Abstract
Recently diverged taxa showing marked phenotypic and ecological diversity are optimal systems to test the relative importance of two major evolutionary mechanisms, adaptation to local ecological conditions by natural selection, or mechanisms of reproductive isolation such as assortative mating mediated by sexually selected mating signals or post-zygotic incompatibilities. Whereas local adaptation is expected to affect many loci throughout the genome, traits acting as mating signals are expected to be located on sex chromosomes and have a simple genetic basis. We used genome-wide markers to test these predictions in Reunion Island’s gray-white eye (Zosterops borbonicus), which has recently diversified into five distinct plumage forms. Two of them correspond to a polymorphic highland population that is separated by a steep ecological gradient from three distinct lowland forms that show narrow contact zones in plumage color traits, yet no association with environmental variables. An analysis of population structure using genome-wide SNP loci revealed two major clades corresponding to highland and lowland forms, respectively, with the latter separated further into three independent lineages corresponding to plumage forms. Coalescent tests of alternative demographic scenarios provided support for divergence of highland and lowland lineages with an intensification of gene flow in the last 60,000 years. Landscapes of genomic variation revealed that signatures of selection associated with elevation are found at multiple regions across the genome, whereas most loci associated with the lowland forms are located on the Z sex chromosome. A gene ontology analysis identified TYRP1, a Z-linked color gene, as a likely candidate locus underlying color variation among lowland forms. Our results are consistent with the role of natural selection in driving the divergence of locally adapted highland populations, and the role of sexual selection in differentiating lowland forms through reproductive isolation mechanisms, showing that both modes of lineage divergence can take place at very small geographic scales in birds.