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Background 

Single-cell RNA sequencing (scRNA-seq) offers new opportunities to study gene expression of tens of                           

thousands of single cells simultaneously. However, a significant problem of current scRNA-seq data is                           

the large fractions of missing values or “dropouts” in gene counts. Incorrect handling of dropouts may                               

affect downstream bioinformatics analysis. As the number of scRNA-seq datasets grows drastically, it is                           

crucial to have accurate and efficient imputation methods to handle these dropouts. 

Methods 

We present DeepImpute, a deep neural network based imputation algorithm. The architecture of                         

DeepImpute efficiently uses dropout layers and loss functions to learn patterns in the data, allowing for                               

accurate imputation. 
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Results 

Overall DeepImpute yields better accuracy than other publicly available scRNA-Seq imputation methods                       

on experimental data, as measured by mean squared error or Pearson’s correlation coefficient. Moreover,                           

its efficient implementation provides significantly higher performance over the other methods as dataset                         

size increases. Additionally, as a machine learning method, DeepImpute allows to use a subset of data to                                 

train the model and save even more computing time, without much sacrifice on the prediction accuracy.  

Conclusions 

DeepImpute is an accurate, fast and scalable imputation tool that is suited to handle the ever increasing                                 

volume of scRNA-seq data. The package is freely available at                   

https://github.com/lanagarmire/DeepImpute 
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Introduction 

The RNA sequencing technologies keep evolving and offering new insights to understand biological                         

systems. In particular, single-cell RNA sequencing (scRNA-seq) represents a major breakthrough in this                         

field. It brings a new dimension to RNA-seq studies by zooming in to the single-cell level. Currently,                                 

various scRNA-seq platforms are available such as Fluidigm and Drop-Seq based methods. While                         

Drop-Seq can process thousands of cells in a single run, Fluidigm generally processes fewer cells but with                                 

a higher coverage. In particular, 10X Genomics’ platform is gaining popularity in the scRNA-seq                           

community due to its high yield and low cost per cell. Consequently, an increasing amount of studies                                 

have taken advantage of these technologies to discover new cell types​(Usoskin ​et al.​ , 2015; Villani ​et al.​ ,                                 
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2017)​, new markers for specific cell types​(Usoskin ​et al.​ , 2015; Zeisel ​et al.​ , 2015; Jaitin ​et al.​ , 2014)​,                                   

and cellular heterogeneity​(Jaitin ​et al.​ , 2014; Kriegstein ​et al.​ , 2014; Treutlein ​et al.​ , 2014; Tirosh ​et al.​ ,                                 

2016; Shalek ​et al.​ , 2013; Tang ​et al.​ , 2010)​. 

Despite these advantages, scRNA-seq data are very noisy and incomplete​(Kim ​et al.​ , 2015; Jia ​et al.​ ,                               

2017; Kolodziejczyk ​et al.​ , 2015) due to the low starting amount of mRNA copies per cell. Datasets with                                   

more than 70% missing (zero) values are frequently observed in an scRNA-seq experiment. These                           

apparent zero values could be truly zeros or false negatives. The latter phenomenon is called                             

“dropout”​(Andrews and Hemberg, 2016)​, and is due to failure of amplification of the original RNA                             

transcripts. Shorter genes are more likely to be dropped out since it is more difficult for RNA polymerase                                   

to capture their mRNAs​(Pierson and Yau, 2015)​. Such bias may increase further during the subsequent                             

amplification steps. As a result, dropout can affect downstream bioinformatics analysis significantly, such                         

as clustering​(Zhu, Ching, ​et al.​ , 2017) and pseudo-time reconstruction​(Poirion ​et al.​ , 2017)​, as it                           

decreases the power of the studies and introduces biases in gene expression. To correct such issue,                               

analysis platforms such as Granatum​(Zhu, Wolfgruber, ​et al.​ , 2017) have included an imputation step, in                             

order to improve the downstream analysis.  

Currently several imputation algorithms have been proposed, based on different principles and models.                         

