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Abstract: Correlations in neural activity have been demonstrated to have profound consequences 

for sensory encoding. To understand how neural populations represent stimulus information, it is 

therefore necessary to model how pairwise and higher-order spiking correlations between neurons 

contribute to the collective structure of population-wide spiking patterns. Maximum entropy models are 

an increasingly popular method for capturing collective neural activity by including successively higher-

order interaction terms. However, incorporating higher-order interactions in these models is difficult 

in practice due to two factors. First, the number of parameters exponentially increases as higher 

orders are added. Second, because triplet (and higher) spiking events occur infrequently, estimates 

of higher-order statistics may be contaminated by sampling noise. To address this, we extend previous 

work on the Reliable Interaction class of models [1] to develop a normalized variant that adaptively 

identifies the specific pairwise and higher-order moments that can be estimated from a given dataset for 

a specified confidence level. The resulting “Reliable Moment” model is able to capture cortical-like 

distributions of population spiking patterns. Finally, we show that, compared with the Reliable 

Interaction model, the Reliable Moment model infers fewer strong spurious higher-order interactions 

and is better able to predict the frequencies of previously unobserved spiking patterns. 

1. Introduction 

An essential step in understanding neural coding is the characterization of the correlated structure of 

neural activity. Over the past two decades, much theoretical work has clarified the strong impact that 

correlated variability between pairs of neurons can have on the amount of information that can be 

encoded in neural circuits [2–7]. Beyond pairs, recent experimental studies have shown evidence of 

higher-order correlations in cortical [8–12] and retinal [1,13] population activity. Depending on their 

stimulus-dependent structure, these higher-order correlations could also have a strong impact on 

population coding [14,15]. Moreover, capturing higher-order correlations in neural spiking may be 

important for identifying functional networks in neural circuits [16], or for characterizing their collective 

statistical activity [17]. Therefore, to incorporate higher-order spiking statistics into an information 

theoretic framework, we require flexible modeling tools that can capture the coordinated spiking of arbitrary 

orders within neural populations. 

Maximum entropy models are an increasingly common tool for fitting and analyzing neural 

population spiking patterns. Intuitively, maximum entropy models fit certain specified features (e.g., 

firing rates, correlations between cells) while making minimal additional assumptions about the 

population structure [18]. Several variants of the maximum entropy model have been used to fit the 

collective activity of spiking patterns in neural data [5,12,13,16,19,20]. However, it is still unclear how 

to efficiently incorporate higher-order features into maximum entropy models for two reasons. First, 

the number of parameters (and hence the computational expense of model fitting) increases 

exponentially as higher-order features are incorporated. Second, because higher-order synchronous 

spiking occurs infrequently, empirical estimates tend to be noisy; therefore, massive amounts of data 

may be necessary to create a model with higher-order interactions that can generalize to held-out data. 

These issues have been addressed by the Reliable Interaction model [1], which uses a maximum entropy 

inspired model to fit a sparse network of features based on the most “reliable” (i.e., high-frequency) 

spiking patterns within their data. This approach is extremely efficient numerically and reproduces the 

frequencies of the most commonly occurring patterns with high accuracy. However, because the model is 
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not a normalized probability distribution, it cannot be used to calculate information theoretic quantities such 

as the Kullback–Leibler divergence or mutual information. 

To address these challenges, we introduce an adaptive maximum entropy model that identifies 

and fits spiking interactions of all orders, based on the criterion that they can be accurately estimated 

from the data for a specified confidence level. Towards this end, we adapt the Reliable Interaction 

model by making two small but critical modifications in the fitting procedure and fitting criterion; these 

modifications normalize the model, allowing information theoretic quantities to be calculated. The 

resulting model is able to fit cortical-like distributions of spiking patterns with dense higher-order 

statistics. Finally, we show that these modifications have two further important consequences: they 

reduce spurious higher-order interactions, and improve the model’s ability to predict the frequencies of 

previously unseen spiking patterns. 

2. Results 

2.1. The Reliable Moment Model 

To analyze population-level activity in neural recordings, it is often necessary to first model the 

distribution of spiking patterns. Certain spiking features of neural population activity are likely to be 

more relevant for modeling than others: for example, each neuron’s firing rate and the correlations 

between pairs of neurons. In general, there may be an infinite family of models that fit these key 

features in the data, making any particular choice seem potentially arbitrary. One approach is to take 

the distribution that captures the identified statistical features while making the fewest additional 

assumptions on the structure of the data. Mathematically, this is equivalent to matching the average 

values of the features observed in the data while maximizing the statistical entropy [21]. The resulting 

distribution is called the maximum entropy model and can be derived analytically via Lagrange 

multipliers [18], resulting in the following probability: 

𝑃(𝑥) =
1

𝑍
exp {∑ℎ𝑖𝑓𝑖(𝑥)

𝑖

}. (1) 

Here, 𝑥 represents a binary spiking pattern across the population in a small time bin (i.e., 𝑥𝑖 = 1 if 

neuron i spiked in that time bin, otherwise 𝑥𝑖 = 0), 𝑓𝑖(𝑥) are the chosen spiking features, and hi are 

interaction parameters that are fitted to match the average 〈𝑓𝑖(𝑥)〉 to the values observed in the data. 

