithm. 381 

 382 

Model scoring 383 

Our goal throughout this work was to predict multiple parameters (i.e., growth phase, 384 

carbon source, Mg2+ concentration, or Na+ concentration) of each growth condition at 385 

once. Therefore, we could not measure model performance via ROC or precision–recall 386 

curves, which assume a simple binary (true/false) prediction. Instead, we assessed 387 

prediction accuracy via F1 scores, which jointly assess precision and recall. In particular, 388 

for predictions of multiple conditions at once, we scored prediction accuracy via the 389 

multi-class macro F1 score [21,43,52] that normalizes individual F1 scores over 390 

individual conditions, i.e., it gives each condition equal weight instead of each sample. 391 

There are two different macro F1 score calculation that have been proposed in the 392 

literature. First, we can average individual F1 scores over all conditions i [43]: 393 

𝐹",	macro = 〈𝐹",,〉 394 

where 〈⋯ 〉 indicates the average and the individual F1 scores are defined as: 395 

	𝐹",, = 	 2 ∗ Precision, ∗ Recall,	 (Precision, +	Recall,)⁄ . 396 

Alternatively, we can average precision and recall and then combine those averages 397 

into an F1 score [21]:  398 

	𝐹",	macro = 	2	〈Precision,〉	〈Recall,〉	 (〈Precision,〉 + 〈Recall,〉)⁄ . 399 

Between these two options, we implemented the first, because it is not clear that 400 

individually averaging precision and recall before combining them into F1 appropriately 401 
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balances prediction accuracies from different conditions with very different prediction 402 

accuracies.  403 

 404 

Model training and tuning 405 

For training, we first divided the training & tune data further into separate training and 406 

tuning datasets, using a 75:25 split (Fig 2). As before for the subdivision between 407 

training and test data, we did this again semi-randomly, trying to preserve the ratios of 408 

individual conditions. We repeated this procedure 10 times to generate 10 independent 409 

pairs of training and tuning datasets. Next, we generated a parameter grid for the tuning 410 

process. We optimized the "cost" parameter for all three SVM models and the "gamma" 411 

parameter for the SVM models with radial and sigmoidal kernels (S1 Fig). For the 412 

random forest algorithm, we optimized three parameters; "mtry", "ntrees", and 413 

"nodesize".  414 

 415 

We trained each of the four machine learning models on all 10 training datasets and 416 

made predictions on the 10 tuning datasets. We applied a class weight normalization 417 

during training, where class weights are inversely proportional to the corresponding 418 

number of training samples and calculated independently for each training run. We 419 

calculated macro F1 scores for each model parameter setting for each tuning dataset 420 

and then averaged the scores over all tuning datasets to obtain an average 421 

performance score for each algorithm and for each parameter combination. The 422 

parameter combination with the highest average F1 score was considered the winning 423 

parameter combination and was subsequently used for prediction on the test dataset 424 

(Fig 2). 425 

 426 

Model validation on external data 427 

We validated our predictions against independently published external data [7]. This 428 

external dataset consisted of 22 conditions, of which we could match five to our 429 
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conditions. For all five samples, Mg2+ levels were held constant and approximately 430 

matched our base Mg2+ levels. The first sample used glucose as carbon source, did not 431 

experience any osmotic stress (no elevated sodium), and was collected in the 432 

exponential growth phase. The second sample used glycerol as carbon source, did not 433 

experience any osmotic stress (no elevated sodium), and was collected in the 434 

exponential growth phase. The third sample included 50mM sodium, glucose as carbon 435 

source, and was collected in the exponential growth phase. Because our high-sodium 436 

samples all included 100mM of sodium or more [18], this third sample fell in-between 437 

what we consider base sodium and high sodium. Samples four and five used glucose 438 

as carbon source, did not experience osmotic stress, and were measured after 24 and 439 

72 hours of growth, respectively. In our samples, we defined stationary phase as 24–48 440 

hours and late stationary phase as 1 to 2 weeks [18]. Thus, sample four matched our 441 

stationary phase samples and sample five fell in-between our stationary and late-442 

stationary phase samples. 443 

 444 

Statistical analysis and data availability 445 

All statistical analyses were performed in R. All processed data and analysis scripts are 446 

available on GitHub: https://github.com/umutcaglar/ecoli_multiple_growth_conditions 447 

(permanent archived version available via zenodo: 10.5281/zenodo.1294110). mRNA 448 

and protein abundances have been previously published [18,19]. Raw Illumina read 449 

data and processed files of read counts per gene are available from the NCBI GEO 450 

database [53] (accession numbers GSE67402 and GSE94117). Mass spectrometry 451 

proteomics data are available via PRIDE [54] (accession numbers PXD002140 and 452 