MAGIC​(van Dijk ​et al.​ , 2017) focuses on cell/cell interactions to build a Markov transition matrix and                               

smooth the data. ScImpute​(Li and Li, 2017) builds a LASSO regression model for each cell and imputes                                 

them iteratively. SAVER​(Huang ​et al.​ , 2017) is a Bayesian-based model using various prior probability                           

functions. DrImpute​(Kwak ​et al.​ , 2017) is a clustering-based method and uses a consensus strategy: it                             

estimates a value with several cluster priors or distance matrices and then imputes by aggregation. As the                                 

low quality of the scRNA-seq datasets continues to be a bottleneck while the measurable cell counts keep                                 

increasing, the demand for faster and scalable imputation methods also keeps increasing​(Eraslan ​et al.​ ,                           
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2018; Lin ​et al.​ , 2017; Ronen and Akalin, 2018)​. While some of these earlier algorithms do improve the                                   

quality of original datasets and preserve the underlying biological variance​(Zhang and Zhang, 2017)​,                         

often these methods demand extensive running time, impeding their adoption in the ever increasing                           

scRNA-seq data space. 

Here, we present a novel algorithm, DeepImpute, for scRNA-seq data imputation. DeepImpute is short for                             

“Deep neural network Imputation”. As reflected by the name, it belongs to the class of deep                               

neural-network models​(Ching, Zhu, ​et al.​ , 2018; Alakwaa ​et al.​ , 2018; Chaudhary ​et al.​ , 2018)​. Recent                             

years, deep learning and related deep neural network algorithms have gained much interest in the                             

biomedical field​(Ching, Himmelstein, ​et al.​ , 2018)​, ranging from applications from extracting stable gene                         

expression signa​tures in large sets of public data​(Tan ​et al.​ , 2017) to stratify phenotypes ​(Beaulieu-Jones                

et al.​ , 2016) or impute missing values ​(Beaulieu-Jones and Moore, 2017) using ​electronic health record               

(EHR) data. Here, we construct DeepImpute models by ​splitting the genes into subsets and builds               

sub-networks to increase its efficacy and efficienc​y. Using accuracy metrics, we demonstrate that                   

DeepImpute performs better than the four most recent and representative imputation methods mentioned                         

above (MAGIC, DrImpute, ScImpute and SAVER). We also show the superiority of DeepImpute over the                             

other methods in terms of computational running time and memory use. Moreover, DeepImpute allows to                             

train the model with a subset of data to save computing time, with little sacrifice on the prediction                                   

accuracy. In summary, DeepImpute is a fast, scalable, and accurate imputation method capable of                           

handling the ever increasing scRNA-seq data. 
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Methods 

The workflow of DeepImpute 

DeepImpute is an imputation workflow using deep-neural networks implemented with the                     

TensorFlow​(Abadi ​et al.​ , 2016) framework. The algorithm starts by setting a threshold that determines                           

how many genes are to be imputed. This threshold can either be set as the default or determined by the                                       

user. As the default, we filter all the genes with less than 5 reads among 99% of the samples. For                                       

efficiency, we adopt a divide-and-conquer strategy in our deep learning imputation process. We split the                             

genes into random subsets,​ each with S numbers of genes, which we call “target genes”. By default S is                                     

set as 500.  

For each subset, we train a neural network made of four layers: the input layer of genes that are correlated                                       

to the target genes, a 300-neuron fully connected hidden layer with a Rectified Linear Unit (ReLU)                               

activation function, a dropout layer (50% drop-out rate), and an output layer made of S “target genes’. A                                   

gene is selected into the input layer, if it satisfies: (1) it is not one of the target genes; (2) it has at least 10                                                 

reads among 1% of the cells; (3) It has top 20 ranked Pearson’s correlation coefficient with a target gene.                                     

The dropout layer is included after the hidden layer, as a common strategy to prevent                             

overfitting​(Srivastava ​et al.​ , 2014)​. The other default parameters of the networks include a learning rate of                               

0.0005, a batch size of 64, and a subset size of 500.  