Z is a normalizing factor, also called the partition function. 

The quality of fit of a maximum entropy model relies critically on which features are included. 

Traditionally, first-order (i.e., firing rate) and second-order features (correlations) are chosen [5] to 

isolate the effect of pairwise correlations on population activity patterns. However, this may miss 

important information about higher-order dependencies within the data. In principle, the pairwise 

maximum entropy model can be generalized by fitting features of up to kth order; but this becomes 

computationally expensive for large datasets as the number of parameters grows as O(Nk). Moreover, 

higher-order features are more susceptible to overfitting, because they represent spiking features that 

occur less frequently in the data (and consequently have noisy empirical estimates). An alternative is to 

incorporate a limited subset of predetermined phenomenological features that increase the predictive 

power of the model, such as the spike count distribution [13] or frequency of the quiescent state [12]. While 

these models have been able to capture the collective activity of populations of neurons (e.g., to determine 

whether neural activity operates at a critical point [17]), they are not able to dissect how the functional 

connectivity between specific subgroups of neurons contributes to the population level activity. 

To address these challenges, a method is needed for data-driven adaptive identification of relevant 

spiking features of all orders. The Reliable Interaction (RI) model [1] has previously been used to fit 

sparse networks of pairwise and higher-order interactions to retinal populations. The RI model fits only 

the features corresponding to spiking patterns whose observed frequencies are larger than an arbitrary 

threshold. For example, in a 10-cell population, the fourth-order feature 𝑓𝑖(𝑥) = 𝑥1𝑥3𝑥5𝑥9 would be fitted 

only if the spiking pattern 𝑥 = 1010100010 occurs with frequency above this threshold. Once these 

features have been identified, the RI model uses an algebraic approximation for rapid parameter fitting 

by first calculating the partition function Z as the inverse of the frequency of the silent state: 𝑍 =

𝑃(00…0)−1 . Subsequently, the interaction parameters can be estimated recursively from the 
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observed frequencies and Z. However, while the RI model has been shown to be able to accurately 

fit the frequencies of spiking patterns, its fitting procedure does not generate a normalized probability 

distribution (as originally discussed in [1]; see Appendix A for an intuitive example). This limits certain 

applications of the model: for example, information theoretic measures such as the Kullback–Leibler 

divergence and mutual information cannot be calculated. Another limitation (demonstrated below and 

in Appendix A) is that the RI model often cannot predict the frequencies of rarely occurring spiking 

patterns. 

We propose the Reliable Moment (RM) model, an adaptation of the RI model that makes two key 

modifications in the fitting procedure and fitting criterion. First, we take advantage of a recently 

developed method for rapid parameter estimation: Minimum Probability Flow (MPF) learning [22]. While 

still substantially slower than the algebraic method employed in [1] (which is essentially instantaneous), 

using a parameter estimation method such as MPF guarantees a probability distribution that, in theory, 

can be readily normalized. In practice, calculating the partition function (Z in Equation (1)) may be 

computationally expensive, as it requires summing 2N probabilities. In this case, the partition function can 

be quickly estimated using other techniques, such as the Good–Turing estimate [23] (see Methods). As 

we shall see below, attempting to apply these approaches to the RI model strongly disrupts its predictions. 

Second, instead of fitting the features corresponding to the most commonly occurring spiking 

patterns, we fit the features corresponding to the largest moments. Taking the previous example, feature 

𝑓𝑖(𝑥) = 𝑥1𝑥3𝑥5𝑥9 would be fitted only if the moment 〈𝑥1𝑥3𝑥5𝑥9〉 is greater than some threshold. As in the 

RI model, the threshold parameter 𝑝𝑚𝑖𝑛 implicitly determines the number of fitted features. For binary 

systems, the uncentered moment of a subset of neurons is equal to the marginal probability of those 

neurons spiking, so that the previous condition is equivalent to: 

𝑃(𝑥1 = 1, 𝑥3 = 1, 𝑥5 = 1, 𝑥9 = 1) ≥ 𝑝𝑚𝑖𝑛 .  

The choice of 𝑝𝑚𝑖𝑛 can be made less arbitrary by choosing its value to bound the 95% confidence 

interval of the relative error in the sample moments (with some minimal assumptions; [14]): 

𝑝𝑚𝑖𝑛 =
1

1 +𝑀 (
𝛼
2)

2 . (2) 

𝑀 is the number of samples and 𝛼 is the maximum desired relative error. In this way, the RM model 

can adaptively identify which moments within a specific dataset are large enough to be accurately 

estimated by the sample frequency. 

Unlike the spiking pattern frequencies used in the RI model, these marginal probabilities satisfy 

an important hierarchy: the moment of any set of neurons is necessarily bounded by the moment of 

any subset of those neurons; e.g.,: 

〈𝑥1𝑥3𝑥5𝑥9〉 ≤ 〈𝑥1𝑥3𝑥5〉 ≤ 〈𝑥3𝑥5〉 ≤ 〈𝑥3〉  

This means that for every higher-order interaction fitted by the RM model, all of its corresponding 

lower-order interactions are automatically fitted as well. Although this may seem to be a minor change 

from the RI model, we will demonstrate the significance of this change with the following toy model 

(we later consider larger and more realistic models, i.e., Figs. 2-5). 