PXD005721). 453 

 454 
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Figures 620 

 621 

 622 
Figure 1: Overview of available gene expression data. Our study uses a previously 623 
published dataset consisting of 155 samples [13, 14]. 152 samples have whole-624 
transcriptome RNA-Seq reads and 105 have mass-spec proteomics reads. 102 of the 625 
155 samples have both mRNA and protein reads. Bacteria were grown on four different 626 
carbon sources (glucose, glycerol, gluconate, and lactate), two sodium concentrations 627 
(base and high), and three magnesium concentrations (low, base, and high). Samples 628 
were taken at multiple time points during a two-week interval, and they can be broadly 629 
subdivided into exponential phase, stationary phase, and late stationary phase samples.  630 
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 631 
Figure 2: Machine learning pipeline.  Our pipeline can be separated into three parts: 632 
(i) initial data preparation, (ii) training and prediction, and (iii) model tuning. After (i) 633 
initial data preparation, the samples are (ii) semi-randomly (preserving sub-sample 634 
ratios) separated into 2 parts, the training & tune set and the test set. After applying 635 
fSVA and PCA to the training data, we train supervised SVM or random forest models 636 
via tuning. After obtaining the tuned model we make predictions on the test data that 637 
has been batch corrected (via fSVA) and rotated (via PCA). This whole process is 638 
repeated 60 times to collect statistics on model performance. For model tuning (iii), the 639 
training & tune data set is similarly divided semi-randomly into training and tune 640 
datasets. The tuning procedure is repeated 10 times and the model that performs best 641 
on average during the 10 repeats is considered the winning model and is used for 642 
prediction on the test data. 643 
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 644 
 645 
Figure 3: Performance of multi-class predictions. Distributions of multi-class macro 646 
F1 score for prediction of growth conditions from mRNA or protein abundances, using 647 
four different machine-learning algorithms (SVM with radial, sigmoidal, or linear kernel, 648 
and random forest [RF] models). For each model type, 60 independent models were 649 
trained on 60 independent subdivisions of the data into training and test sets. We found 650 
that random forest models consistently performed worse than SVM models, and 651 
predictions based on mRNA data were slightly better than predictions based on protein 652 
data. The black dots represent the mean F1 scores. 653 
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 654 
Figure 4. Prediction accuracy for specific growth conditions. In each matrix, rows 655 
represent true conditions and columns represent predicted conditions. The numbers in 656 
the cells and the shading of the cells represent the percentage (out of 60 independent 657 
replicates) with which a given true condition is predicted as a certain predicted 658 
condition. (A) Predictions based on mRNA abundances. Results are shown for the SVM 659 
with radial kernel, which was the best performing model in the tuning process on mRNA 660 
data, where it won 55 of 60 independent runs. In this sub-figure, the average of the 661 
diagonal line is 60.5% and corresponding multi-class macro F1 score is 0.61. (B) 662 
Predictions based on protein abundances. Results are shown for the SVM with 663 
sigmoidal kernel, which was the best performing model in the tuning process on protein 664 
data, where it won 41 of 60 independent runs. In this sub-figure, the average of the 665 
diagonal line is 55.1% and corresponding multi-class macro F1 score is 0.56. 666 
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 667 
Figure 5. Models trained on both mRNA and protein data perform better than 668 
models trained on only one data type. The 102 samples for which we have both 669 
protein and mRNA abundances were used to compare the performance of machine 670 
learning models based on only mRNA, only protein, and mRNA and protein data 671 
combined (left to right, respectively). Regardless of the machine learning model used, 672 
prediction performance was higher for models that use protein data compared to mRNA 673 
data. Further, using both mRNA or protein data resulted in higher predictive power 674 
compared to either alone. Statistical significance of these differences is reported in 675 
Table 2. 676 

Intersection mRNA Intersection protein Combined

radial sigmoid linear RF radial sigmoid linear RF radial sigmoid linear RF

0.2

0.4

0.6

Model

M
ul

ti−
cl

as
s 

m
ac

ro
 F

1 
sc

or
e 

on
 te

st
 d

at
a

model
radial
sigmoid
linear
RF

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 22, 2018. ; https://doi.org/10.1101/353433doi: bioRxiv preprint 

https://doi.org/10.1101/353433
http://creativecommons.org/licenses/by/4.0/


 27 

 677 

 678 
Figure 6. Prediction accuracy systematically declines from exponential to 679 
stationary. We separated data by growth phase and then trained models to predict 680 
carbon source, magnesium level, and sodium level within each growth phase. 681 
Regardless of machine-learning model data source (mRNA or protein), prediction 682 
accuracy was substantially lower for stationary-phase samples than for exponential-683 
phase samples. For each model and growth phase, dots show the mean F1 score over 684 
60 replicates and lines connect mean F1 scores calculated for the same model.  685 
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 686 
Figure 7. Model performance on univariate predictions. The multi-class macro F1 687 
score of tuned models over test data for four individual conditions: carbon source, 688 
growth phase, Mg2+ levels, and Na+ levels. To keep mRNA-based and protein-based 689 
predictions comparable, we used the 102 samples with both mRNA and protein 690 
abundances for this analysis. Note that we used the multi-class macro F1 score even for 691 
univariate predictions, by averaging the component F1 scores for the individual 692 
outcomes, such as the different carbon sources. 693 
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 695 