In order to emphasize the accuracy on high confidence values during the training phase, we use a                                 

weighted MSE for the loss function: ​where is the value of gene i, an​d              oss   Y ⋅(Y )L = ∑ i i − Ŷ i
2
     Y i                 Ŷ i  

is the estimated value for this gene at a given epoch. For the gradient descent algorithm, we choose an                                     

adaptive learning rate method, the Adam optimizer​(Kingma and Ba, 2014)​, since it is known to perform                               

very efficiently over sparse data​(Ruder, 2016)​. ​In addition, we discard cells with poor gene expression                             

values (more than 90% zeros in all cells) during the training.  
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scRNA-seq Datasets  

In this study, we evaluate imputation metrics on four datasets. Three of them (Jurkat, 293T, neuron9k                               

and Mouse1M) are downloaded from the 10X Genomics support website                   

(​https://support.10xgenomics.com/single-cell-gene-expression/datasets​). Briefly, the Jurkat dataset is           

extracted from the Jurkat cell line (human blood). 293T is a blood cell line derived from HEK293T that                                   

expresses a mutant version of the SV40 large T antigen. The neuron9k dataset contains brain cells from                                 

an E18 mouse. Mouse1M also contains brain cells from an E18 mouse. The fourth data are taken from                                   

GEO (GSE67602)​(Joost ​et al.​ , 2016)​, composed of mouse interfollicular epidermis cells.  

Other methods of comparison 

For comparison, we use the latest version of SAVER (v0.3.1) at                     

https://github.com/mohuangx/SAVER/releases​, ScImpute (v0.0.6) at       

https://github.com/Vivianstats/scImpute​, DrImpute (v1.0) available as a CRAN package, and MAGIC                   

(pulled 4/3/18) at ​https://github.com/KrishnaswamyLab/magic​. We preprocess the datasets according to                    

each method’s standard: using log transformation for dataset in MAGIC and DeepImpute, but raw counts                             

for scImpute, DrImpute and SAVER. 

Evaluation metrics 

Speed and memory comparison 

We run comparisons on a dedicated 8-core, 30GB RAM, 100GB HDD, Intel Skylake machine running                             

Debian 9.4. We record process memory usage at 60-second intervals. For testing data, we use the                               

Mouse1M dataset since it has the largest number of single cells (​Table 1​). We filter out genes that are                                     

expressed in less than 20% of cells, leaving 3205 genes in our sample. From this dataset, we generate 7                                     

subsets ranging in size (100, 500, 1k, 5k, 10k, 30k, ​50k cells). We run each package 3 times per subset to                                         

estimate the average computation time. Some packages (DrImpute, SAVER, scImpute and MAGIC) are                         
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not able to successfully handle the larger files either due to out-of-memory errors (OOM) or exceedingly                               

long run times (> 12 hours).  

Accuracy comparison on real datasets 

We choose to randomly mask 5% of the positive read count values for each cell in the expression matrix.                                     

The masking follows a density probability distribution proportional to where x is the                  (x) xp (− /20)  f = e x        

raw read count. These original values are used as the reference to evaluate the performance of imputation                                 

methods. We used two types of performances metrics: the overall Pearson’s correlation coefficient and                           

the mean squared error (MSE), both on log transformed counts. When needed, we also computed MSE                               

between cells  and between genes .c j gi  

RNA FISH validation 

We obtain a Drop-Seq dataset (GSE99330) and its RNA FISH dataset from a melanoma cell line, as                                 

described by Torre et al​(Torre ​et al.​ , 2018)​. The summary of the dataset is listed in ​Table 1​. For the                                       

comparison between RNA FISH and the corresponding Drop-Seq experiment, we keep the top 2000                           

genes as done on other datasets in this study that are used for evaluations, leaving six genes in common                                     

between the FISH and the Drop-Seq datasets. We normalized the cells in each dataset using a                               

housekeeping gene (Glyceraldehyde 3-phosphate Dehydrogenase, or GAPDH) based factor: we multiply                     

each cell by its mean(GAPDH)/GAPDH value. To compute Gini index, we filter genes below the 10​th and                                 

above the 90​th​ percentile, as done by others​(Huang ​et al.​ , 2017)​ . 