2.2. Illustration with a Toy Example 

Consider N = 3 homogeneous neurons with only first and second-order interactions: 

 𝑃(𝑥) =
1

𝑍
exp {−𝛼∑𝑥𝑖

𝑖

+
𝛽

2
∑𝑥𝑖𝑥𝑗
𝑖≠𝑗

} . (3) 

The probability of each pattern can be found analytically: 
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𝑃(𝑥) =

{
 
 
 
 

 
 
 
 

   

1

𝑍
           if 0 spikes

𝑒−𝛼

𝑍
         if 1 spike 

𝑒−2𝛼+𝛽

𝑍
     if 2 spikes

𝑒−3𝛼+3𝛽

𝑍
     if 3 spikes

  

where 𝑍 = 1 + 3𝑒−𝛼 + 3𝑒−2𝛼+𝛽 + 𝑒−3𝛼+3𝛽. In particular, for 𝛼 = 1, 𝛽 = 1.2: 

 𝑃(𝑥) ≈ {   

0.1896     if 0 spikes
0.0698      if 1 spike 
0.0852     if 2 spikes
0.3455     if 3 spikes

  

To gain intuition on the fundamental differences between the RM and RI models, we will take the 

“best-case” scenario for the model fits; i.e., assuming infinite data and infinite fitting time. This 

eliminates any error due to statistical sampling or parameter fitting for this toy example. We will first 

see that the difference in fitting criterion can lead the RI model to identify spurious higher-order 

interactions. This can be seen by setting the threshold at 𝑝𝑚𝑖𝑛 = 0.1. Then, the RI model will only identify 

the spiking patterns 𝑥 = 000 and 111 as reliable, resulting in the following: 

 𝑃𝑅𝐼(𝑥) =
1

𝑍
𝑒ℎ123𝑥1𝑥2𝑥3 , (4) 

where ℎ123 = 𝑙𝑜𝑔(𝑍 ∗ 𝑃(111)) = 0.6 . While the ground truth distribution only contains first- and 

second-order interactions, the RI fitting procedure mistakenly infers a pure triplet model. This happens 

because the RI model criterion for selection is based on the frequencies of spiking patterns, which 

(unlike the moments) do not necessarily follow a natural hierarchy. In contrast, because it relies on 

the frequency of the marginal probabilities, the RM model identifies all first, second, and third order 

interaction parameters: 

𝑃𝑅𝑀(𝑥) =
1

𝑍
exp{∑ℎ𝑖

(1)
𝑥𝑖

𝑖

+∑ℎ𝑖𝑗
(2)
𝑥𝑖𝑥𝑗 + ℎ123

(3)
𝑥1𝑥2𝑥3

𝑖≠𝑗

} . (5) 

This demonstrates that the RM model cannot infer higher-order interactions without also fitting the 

corresponding lower-order interactions.  

Second, the RI model can fail to predict the frequencies of rare spiking patterns; i.e., those that were 

not selected as reliable by the model. To see this, consider that the RI model estimates the partition 

function as 𝑍 = 𝑃(000)−1. While this gives an accurate estimate of the partition function of the true 

underlying distribution (in this example, the pairwise model; Equation (3)), it may be a poor estimate of 

the partition function for the model with interactions inferred by the RI fitting criterion (i.e., the pure 

triplet model). This mismatch between model form and the estimated partition function is the reason the 

model cannot be normalized. Because the estimated Z is also used to determine the interaction 

parameters, the RI model frequencies match the true probabilities of the spiking patterns that are 

used for fitting (i.e., the most common or reliable patterns), but is inaccurate for patterns that are 

below the threshold frequency (Figure 1). However, naïve renormalization of the model would make 

all of the probabilities inaccurate. 
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Figure 1. Toy model of N = 3 neurons with only first- and second-order interactions. Ground-truth 

probabilities are shown for each spiking pattern (black). Also shown are the frequencies predicted by 

the best-case (i.e., assuming infinite data and fitting time) Reliable Interaction (RI, magenta) and 

Reliable Moment (RM, blue) models (assuming a threshold of 0.1). Under these assumptions, the RM 

model would fit the ground-truth frequencies exactly. The RI model exactly fits the frequencies for 

spiking patterns above threshold, but is inaccurate for rare patterns. Note that the RI model cannot be 

normalized because the fitted partition function does not match fitted interaction terms (see main text 

and Appendix A for a detailed explanation). Model parameters: 𝛼 = 1, 𝛽 = 1.2 (see Equation (3)). 