Figure 8. Performance of the protein model on external data. For each of the five 696 
external samples we matched to conditions in our dataset, we show the predicted 697 
sodium level, magnesium level, carbon source, and growth phase. Black text indicates a 698 
correct prediction. Red text indicates an incorrect prediction. Blue text indicates a 699 
prediction for a condition where the external data falls between two categories in our 700 
data (see Methods for details). (A) Predictions using a model trained on our complete 701 
dataset. Any missing protein abundances in the external test data were replaced by the 702 
median values from the training dataset. (B) Predictions using a model that was trained 703 
on our complete dataset using only the subset of proteins that were present in the 704 
external test data.  705 
  706 

A
 Sample Na level Mg level Carbon source Growth phase
A (Base) base high Glucose Exponential
B (Glycerol) base high Glucose Exponential
C (High Na) base high Glucose Exponential
D (Stationary phase) base base Glucose Stationary
E (Late stationary phase) base base Glucose Stationary

B
 Sample Na level Mg level Carbon source Growth phase
A (Base) base base Gluconate Exponential
B (Glycerol) base base Gluconate Exponential
C (High Na) high base Glucose Exponential
D (Stationary phase) base base Glucose Stationary
E (Late stationary phase) base base Glucose Stationary
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Tables 707 

 708 
Table 1: Winning-model distributions at the tuning stage. Numbers show the 709 
number of times out of 60 independent runs that each given model had the highest F1 710 
score in the tuning process. Results are shown separately for predictions on the mRNA 711 
and the protein data. The ties are counted for all the winner models as a result the sums 712 
are bigger than 60 713 
 714 
Model mRNA Protein 
SVM, radial kernel 53 8 
SVM, sigmoidal kernel 6 41 
SVM, linear kernel 0 3 
Random Forest 1 13 

 715 
 716 
 717 
Table 2: Statistical significance of comparisons shown in Figure 5. Distributions of 718 
multi-class macro F1 scores were compared using t-tests. The adjusted P value reports 719 
the false discovery rate (FDR). All comparisons are statistically significant after 720 
correction for multiple testing via FDR. 721 
 722 

Model Comparison P value Adjusted 
P value 

SVM, radial kernel mRNA vs protein 1.943E-09 4.663E-09 
SVM, radial kernel mRNA + protein vs mRNA 3.908E-13 2.345E-12 
SVM, radial kernel mRNA + protein vs protein 8.425E-03 1.087E-02 
 
SVM, sigmoidal kernel 

 
mRNA vs protein 

3.327E-08 6.654E-08 

SVM, sigmoidal kernel mRNA + protein vs mRNA 3.088E-11 1.235E-10 
SVM, sigmoidal kernel mRNA + protein vs protein 3.517E-02 3.517E-02 
 
SVM, linear kernel 

 
mRNA vs protein 

4.728E-11 1.418E-10 

SVM, linear kernel mRNA + protein vs mRNA 1.595E-15 1.914E-14 
SVM, linear kernel mRNA + protein vs protein 9.441E-03 1.087E-02 
 
Random forest 

 
mRNA vs protein 

1.818E-03 2.727E-03 

Random forest mRNA + protein vs mRNA 1.928E-07 3.306E-07 
Random forest mRNA + protein vs protein 9.968E-03 1.087E-02 

 723 
  724 
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Supporting information 725 