Software and code availability 

DeepImpute package and its documentation are freely available at                 

https://github.com/lanagarmire/DeepImpute​.  
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Results 

Overview of the DeepImpute algorithm 

DeepImpute is a deep neural network model that imputes genes in a divide-and-conquer approach, by                             

constructing multiple sub-neural networks. In each sub-neural network, it aims to understand gene                         

networks by splitting them between the input and the output layer. Doing so offers the advantage of                                 

reducing the complexity by learning smaller problems and fine-tuning the sub-neural networks​(Chiang                       

and Fu, 1994)​. Users can set the size of the subset data. We use 500 genes as the default value, since it                                           

offers a good trade-off between speed and stability. For each sub-model, we train a feed-forward neural                               

network to fit these 500 genes, which we call target genes.  

As shown in Figure 1​, each sub-neural network is composed of four layers. The input layer consisting of                                   

genes that are correlated with the target genes and have read counts above 10 in at least 1% among all                                       

cells. It is followed by a 300-neuron dense hidden layer, a dropout layer with 50% drop-out rate of                                   

neurons (to avoid overfitting), and the output neurons made of the above mentioned target genes. We use                                 

Rectified Linear Unit (ReLU) as the activation function, and train each sub-model using data from cells                               

with at least 10% non-zero values. Because of the simplicity of each sub-network, we observe very low                                 

variability due to hyperparameter tuning. As a result, we set the default parameters for batch size at 64                                   

and learning rate at 0.005. Further information about the network parameters are described in ​Methods​.                             

In the following sections, we performed comprehensive evaluations of DeepImpute by combining in                         

parallel the results of all sub-networks. 

 

DeepImpute is the most accurate among imputation methods on scRNA-seq data  

We tested the results on four publically available scRNA-seq datasets (​Table 1​): two cell lines, Jurkat and                                 

293T (10X Genomic), one mouse neuron cells dataset (10X Genomics), and one mouse interfollicular                           

epidermis (IFE) dataset deposited in GSE67602. We compared DeepImpute with four other                       
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state-of-the-art, representative algorithms: MAGIC, DrImpute, ScImpute and SAVER. Since the real                     

dropout values are unknown, we evaluated the different methods by randomly masking (replacing with                           

zeros) a part of the expression matrix of a scRNA-seq dataset, and then measure the differences between                                 

the inferred and actual values of the masked data. In order to mimic a more realistic dropout distribution,                                   

we masked the lower values with a higher probability following the exponential law (see ​Methods​). To                               

keep a reasonable number of genes for imputation, we studied the performances on the top 2000 genes                                 

chosen by the 99% quantiles’ count values. This threshold allows to obtain the majority of genes that have                                   

more than 5 reads in 1 percentile of cells.  

We measured the accuracies using the two metrics on the masked values: Pearson’s correlation                           

coefficient and Mean Squared Error (MSE), as done earlier​(Garmire and Subramaniam, 2012; Huang ​et                           

al.​ , 2017)​. ​Figure 2 ​shows all the results of imputation accuracy metrics on the masked data. DeepImpute                                 

successfully recovers dropout values from all ranges, introduces the least distortions and biases to the                             

masked values and yields both the highest Pearson’s correlation coefficient and the best (lowest) MSE in                               

each dataset (​Figure 2A​). On the contrary, other methods present various issues: MAGIC has the 2nd best                                 

Pearson’s correlation coefficients after DeepImpute, but worse MSEs overall compared to SAVER.                       

SAVER presents systematic bias to underestimate the masked data, especially in the higher value range,                             

thus it produces overall worse Pearson’s correlation coefficients than MAGIC. DrImpute and scImpute                         

have the widest ranges of variations among imputed data, compared to those of masked values, therefore                               

giving two worst sets of Pearson’s correlation values. The variation of imputed data from scImpute is the                                 

largest, and it produces the worst (highest) overall MSE. We further examined MSE distributions                           

calculated on the gene and cell levels (​Figure 2B and 2C​). DeepImpute is the clear winner with                                 

consistently the best (lowest) MSEs for gene and cell levels, on all datasets. scImpute consistently gives                               

the worst (highest) MSEs at the cell level and 2nd worst MSEs at the gene level (Figure 2B and 2C).                                       

Other methods are ranked in between, with varying rankings depending on the datasets and gene or cell                                 

 
  
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 22, 2018. ; https://doi.org/10.1101/353607doi: bioRxiv preprint 

https://paperpile.com/c/pATtRa/U3om+WRPM
https://paperpile.com/c/pATtRa/U3om+WRPM
https://paperpile.com/c/pATtRa/U3om+WRPM
https://paperpile.com/c/pATtRa/U3om+WRPM
https://doi.org/10.1101/353607


 

level calculations. In summary, DeepImpute yields the highest accuracy in the datasets studied, among                           

the imputation methods in comparison. 