On the other hand, because it falls in the class of maximum entropy distributions, the RM model is 

guaranteed to converge to the ground-truth solution under the following assumptions: first, assuming that 

all interaction terms in the ground-truth model are incorporated into the RM model; second, assuming 

infinite data; and finally, assuming infinite time and a convex iterative fitting procedure such as 

Iterative Scaling [24]. For this toy example, this means that the “best case” RM model given by 

Equation (5) will converge to the ground-truth distribution (Equation (3)). However, note that this is 

not necessarily the case due to sampling noise, unidentified interaction terms, and the necessity for 

approximate methods due to time limitations. In the latter case, we advocate the use of the approximate 

MPF learning algorithm as a more practical option than Iterative Scaling, but this choice introduces 

some error into the fitted model. Approximate methods are also useful for calculating the partition 

function. While the partition function can be calculated exactly by brute-force summing all 2N 

unnormalized probabilities, this can become prohibitively slow for large populations. We instead 

approximate the partition function; e.g., by the Good–Turing estimate [23]. Another alternative is to use 

Gibbs sampling [25] to generate spiking patterns from the inferred interaction parameters, then use the 

RI estimate of the partition function as the inverse probability of the non-spiking state in the Gibbs 

sampled “data”. Regardless of which of these methods is used, our toy example shows the fundamental 

differences between the RM and RI models, namely, that the RM model can in principle be normalized 

without disrupting its predictions of spike pattern probabilities. 

2.3. The RM Model Infers Fewer Strong Spurious Higher-Order Interactions 

Using this toy model, we have demonstrated that the RM model may be: (1) less likely to infer 

spurious higher-order interactions, and (2) better able to predict the frequencies of new spiking patterns. 

Do these improvements hold for more realistic population spiking statistics? To test this, we modeled 

populations of 𝑁 = 20  neurons using pairwise maximum entropy models. Specifying the desired 

statistics of a maximum entropy model is a notoriously difficult inverse problem. We therefore tuned the 

ground-truth interaction parameters to generally give low firing rates (Figure 2a, mean ± std, 3.3 ± 1.9 

Hz) and a broad distribution of correlations (Figure 2b, 0.01 ± 0.05; see Methods). However, we will 
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subsequently test the ability of the RM model to fit a class of models for which we can directly prescribe 

cortical-like distributions of firing rates and spiking correlations (see Section 2.5). 

 

Figure 2. Fitting a ground-truth pairwise maximum entropy model (N = 20). (a,b) Distribution of (a) 

firing rates (assuming a time window of 20 ms) and (b) pairwise correlation coefficients generated by the 

ground truth models. (c–e) Example of Reliable Moment (RM) model fit to 200 s of a simulated pairwise 

ground truth model (𝑝𝑚𝑖𝑛 = 10−3). In this example, the RM model identified all 20 units, 154 pairs, 103 

triplets, and 5 quadruplets. (c) Uncentered sample moments in the fitted RM model plotted against the 

empirical sample moments (estimated from training data) to show quality of model fit. Blue indicates 

all moments (single, pairwise, and higher-order) that were identified by the RM model. For 

comparison, red indicates the 36 pairs that were not identified by the RM model (and hence not fitted). 

(d) Cross-validated RM model probabilities versus ground-truth probability (i.e., estimated from held-

out “test” data), for an example ground-truth model. Each point represents a different spiking pattern. 

(e) RM model correlations plotted against cross-validated empirical correlations (i.e., sample 

correlations plotted against empirical sample correlations from test data). Again, red points indicate 

pairs whose corresponding interaction terms were not identified. Inset shows the same for firing rates. 

We generated population spiking patterns under the resulting distribution using Gibbs sampling 

(equivalent to 200 s worth of data) [22,25]. Figure 2c shows the fitted moments of a RM model for an 

example simulated population dataset (𝑝𝑚𝑖𝑛 = 10
−3). This choice of threshold parameter identifies all 

20 units, and 154 pairs (out of 190 possible) as having moments above threshold, which are fitted via MPF 

learning to reproduce the sample moments from the training data (blue; for comparison, the 36 pairs that 

were not included in the fitting are shown in red). The model is able to reproduce the probability distribution 

of spiking patterns in a “test” dataset that was not used to fit the model (Figure 1d), as well as the firing 

rates and correlations (Figure 1e; including the pairs that were not explicitly used for fitting, in red). This 
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choice of model also identifies 108 higher-order moments (103 triplets and 5 quadruplets) as being 

above threshold. Since the ground truth model is pairwise, ideally their interaction parameters should 

be zero after fitting. Because of sampling noise in the data, as well as idiosyncrasies of MPF learning 

(see Discussion), they are nonzero but small on average (magnitude 0.235 ± 0.231). 

How does this compare to the RI model? We next systematically tested whether the RM and RI 

models infer spurious higher-order interactions by simulating 50 random pairwise populations (using the 

same firing rates and correlations given by the distributions in Figure 2a,b). For each ground-truth model, 

we fit 20 RM and RI models with varying thresholds (see Methods), and compared the magnitudes of the 

higher-order interaction parameters. We found that the fitted higher-order interaction terms were smaller 

for the RM model than the RI model, regardless of the number of inferred parameters (Figure 3). This was 

true even when correcting for potential differences in the fitted lower-order interaction parameters 

(see Appendix B). Moreover, for the RM model, the average magnitude of the higher-order interaction 

terms was nonzero, but small and constant across different thresholds; whereas for the RI model, 

they increased in both magnitude and in variance. When a sparse subset of triplet interaction terms 

is added to the ground-truth model, the RM model is also better able to fit the corresponding 

interaction parameters (see Appendix C). These results reinforce the intuition we developed previously 

with the toy model (Figure 1) that the RM model finds fewer strong, spurious higher-order interactions, 

and is better able to fit existing higher-order interactions. 