S1 Fig. Tuning results for predictions based on mRNA data, generated from one of 60 726 
independent runs and chosen for demonstration purposes. Model performance is 727 
measured as the mean F1 score over 10 independent tuning runs. Higher numbers 728 
indicate better performance. (A) Tuning results for SVMs with linear kernel. Only the 729 
cost parameter was tuned. (B) Tuning results for SVMs with radial kernel. The cost and 730 
gamma parameters were tuned. The red dot indicates the winning parameter 731 
combination. (C) Tuning results for SVMs with sigmoidal kernel. The cost and gamma 732 
parameters were tuned. The red dot indicates the winning parameter combination. (D) 733 
Tuning results for random forest models. The mtry, nodesize, and ntrees parameters 734 
were tuned. We used three values for ntrees, 1000, 5000, and 10000, shown as three 735 
separate panels. The red dot indicates the winning parameter combination. 736 
 737 
S2 Fig. Tuning results for predictions based on protein data, generated from one of 60 738 
independent runs and chosen for demonstration purposes. (A) Tuning results for SVMs 739 
with linear kernel. Only the cost parameter was tuned. (B) Tuning results for SVMs with 740 
radial kernel. The cost and gamma parameters were tuned. The red dots indicate the 741 
winning parameter combinations. (C) Tuning results for SVMs with sigmoidal kernel. 742 
The cost and gamma parameters were tuned. The red dot indicates the winning 743 
parameter combination. (D) Tuning results for random forest models. The mtry, 744 
nodesize, and ntrees parameters were tuned. We used three values for ntrees, 1000, 745 
5000, and 10000, shown as three separate panels. The red dot indicates the winning 746 
parameter combination. 747 
 748 
S3 Fig. Percentage of correct predictions as a function of the number of samples during 749 
training. (A) Predictions based on mRNA abundances. (B) Predictions based on protein 750 
abundances. 751 
 752 
S4 Fig. The error count distribution for mRNA (A) and protein (B) confusion matrices. 753 
The number of mis-predicted labels (x-axis) indicates how many of the 4 possible 754 
condition variables that an individual prediction got wrong. 0 mis-predicted labels (the 755 
majority in both cases) means that model predictions were 100% accurate. In both 756 
cases (mRNA and protein), when an incorrect prediction was made, it was most 757 
frequently due to a single variable being incorrectly predicted (number of mis-predicted 758 
labels with a value of 1) as compared to errors predicting more than one variable for a 759 
given condition (2 and 3 mis-predicted labels). 760 
 761 
S5 Fig. Prediction accuracy for specific growth conditions for intersection mRNA data. 762 
Rows represent true conditions and columns represent predicted conditions. The 763 
numbers in the cells and the shading of the cells represent the percentage (out of 60 764 
independent replicates) with which a given true condition is predicted as a certain 765 
predicted condition. Predictions based on mRNA abundances, generated by using 766 
subset of mRNA samples which has matching protein pairs. Results are shown for the 767 
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SVM with radial kernel, which was the best performing model in the tuning process on 768 
mRNA data, where it won 48 of 60 independent runs. In this figure average of the 769 
diagonal line is 44.1% and multi class macro F1 score is 0.43.  770 
 771 
S6 Fig. Prediction accuracy for specific growth conditions for intersection protein data. 772 
Rows represent true conditions and columns represent predicted conditions. The 773 
numbers in the cells and the shading of the cells represent the percentage (out of 60 774 
independent replicates) with which a given true condition is predicted as a certain 775 
predicted condition. Predictions based on protein abundances, generated by using 776 
subset of protein samples which has matching mRNA pairs. Results are shown for the 777 
SVM with sigmoid kernel, which was the best performing model in the tuning process on 778 
mRNA data, where it won 47 of 60 independent runs. In this figure average of the 779 
diagonal line is 52.3% and corresponding multi class macro F1 score is 0.53.  780 
 781 
S7 Fig. Prediction accuracy for specific growth conditions for intersection mRNA & 782 
protein data. Rows represent true conditions and columns represent predicted 783 
conditions. The numbers in the cells and the shading of the cells represent the 784 
percentage (out of 60 independent replicates) with which a given true condition is 785 
predicted as a certain predicted condition. Predictions based on protein abundances, 786 
generated by using subset of mRNA & protein samples which has matching pairs. 787 
Results are shown for the SVM with sigmoid kernel, which was the best performing 788 
model in the tuning process on combined intersection data, where it won 27 of 60 789 
independent runs. In this figure average of the diagonal line is 56.1% and corresponding 790 
multi class macro F1 score is 0.57.  791 
 792 
S8 Fig. Prediction accuracy for univariate predictions using intersection mRNA and 793 
intersection protein data, as in the main text Figure 7. (A) Prediction of carbon source 794 
from mRNA abundances. (B) Prediction of carbon source from protein abundances. (C) 795 
Prediction of growth phase from mRNA abundances. (D) Prediction of growth phase 796 
from protein abundances. (E) Prediction of Mg2+ levels from mRNA abundances. (F) 797 
Prediction of Mg2+ levels from protein abundances. (G) Prediction of Na+ levels from 798 
mRNA abundances. (H) Prediction of Na+ levels from protein abundances.  799 
 800 
S9 Fig. Prediction accuracy for univariate predictions based on intersection mRNA 801 
abundances, intersection protein abundances, or the combined dataset including both 802 
mRNA and protein abundances. Protein abundances are more predictive for carbon 803 
source and Mg2+ levels, and mRNA abundances are more predictive for Na+ levels and 804 
growth phase. 805 
 806 
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