 

DeepImpute improves the gene distribution similarity with FISH experimental data 

Another way to assess the imputation efficiency is through experimental validation on scRNA-Seq data.                           

Single-cell RNA FISH is such a method that directly detects a small number of RNA transcripts in a                                   

single cell. Torre et al. measured the gene expression of a melanoma cell line using both RNA FISH and                                     

Drop-Seq and compared their distribution using their Gini coefficients (see ​Methods​)​(Torre ​et al.​ , 2018)​.                           

Similarly, we compared the same list of genes using their Gini coefficients of RNA FISH vs. those after                                   

imputation (or raw the scRNA-seq data). Comparing to the Pearson’s correlation coefficient between                         

RNA FISH and the raw scRNA-seq data (-0.369), three methods, DeepImpute, DrImpute and SAVER,                           

have improved correlation coefficients. Among them, DeepImpute had the highest value (0.944). On other                           

other hand, MAGIC and scImpute both had worse (lower) correlation coefficients than the raw                           

scRNA-seq dataset (​Figure 3​). For MSE, all imputation methods achieved better (smaller) MSEs                         

compared to the raw scRNA-seq results (MSE=0.281). Still, DeepImpute is the most accurate method                           

with an MSE (MSE=0.0204). This MSE is also much less compared to the second lowest MSE                               

(MSE=0.0437) generated from DrImpute. Thus, these results demonstrate that DeepImpute improves the                       

data quality the best among all compared methods, using RNA FISH experimental data as the truth                               

measure. 

 

DeepImpute is a fast and memory efficient package 

As scRNA-seq becomes more popular and the number of sequenced cells scales exponentially, imputation                           

methods will have to be computationally efficient to be widely adopted. With such a goal in mind, we                                   

chose the Mouse1M dataset to evaluate the computational speed and memory usage among different                           
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imputation methods. We used Mouse1M dataset as it has the highest number of cells to assess how                                 

adaptive each method is. 

We downsampled the data 7 subsets ranging in size from 100 to 50k cells (100, 500, 1k, 5k, 10k, 30k,                                       

50k). We ran the imputations three times and measured the runtime and memory load on an 8-core                                 

machine with 30 gigabytes of memory. Overall, DeepImpute and MAGIC outperformed the other three                           

packages on both speed (​Figure 4A​) and memory usage, especially on large datasets (​Figure 4B​).                             

DeepImpute and MAGIC performed similarly on smaller datasets, however, as the dataset size increased                           

their memory usage diverged (​Figure 4B​). On the 30k cell dataset, DeepImpute consumed less than half                               

(~8GB) of the available memory, while MAGIC used approximately ⅔ of the memory (~20GB). On the                               

50K cell dataset, MAGIC hit an out of memory error and was unable to finish the 50K cell imputation on                                       

our 30GB machine. The other three imputation methods (scImpute, DrImpute and SAVER) were                         

significantly slower and consumed significantly more memory (​Figure 4​). The slow computation time of                           

DrImpute is due to lack of parallelization. Furthermore, both SAVER and scImpute exceeded the 30GB                             

of memory available and failed to run on more than 10k cells. Therefore, judging by both computation                                 

speed and memory efficiency on larger datasets, DeepImpute again tops the other methods. 