 

Figure 3. The Reliable Moment (RM) infers fewer strong, spurious higher-order interactions. (a) Average 

magnitude of all fitted higher-order interaction parameters as a function of the number of fitted higher-order 

interactions, shown for both the Reliable Interaction (RI; magenta) and RM (blue) models. Note that 

all higher-order interactions should have magnitude 0. Points represent 50 random ground-truth 

models (i.e., random interaction parameters), each of which is fitted 20 times with varying threshold 

parameters (see Methods). Solid lines indicate the RM and RI fits to a specific example ground-truth 

model. (b) Same as (a) but for standard deviation. 

2.4. The RM Model Fits Rare Spiking Patterns 

Our toy model also predicted that, while the RI model is very accurate at capturing the frequencies 

of commonly occurring spiking patterns, it is unable to predict the probabilities of rare patterns. This 

could be a strong limitation for large population recordings, as the number of previously-unseen 

spiking patterns grows as O(2N) assuming fixed recording lengths. We therefore tested this effect by 

generating a new testing dataset for each ground-truth model, and separating it into “old” spiking 

patterns (those that also occurred within the training dataset) and “new“ spiking patterns (those that 

only occurred within the test dataset). In order to compare the RM and RI models, we must specify 

which threshold values to use for each model. Since the RM and RI threshold use different “units” 

(i.e., the RI threshold is based on the frequencies population spiking patterns, and the RM threshold 

is based on marginal probabilities or moments), it is difficult to directly compare them. For a fair 

comparison of the model fits, it is therefore necessary to compare models that have the same number 

of fitted interaction parameters. Otherwise, any difference in model performance might be attributed 
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to a model having more parameters to fit. We therefore first chose the threshold parameters in this 

example so that the RM and RI models have exactly the same number of fitted interaction parameters 

(in this case, 395). Figure 4a shows an example of model vs. empirical frequencies (calculated from 

held-out test data) for old spiking patterns. 

 

Figure 4. The Reliable Moment (RM) model is able to predict the probabilities of new spiking patterns. 

(a) Reliable interaction (RI; magenta) model frequencies and RM (blue) model probabilities of previously 

observed spiking patterns plotted against ground-truth probability, for an example ground-truth model. 

Each point represents a different “old” spiking pattern (i.e., occurring within both test and training 

datasets). For a fair comparison, we chose an example in which the RM and RI models had the same 

number of fitted interaction parameters (in this case, 395). (b) Dissimilarity (see Methods) between 

ground-truth distribution and model distribution of spiking patterns over different numbers of fitted 

higher-order interactions. Points represent 50 random ground-truth models (i.e., random interaction 

parameters), each of which is fitted 20 times with varying threshold parameters. Solid lines indicate the 

RM and RI fits to a specific example ground-truth model. (c,d) Same as (a,b) for new spiking patterns 

(i.e., those observed in the test data but not observed in the training data). 

Because the RI model is unnormalized, we cannot use the Kullback–Leibler divergence. Instead, 

we calculated the dissimilarity between the distributions using the weighted average of the magnitude 

of the log-likelihood (see Methods, [1]). RM and RI model performances were comparable across 

different ground-truth populations and different threshold parameters (Figure 4b). However, the RI 

model was much less accurate for predicting the frequencies of new spiking patterns (Figure 4c,d). 

As discussed for the toy model, this is because the RI fitting procedure is only able to capture data 

that was used for fitting, which precludes new spiking patterns. Therefore, in both the toy model and 

the more realistic case here, the RM model is better able to predict the frequencies of the many 

unobserved spiking patterns that inevitably occur in large array recordings. 
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2.5. Fitting a Model with Cortical-Like Statistics and Dense Higher-Order Correlations 

Thus far we have focused on fitting data generated by ground-truth pairwise maximum entropy 

models. Therefore, we now test the performance of the RM model on the Dichotomized Gaussian (DG) 

model, which simulates population spiking activity by generating multivariate Gaussian samples 

(representing correlated inputs to the population) and thresholding them [26]. The DG model generates 

dense higher-order statistics and can reproduce higher-order correlations observed in cortical data [9]. 

Unlike maximum entropy models, we can directly specify the firing rates for the DG model in order to 

generate cortical-like statistics. We chose log-normal, low-rate (mean 4 Hz) firing rate distributions 

[27,28] (Figure 5a), and normally distributed (mean 0.1) pairwise correlations [29] (Figure 5b; see 

Methods). We next compared the ability of the RM and RI models to fit the DG model spike patterns 

by comparing the dissimilarity between the model frequencies and the empirical probabilities from a 

held-out test dataset. The RM model was able to fit the DG patterns well, with the classic U-shaped 

curve with the number of parameters, whereas the RI model had an oscillatory shape (Figure 5c). 

The oscillations occur due to instabilities in the model’s ability to fit rare spiking patterns. To see this, 

Figure 5d shows an example of cross-validated model vs. empirical frequencies of spiking patterns 

that occur more than once in the test dataset. This is analogous to comparing the performance of the 

models for old spiking patterns (as in Figure 4a,b). For a fair comparison, we chose this example so 

that the RM and RI models had the same number of fitted interaction parameters (in this case, 239). 

Both models describe the data well, with the RI model performing slightly better because of its more 

accurate fit to the most common (quiescent) spiking patterns. However, when considering all the spiking 

patterns that occur in the test dataset, the RI model produces incoherent values for rare spiking patterns 

(i.e., those that only occur once, analogous to the “new” spiking patterns in Figure 4c,d), with frequencies 

often far surpassing 1 (Figure 5d, inset). Finally, note that an advantage of the RI model is that its 

fitting procedure is essentially instantaneous (Figure 5e). We therefore conclude that the RI model is 

a highly efficient method for capturing the frequencies of observed spiking patterns with relatively few 

parameters, but is unstable for predicting previously-unseen spiking patterns. 
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Figure 5. Fitting a Dichotomized Gaussian model with cortical-like statistics (N = 20). (a,b) Distribution 

of (a) firing rates (assuming a time window of 20 ms) and (b) pairwise correlation coefficients generated 

by the model. The Dichotomized Gaussian model is known to generate dense higher-order correlations 

[9,26]. (c) Cross-validated dissimilarity between the empirical and model distributions, for both 

Reliable Interaction (RI; magenta) and Reliable Moment (RM; blue) models. Points represent 50 random 

ground-truth models (i.e., random interaction parameters), each of which is fitted 20 times with varying 

threshold parameters. Solid lines indicate the RM and RI fits to a specific example ground-truth model. 

(d) Cross-validated model frequencies versus empirical probability, for an example ground-truth model. 

Each point represents a different spiking pattern. Only patterns occurring at least twice in the dataset are 

shown. Inset shows same plot, including spiking patterns that only occur once. For a fair comparison, 

we chose an example in which the RM and RI models had the same number of fitted interaction 

parameters (in this case, 239). (e) Time required for fitting RM and RI models. 

3. Discussion 

We developed the Reliable Moment (RM) model, a novel class of maximum entropy model for 

adaptively identifying and fitting pairwise and higher-order interactions to neural data. To do this, we 

extended a previous model [1] by making two key modifications in the fitting criterion and the fitting 

procedure. First, we include spiking features whose corresponding uncentered moments are above a 

threshold value. This threshold need not be arbitrary, as it can be used to bound the confidence interval 

of the relative error (Equation (2)) [14]. Second, we take advantage of recent fast parameter fitting 

techniques [22], which results in a normalized probability distribution. We show that the RM model is 

able to fit population spike trains with cortical-like statistics, while inferring fewer strong, spurious 

higher-order correlations, and more accurately predicting the frequencies of rare spiking patterns. 

We extended the intuition of the Reliable Interaction (RI) model [1] by determining which spiking 

features were most “reliable” as a criterion for inclusion in the model. However, our modifications 

confer several benefits. First, the RM model is normalized. While this does not necessarily affect the 

ability of a model to fit spiking pattern frequencies, it means that certain quantities that depend on the 

full distribution, such as mutual information or specific heat, can be applied to the RM model (although 

the RI model can be used to decode spiking patterns, as in [1]). This allows the RM model to be used 

for analyzing population coding or Bayesian inference, or for measuring signatures of criticality [17]. 

Second, the RM model is better able to predict the frequencies of previously-unseen spiking patterns. 

This is important for neural data, as the number of unseen spiking patterns increases significantly for 

large-scale population recordings. On the other hand, as a result of its fitting method, the RI model can 

be unstable for rare patterns (Figure 5d, inset; although it is able to predict the frequencies of common 

patterns well). Third, the RM model is less likely to find spurious higher-order interactions in a pairwise 

model, as compared to the RI model. This is because the hierarchical structure of the uncentered moments 

guarantees that no higher-order spiking feature can be fitted without also fitting all of its lower-order 

feature subsets. Finally, the main disadvantage of the RM model is that it is much slower to fit than the 

RI model, even using Minimum Probability Flow learning [22]. Therefore, the RM model performs better 

for determining the higher-order statistical structure of the data or predicting the frequencies of new 
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patterns, while the RI model performs better as a fast method for fitting commonly occurring spiking 

patterns.  

Several variants on the RM model are possible. While we chose to use MPF learning due to its 

speed, there are many alternative methods that are available [24,30–32]. In particular, classic Iterative 

Scaling [24] finds the interaction parameters that maximize the log-likelihood of the data. This is 

equivalent to minimizing the Kullback–Leibler divergence between the data and the model, which can 

be shown to be a convex problem. However, it can be prohibitively slow even for reasonably sized 

populations. On the other hand, MPF defines a dynamical system that would transform the empirical 

distribution into the model distribution, then minimizes the Kullback–Leibler divergence between the 

empirical distribution and the distribution established by this flow (after an infinitesimal time) [22]. While 

there is no guarantee on convexity, MPF in general works very well in practice (see Figure 2) and is 

much faster. Another possibility is to add a regularization term to the cost function during fitting to ensure 

sparse interaction parameters. Moreover, there is some flexibility in choosing the threshold parameter. 