 

DeepImpute is a scalable machine learning method 

Unlike the other imputation methods, DeepImpute first fits a predictive model and then performs                           

imputation separately. The model fitting step uses most of the computational resources and time, while                             

the prediction step is very fast. We then asked the question what is the minimal fraction of the dataset                                     

needed to train DeepImpute and obtain efficient imputation without extensive training time. Hence, we                           

used the neuron9k dataset and evaluated the effect of different subsampling fraction (5%, 10%, 20%,                             

40%, 80%, 100%) in the training phase on the imputation prediction phase. We randomly picked a subset                                 

of the samples for the training and computed the accuracy metrics (MSE, Pearson’s correlation                           
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coefficient) on the whole dataset, with 10 repetitions under each condition. Model performance                         

improvement begins to slow down at around 40% of the cells (​Figure 5​). Specifically, from 40% to 100%                                   

fraction of data as the training set, the MSE decreases slightly from 3.69 to 3.43, and Pearson’s                                 

coefficient score marginally improves from 0.863 to 0.875. These experiments demonstrate another                       

advantage of DeepImpute over the competing methods, that is, the use of only a fraction of the data set                                     

will reduce the running time even more with little sacrifice to the accuracy of the imputed results.  

 

Discussion 

Dropout values in scRNA-seq experiments represent a serious issue for bioinformatic analyses, as most                           

bioinformatics tools have difficulty handling sparse matrices. In this study, we present DeepImpute, a                           

new algorithm that uses deep neural networks to impute dropout values in scRNA-seq data. We show that                                 

DeepImpute not only has the highest overall accuracy, but also offers faster computation time with less                               

demand on the computer memory. Furthermore, it is a very “resilient” method. The model trained on a                                 

fraction of the input data can still yield decent predictions, which can further reduce the running time.                                 

Together, these results demonstrate that DeepImpute is an accurate and highly efficient method, and it is                               

likely to withstand the tests of time, given the rapid growth of scRNA-Seq data volume. 

Several unique properties of DeepImpute contribute to its superior performance. One of them is                           

using a divide-and-conquer approach. This approach has several benefits. First, contrary to auto-encoders,                         

the subnetworks are trained without using the target genes as the input. It reduces overfitting while                               

enforcing the network to understand true relationships between genes. Second, splitting the genes into                           

subsets results in a lower complexity in each sub-model and stabilizing neural networks. As a result, a                                 

small change in the hyperparameters has little effect on the result. Using a single set of hyperparameters,                                 

DeepImpute achieves the highest accuracies in all four datasets. Third, splitting the training into                           

sub-networks results in increased speed as there are fewer input variables in each subnetwork. Also,                             
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training of each sub-network is done in parellel on different threads, which is more difficult to do with                                   

one single neural network. 

Unlike other imputation algorithms in comparison, DeepImpute is a machine learning method.                       

The training and the prediction processes of DeepImpute are separate, and this may provide more                             

flexibility when handling large datasets. Moreover, we have shown that using only a fraction of the                               

overall samples, one can still obtain decent imputation results without sacrificing the accuracy of the                             

model much, thus further reducing the running time. Perhaps another advantage of DeepImpute over other                             

methods, is that one can pre-train a dataset of a cell type (or cell state) on another cell type (or cell state)                                           

decently. This pre-training process is very valuable in some cases, such as when the number of cells in the                                     

dataset is too small to construct a high-quality model. Pre-training can also largely reduce the overall                               

computation time, since DeepImpute spends most of the time on training the samples. Thus it is also a                                   

good strategy when the new, large dataset is very similar to the dataset used in pre-training. None of the                                     

other competing methods in this study offers such flexibility and time-saving customization.   

An enduring imputation method has to adapt to the ever-increasing volume of scRNA-seq data.                           

DeepImpute is such a method, implemented in deep learning framework where new solutions for speed                             

improvement keep appearing. One example is the development of neural networks specific hardware                         

(such as Tensor Processing Units​(Jouppi ​et al.​ , 2017)​, or TPUs) which are now available on Google                               

Cloud. TPU can dramatically accelerate the tensor operations and thus the imputation process. We were                             

already able to deploy DeepImpute in a Google Cloud environment where TPUs are already available.                             