Here, we advocated determining the threshold parameter to bound the error of the moments (Equation 

(2)). An alternative option would be to use the Akaike Information Criterion to determine the threshold 

that results in the optimal number of interaction parameters [33]; however, this would require multiple 

model fittings for validation. The criterion for inclusion of specific interactions may also be modified, 

for instance, by requiring that fitted interaction parameters have moments exceeding a threshold based 

on the empirical values. For each of these variants, the RM model extends the ideas behind the RI 

model by fitting a sparse subset of the most “relevant” higher-order interactions, while ensuring that 

the corresponding lower-order interactions are also fit. 

We focused on capturing stationary correlations in neural data, while neglecting temporal 

dependencies between neurons. In principle, temporal correlations could be incorporated into the RM 

model, and into the maximum entropy models more generally, by fitting concatenated spatiotemporal 

spiking patterns [34–36]. This dramatically increases the cost of fitting, although emerging techniques 

are making this problem more tractable [37,38]. Another, more widely-used approach to fitting 

spatiotemporal models of neural spiking is the generalized linear model (GLM) [39,40]. GLMs and 

Maximum entropy models are not mutually exclusive; indeed, hybrid approaches are possible [41], 

and maximum entropy models can be interpreted in a linear-nonlinear framework [15,19]. Future work 

could incorporate higher-order moments into the GLM framework, as has been done for common inputs 

[42]; indeed, there is a long history of moment-based methods for point process models that could be 

drawn upon [43–46]. Such an advance could provide a powerful tool for fitting higher-order 

spatiotemporal statistics to neural circuits, and help to illuminate the structure of collective neural activity. 

4. Materials and Methods 

4.1. Ground Truth Models 

We simulated ground-truth pairwise maximum entropy models for N = 20 neurons. Throughout, we 

assumed time bins of 20 ms for the spiking patterns. To test the performance of the Reliable Moment 

(RM) model on data without any higher-order interactions, we first assumed a pairwise maximum 

entropy distribution of spiking patterns with random, normally distributed first and second-order 

interaction parameters: ℎ𝑖~𝒩(3,0.25), ℎ𝑖𝑗~𝒩(0,
2

𝑁
). The metaparameters for the distributions were 

tuned to give low average firing rates and a broad distribution of correlations (Figure 2a). To calculate 

probabilities from the ground-truth model, we either calculate the empirical frequency of spiking patterns 

(‘empirical probability’, Figure 2d) or else we calculate the exact probability from model parameters 

(“ground-truth probability”, Figure 4). The latter requires an expensive calculation of the partition 

function. 

For cortical-like models with higher-order statistics, we used a technique based on the Dichotomized 

Gaussian (DG) model [47] to generate spike trains with specified firing rates and spiking correlations. 

In this case, we drew firing rates from a lognormal distribution with a mean of 4 Hz and standard 
deviation of 2 Hz, and correlations were normally distributed 𝜌𝑖𝑗~𝒩(0.1,0.05) . In this case, all 

probabilities are calculated based on empirical frequency (Figure 5). 

4.2. Identification of Reliable Moments 
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To fit the RM model, we must first identify which moments are greater than 𝑝𝑚𝑖𝑛. This process 

can be made efficient by taking advantage of the hierarchical arrangement of moments. We first find 

the set of neurons whose mean firing rates in the training data are greater than threshold: 

 𝑆1 = {𝑖 ∶  〈𝑥𝑖〉 ≥ 𝑝𝑚𝑖𝑛}.  

𝑆1 is the set of first-order interaction parameters. Similarly, the set of 𝑘th-order interaction parameters 

is given by: 

𝑆𝑘 = {{𝑠1⋯𝑠𝑘}: 〈∏𝑥𝑠𝑖

𝑘

𝑖=1

〉 ≥ 𝑝𝑚𝑖𝑛 }.  

The RM model fits the interactions corresponding to all elements in 𝑆𝑘, 𝑘 = 1,… , 𝑁. Enumerating all 𝑆𝑘 

can be computationally expensive as the number of possible interactions increases as O(Nk). Because 

of the hierarchy of moments, this search can be expedited by only considering the 𝑘th-order subsets 

{𝑠1⋯𝑠𝑘} for which all of their (𝑘 − 1)th-order subsets are elements of 𝑆𝑘−1. This determines whether 

the corresponding moment is above threshold. This step is performed iteratively until 𝑆𝑘 = ∅. 

4.3. Model Fitting and Sampling 

We fit the interaction parameters for the RM model using Minimum Probability Flow learning [22], 

which we adapted to accommodate arbitrary spiking interactions. After fitting the model, we used the 

Good–Turing estimate [23] to estimate the partition function empirically. For each ground-truth model, 

we fit 20 RM models with threshold parameters varying from 𝑝𝑚𝑖𝑛 = 0.05 to 𝑝𝑚𝑖𝑛 = 0.001. Because 

MPF is not convex (and therefore not guaranteed to converge), it is important to check that the model 

correlations reproduce the data correlations. To do this, we calculate sample correlations via Gibbs 

sampling. 

The Reliable Interaction (RI) models were fit using the procedure described in [1]. Because 

spiking pattern frequencies are smaller than the marginal frequencies, we used smaller thresholds for 

the RI model, ranging from 𝑝𝑚𝑖𝑛 = 5 ∗ 10
−3 to 10−5 , as these resulted in similar numbers of fitted 

parameters in the RM and RI models. 

4.4. Dissimilarity Between Empirical Data and Models 

Since the RI model is not normalized, the Kullback–Leibler divergence returns incongruent 

(negative) values. We therefore follow [1] in measuring the dissimilarity between the ground-truth and 

the model frequencies as: 

𝑑(𝑃, 𝑄) =  ∑𝑃(𝑥)

𝑥∈𝐷

|log2
𝑃(𝑥)

𝑄(𝑥)
|  

where 𝒟 is the set of all observed spiking patterns in the test data (however, in contrast to [1], we do 

not exclude spiking patterns that only occurred once). 

4.5. Code Availability 

All relevant code will be made available on GitHub. 
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Appendix A 

Here we demonstrate why the RI model cannot be normalized, using an intuitive example that can 

only be described in the maximum entropy formulation in the limit that the interaction parameters →

−∞. However, note that the RI model for the toy example discussed in the main text (described by 

Equations (3) and (4)) is also unnormalizable in its exact form. 

Consider N neurons that never spike: then, P(00…0) = 1, and zero for all other spiking patterns. 

Informally, this distribution can be described by the limit of the following first-order maximum entropy 

model: 

𝑃(𝑥) =
1

𝑍
exp {∑ℎ𝑖𝑥𝑖

𝑖

},  

as ℎ𝑖 → −∞. Under the RI model, the partition function is estimated as 𝑍̂ = 𝑃(00…0)−1=1. Since this 

is the only occurring pattern, all interactions are set to 0. As a result, the frequency of any spiking 

pattern is: 

𝑃𝑅𝐼(𝑥) =
1

𝑍
exp{0} = 1,  

so that the frequencies sum to 2N. Although the RI model accurately (in this example, perfectly) fits 

the most common spiking pattern (silence), it is unnormalized. Furthermore, naive renormalization 

would result in a probability distribution that is inaccurate for every spiking pattern. This dilemma 

occurs because 𝑍̂ is an accurate (in this example, perfect) estimate of the partition function of the 

underlying distribution, but not for the model defined by the interaction parameters identified by the 

RI model. 

Appendix B 

We have shown that the RM model predicts infers smaller higher-order interaction parameters in 

a ground-truth pairwise model than the RI model. In principle, this fact could be due to changes in the 

lower-order terms. In other words, it is possible that the RI higher-order interaction terms are larger in 

absolute magnitude, but not in relative magnitude as compared to the e.g., pairwise terms. We therefore 

quantified the average magnitude of fitted higher-order interaction parameters, normalized by the 

average magnitude of all fitted pairwise terms. However, we still found that the normalized higher-order 

interaction terms were larger in the RI model than in the RM model (Figure A1a). This is due to the fact 

that the pairwise interaction terms were similar between the RM and RI models (Figure A1b). 

Therefore, we conclude that the RM model infers fewer strong, spurious higher-order interactions, 

even when controlling for differences in the lower-order terms. 
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Figure A1. The Reliable Moment (RM) model infers smaller parameters for spurious higher-order 

interaction terms, relative to lower-order terms. (a) Average magnitude of all fitted higher-order interaction 

parameters normalized by the average magnitude of all pairwise interaction parameters, shown for 

both the Reliable Interaction (RI; magenta) and RM (blue) models (cf. Figure 3a). (b) Average magnitude 

of all pairwise interaction parameters (RI, magenta; RM, blue). 

Appendix C 

To test whether the RM model is better able to fit higher-order interactions than the RI model, 

we augmented the pairwise maximum entropy model with a sparse set of nonzero triplet interaction 

terms. Specifically, the lower-order terms were generated in the same manner as for the pairwise 

model (see Methods). Then, each of the (𝑁3) possible triplet terms was chosen with probability 𝑝 = 0.05, 

and the corresponding interaction parameters for these triplets (referred to as the “ground-truth triplets”) 

were drawn from a standard normal distribution. We repeated the same fitting protocol as previously 

described for the pairwise maximum entropy model. The number of ground-truth triplets that were not 

identified by the RM model was slightly higher than the RI model (mean ± std, 53.00 ± 0.29, RM 

model; 46.00 ± 0.37, RI model). However, we found that the inferred interaction parameters for these 

ground-truth triplets are more accurate for the RM model than the RI model (Figure A2). Therefore, 

while the RM model misses slightly more ground-truth triplets than the RI model, it more accurately 

fits their interaction parameters. 

 

Figure A2. The Reliable Moment (RM) model more accurately fits higher-order interaction parameters of 

a maximum entropy ground-truth model incorporating a sparse subset of triplet terms. Fitted interaction 

parameters for ground-truth triplets inferred by the RM model (blue) and the Reliable Interaction model 

(RI, magenta), plotted against the ground-truth values of the interaction parameters. 
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