Another example is the development of frameworks that efficiently use computer clusters to parallelize                           

tasks such as Apache-Spark​(Shanahan and Dai, 2017) or Dask​(Mehta ​et al.​ , 2017)​. Such resources will                             

help DeepImpute and similar methods achieve even higher imputation speed over time, and keep up with                               

the development of scRNA-seq technologies.  
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Figures 

Figure 1: (Sub) Neural network architecture of DeepImpute. For each sub neural network, the input layer                               

consists of genes that are correlated with the genes in the output layer. It is followed by two hidden layers:                                       

one 300 neurons dense layer and a dropout layer (rate=50%). The output layer consists of the subset of                                   

genes randomly assigned (default N=500). 

Figure 2: Accuracy comparison between DeepImpute and other competing methods. ​(A) Scatter plots of                           

imputed vs. original data masked. The x-axis corresponds to the true values of the masked data points,                                 

and the y-axis represents the imputed values. Each row is a different dataset, and each column is a                                   
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different imputation method. The mean squared error (MSE) and Pearson’s correlation coefficients                       

(Pearson) are shown above each dataset and method. ​(B) Bar graphs of cell-cell and gene-gene level                               

MSEs between the true (masked) and imputed values, based on those in ​(A)​. Color labels: DeepImpute                               

(blue), DrImpute (green), MAGIC (red), SAVER (purple) and scImpute (gold) on real datasets. ​(C)                           

Heatmap rankings of MSEs, for the conditions in ​(B). ​Lighter vs. darker green indicates better vs. worse                                 

rankings.  

Figure 3: Comparison among imputation methods using RNA FISH data. ​(A) Scatter plots of Gini index                               

from the imputed (or raw) vs. FISH data. The x-axis is the “true” Gini coefficient as determined by FISH                                     

experiments, and the y-axis is the imputed (or raw) Gini coefficient. The Pearson’s correlation                           

coefficients (Pearson) and mean squared error (MSE) are shown for each method. 

Figure 4: Speed and memory usage comparison among imputation methods, on the Mouse1M dataset.                           

This dataset is chosen for its largest cell numbers. Color labels: DeepImpute (blue), DrImpute (green),                             

MAGIC (red), SAVER (purple) and scImpute (gold). (A) Speed evolution over 3 runs. The x-axis is the                                 

number of cells and the y-axis is the running time in minutes (log scale) of the imputation process. (B)                                     

RAM memory usage. The x-axis is the number of cells and the y-axis is the maximum RAM used by the                                       

imputation process. Because of the limited amount of memory or time, scImpute, SAVER and MAGIC                             

exceeded the memory limit respectively at 10k, 30k and 50k cells. DrImpute exceeded 12h on 10k. 

Figure 5: Effect of subsampling the training data on imputation accuracy. neuron9k dataset is masked                             

and measured for performance as in Figure 2. X-axis is the fraction of cells in the training data set, and                                       

y-axis are values for mean squared error (left) or Pearson’s correlation coefficient (right). Color label:                             

blue line (mean squared error), green line (Pearson’s correlation coefficients). Shades represent the                         

variations over the 10 repetitions. 
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Tables 

Table 1: ​Summary of the single-cell datasets 

Dataset  # Cells  Sample type  Organism  Accession 

Jurkat  3,258  Blood cell line  Homo Sapiens  10X Genomics* 

293T  2,885  Blood cell line  Homo Sapiens  10X Genomics* 

Neuron9k  9,128  Brain cells  Mus Musculus  10X Genomics* 

GSE67602  1,422 
Interfollicular 
Epidermis cells 

Mus Musculus  GEO (GSE67602) 

Mouse1M  1,306,127  Brain cells  Mus Musculus  10X Genomics* 

FISH  88,040  Melanoma cell line  Homo Sapiens  Torre et al. 

GSE99330  8,641  Melanoma cell line  Homo Sapiens  GEO (GSE99330) 

*: the URL to access the dataset is: ​https://support.10xgenomics.com/single-cell-gene-expression/datasets 

 

Supplementary Figures  

Supplementary Figure 1: ​99​th percentile distribution across datasets. The x-axis is the sorted gene                           

indices based on their 99​th percentile, and the y-axis is the read count value at the 99​th percentile. The                                     

shaded region corresponds to the genes that have been kept for the comparison, and the count value for                                   

the lower limit of each dataset appears on the y-axis. 
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